DE102019133491A1 - Vorrichtung und Verfahren zur Leckageerkennung bei einem Hydraulikzylinder - Google Patents

Vorrichtung und Verfahren zur Leckageerkennung bei einem Hydraulikzylinder Download PDF

Info

Publication number
DE102019133491A1
DE102019133491A1 DE102019133491.8A DE102019133491A DE102019133491A1 DE 102019133491 A1 DE102019133491 A1 DE 102019133491A1 DE 102019133491 A DE102019133491 A DE 102019133491A DE 102019133491 A1 DE102019133491 A1 DE 102019133491A1
Authority
DE
Germany
Prior art keywords
pressure
hydraulic cylinder
pressure sensor
norm
pressure values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102019133491.8A
Other languages
English (en)
Inventor
Michael Österreicher
Jürgen Bopp
Hans-Peter Lavergne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Components Kirchdorf GmbH
Original Assignee
Liebherr Components Kirchdorf GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Components Kirchdorf GmbH filed Critical Liebherr Components Kirchdorf GmbH
Priority to DE102019133491.8A priority Critical patent/DE102019133491A1/de
Priority to US17/783,243 priority patent/US20230008702A1/en
Priority to PCT/EP2020/085359 priority patent/WO2021116219A1/de
Priority to EP20824503.5A priority patent/EP4058769A1/de
Publication of DE102019133491A1 publication Critical patent/DE102019133491A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
    • G01M3/3272Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers for verifying the internal pressure of closed containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/007Simulation or modelling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/1423Component parts; Constructional details
    • F15B15/1447Pistons; Piston to piston rod assemblies
    • F15B15/1452Piston sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • F15B20/005Leakage; Spillage; Hose burst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/857Monitoring of fluid pressure systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/87Detection of failures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/025Details with respect to the testing of engines or engine parts

Abstract

Die vorliegende Erfindung betrifft eine Vorrichtung zur Leckageerkennung bei einem Hydraulikzylinder, umfassend: einen ersten Drucksensor zum Erfassen eines Druckwerts in einer ersten Druckkammer eines Hydraulikzylinders, einen zweiten Drucksensor zum Erfassen eines Druckwerts in einer zweiten Druckkammer des Hydraulikzylinders, eine Auswerteeinheit zum kontinuierlichen Erfassen der Druckwerte von dem ersten Drucksensor und dem zweiten Drucksensor, wobei die Auswerteeinheit dazu ausgelegt ist, aufgrund der erfassten Druckwerte des ersten Drucksensors und des zweiten Drucksensors eine von der Norm abweichende Leckage, vorzugsweise innere Leckage, des Hydraulikzylinders zu erkennen.

Description

  • Die vorliegende Erfindung betrifft eine Vorrichtung und ein Verfahren zur Leckageerkennung bei einem Hydraulikzylinder, insbesondere einem Differenzialzylinder.
  • Hydraulikdichtungen, insbesondere Kolbendichtungen, unterliegen einem Verschleiß und müssen während der Lebensdauer des Hydraulikzylinders gewechselt werden. Weiter kann es vorkommen, dass nicht vorhersehbare Betriebszustände oder im Hydraulikfluid enthaltene Verschmutzungen zu einem vorzeitigen Verschleiß der Kolbendichtung oder anderer Dichtungen des Hydraulikzylinders führen.
  • Abgenutzte oder beschädigte Dichtungen führen zu einer ungewollten Leckage. Schwer zu erkennen ist dabei vor allem eine Beschädigung an der Kolbendichtung, da bei einem Differenzialzylinder die dadurch hervorgerufene Leckage nicht von außen an dem Hydraulikzylinder erkennbar ist. So kommt es lediglich zu einem Übertritt von Hydraulikflüssigkeit von einer unter hohen Druck stehenden Hydraulikkammer zu der unter weniger hohen Druck stehenden Hydraulikkammer. Nachteilhaft hieran ist, dass für ein Halten des Hydraulikzylinders eine höhere Pumpleistung erforderlich ist, da das aufgrund der Leckage abfließende Hydraulikfluid nachgepumpt werden muss. Im schlimmsten Fall kann es neben den bereits angesprochenen Wirkungsgradverlusten zu einem Totalausfall des Hydraulikzylinders kommen, was in der Regel eine ungewollte Stillstandszeit der mit dem Hydraulikzylinder versehenen Maschine mit sich bringt.
  • Es ist demnach das Ziel der vorliegenden Erfindung Leckagen, insbesondere bei einer Kolbendichtung frühzeitig bereits dann zu erkennen, wenn diese erst einen unmerklich geringen Wirkungsgradverlust mit sich bringen und/oder von außen noch keinerlei sichtbare Anzeichen für eine Leckage erkennbar sind.
  • Mit einer solchen Information einer sich ankündigenden Leckage bzw. einer bereits entstandenen sehr geringen Leckage kann rechtzeitig eine Wartung oder eine Reparatur in Auftrag gegeben werden, so dass unvorhergesehene Stillstandszeiten der mit dem Hydraulikzylinder versehenen Maschine nicht mehr auftreten. Weiter kann der Hydraulikzylinder betriebsgerechter gewartet werden, da der Verschleißzustand rechtzeitig detektiert wird, so dass Betriebs- Wartungs- und Energiekostengespart werden können.
  • Das vorliegend diskutierte Problem wird mit einer Vorrichtung nach Anspruch 1 bzw. einem Verfahren nach Anspruch 8 gelöst, das sämtliche Merkmale des Anspruchs 1 aufweist.
  • Gemäß der Erfindung umfasst die Vorrichtung zur Leckageerkennung bei einem Hydraulikzylinder einen ersten Drucksensor zum Erfassen eines Druckwerts in einer ersten Druckkammer eines Hydraulikzylinders, einen zweiten Drucksensor zum Erfassen eines Druckwerts in einer zweiten Druckkammer des Hydraulikzylinders, und eine Auswerteeinheit zum kontinuierlichen Erfassen der Druckwerte von dem ersten Drucksensor und dem zweiten Drucksensor, wobei die Auswerteeinheit dazu ausgelegt ist, aufgrund der erfassten Druckwerte des ersten Drucksensors und des zweiten Drucksensors eine von der Norm abweichende Leckage, vorzugsweise innere Leckage, des Hydraulikzylinders zu erkennen.
  • Der Hydraulikzylinder kann nach einer Fortbildung der Erfindung ein doppeltwirkender Hydraulikzylinder sein, der je Druckkammer einen dafür vorgesehenen Drucksensor aufweist.
  • Die Auswerteeinheit ist nun dazu in der Lage, die erhaltenen Druckwerte der beiden mit den zwei Druckkammern verbundenen Drucksensoren zu analysieren und hinsichtlich einer unnormal hohen Leckage zu bewerten. Dabei gehen sowohl mindestens ein Druckwert des ersten Drucksensors wie auch mindestens ein Druckwert des zweiten Drucksensors in die Auswertung ein.
  • Die Auswertung ermöglicht demnach eine Überprüfung, ob die Dichtung, insbesondere die Kolbendichtung des Hydraulikzylinders weiterhin funktioniert oder bereits eine Leckage zulässt.
  • Nach einer optionalen Modifikation der Erfindung kann ferner vorgesehen sein, dass die Auswerteeinheit zur Auswertung der erfassten Druckwerte des ersten Drucksensors und des zweiten Drucksensors ein neuronales Netz verwendet oder ein neuronales Netz ist. Vorteilhaft hieran ist, dass ein neuronales Netz bei entsprechenden Trainingsdaten eigene Kriterien bzw. Klassifikationsparameter entwickelt, anhand der es erkennt, ob ein Hydraulikzylinder eine Leckage aufweist oder nicht. Selbstverständlich ist es aber auch möglich, Vorgaben zu machen, anhand derer das neuronale Netz Entscheidungen treffen soll.
  • Nach der Erfindung kann ferner vorgesehen sein, dass die Auswerteeinheit dazu ausgelegt ist, durch maschinelles Lernen Kombinationen von Druckwerten des ersten Drucksensors und des zweiten Drucksensors als in der Norm liegend oder außerhalb der Norm liegend zu klassifizieren.
  • Dabei kann die Auswertung der erfassten Druckwerte während des laufenden Betriebs des Hydraulikzylinders durchgeführt werden, so dass eine kontinuierliche Überwachung des Hydraulikzylinders auch während des Betriebs erfolgt.
  • Die Auswerteeinheit kann ausgelegt sein, durch maschinelles unüberwachtes Lernen (auch genannt: Unsupervised Learning) die Klassifikationsparameter zum Erkennen einer von der Norm abweichende Leckage des Hydraulikzylinders zu bilden.
  • Beim Machine-Learning-Verfahren des Unsupervised Learnings steht das Gruppieren von Daten im Vordergrund. Basis hierfür sind meist statistische Verfahren, so dass Abhängigkeiten in den zugeführten Daten erkannt werden können. So werden spezifischen Werten von Druckwert-Kombinationen der beiden Drucksensoren, bzw. von Abfolgen davon, mit einem normalen Betrieb des Hydraulikzylinders oder mit einem von der Norm abweichenden Zustand verknüpft. Weiter ist eine Anomalie-Erkennung möglich, die durch geeignete Bildung von Clustern (Klassifikationsparametern) ermittelt, welche Datensätze der Norm entsprechen, und welche eher auffällig sind. Die Auswertung basiert dabei vorzugsweise auch auf von der Maschine erstellten Regeln und Zusammenhänge. So gelingt es, dass ein undichter Kolben in dem Hydraulikzylinder frühzeitig erkennbar ist.
  • Dabei kann vorgesehen sein, dass zum Trainieren des maschinellen unüberwachten Lernens Messdaten des ersten Drucksensors und des zweiten Drucksensors von einem defekten Hydraulikzylinder sowie entsprechende Messdaten von einem nicht defekten Hydraulikzylinder herangezogen werden.
  • Dabei kann ferner vorgesehen sein, dass nach einem Trainieren des maschinellen unüberwachten Lernens die Auswerteeinheit dazu ausgelegt ist, eine Kombination von Druckwerten der beiden Drucksensoren einer Plausibilitätsprüfung zu unterziehen, die auf dem Prinzip des überwachten Lernens basiert.
  • Die Erfindung betrifft ferner ein Verfahren zur Leckageerkennung bei einem Hydraulikzylinder, wobei in dem Verfahren Druckwerte eines ersten Drucksensors, der den Druck in einer ersten Kammer eines Hydraulikzylinders misst, und Druckwerte eines zweiten Drucksensors, der den Druck in einer zweiten Kammer des Hydraulikzylinders misst, kontinuierlich aufgenommen werden, und auf eine von der Norm abweichende Leckage, vorzugsweise innere Leckage, anhand der erfassten Druckwerte geschlossen wird.
  • Eine innere Leckage bei einem Hydraulikzylinder ist ein Fluss von Hydraulikfluid über den Kolben hinweg von der einen Druckkammer zu der anderen Druckkammer. Eine solche Strömung wird durch eine intakte Kolbendichtung verhindert.
  • Nach dem Verfahren kann vorgesehen sein, dass die Abweichung von der Norm durch die Klassifikation von zur selben Zeit gemessenen Druckwerten der beiden Kammern oder einer Reihe von zur selben Zeit gemessenen Druckwerten der beiden Kammern erfolgt.
  • Die durch die Drucksensoren zu einem Zeitpunkt gemessenen Daten bilden einen Datensatz oder einen Teil eines Datensatzes, der von der Auswerteeinheit auf Auffälligkeiten hin überprüft wird. Der Datensatz kann dabei bspw. noch mit einem Verfahrzustand des Kolbens verknüpft sein, so dass auch eine Bewegungsabweichung des Kolbens bei unauffälligen Druckwerten erkannt wird.
  • Die erzeugten Datensätze können dabei auch Datensätze eines gewissen zeitlichen Ablaufs darstellen, so dass sich die Auswertung nicht auf einen bestimmten Zeitpunkt beschränken muss und auch sich über die Zeit verändernde Umstände sichtbar werden.
  • Nach dem erfindungsgemäßen Verfahren kann ferner vorgesehen sein, dass für eine Beurteilung, ob eine Abweichung von der Norm vorliegt, maschinelles Lernen genutzt wird, insbesondere unüberwachtes maschinelles Lernen, vorzugsweise indem Messdaten des ersten Drucksensors und des zweiten Drucksensors von einem defekten Hydraulikzylinder sowie Messdaten des ersten Drucksensors und des zweiten Drucksensors von einem nicht defekten Hydraulikzylinder für eine Trainingssequenz des maschinellen unüberwachten Lernens herangezogen werden.
  • Die Besonderheit des unüberwachten Lernens ist, dass der erwartete Output am Anfang des Lernvorgangs nicht bekannt ist. Es werden zwar Datensätze eines defekten Hydraulikzylinders und eines intakten Hydraulikzylinders beim unüberwachten Lernen zugeführt, es wird aber nicht vorgegeben, in welche Kategorien (bspw. Kolbendichtung intakt oder nicht intakt) die ausgewerteten Daten einzuteilen sind. Der Ansatz beim unüberwachten Maschinenlernen ist ergebnisoffen. Der Lernvorgang vollzieht sich dadurch, dass der Algorithmus versucht, Daten in einer bestimmten Art und Weise zu clustern, also zu gruppieren, oder Anomalien zu identifizieren.
  • Ferner kann nach einer Fortbildung der Erfindung vorgesehen sein, dass die Ausgabe der Beurteilung, ob einer Abweichung von der Norm vorliegt, die aufgrund von unüberwachtem maschinellen Lernen erhalten wird, als Trainingsdaten für ein überwachtes Lernen herangezogen werden, um zu verifizieren, ob die für das überwachte Lernen genutzten Annahmen korrekt sind.
  • Man nutzt also die vom unüberwachten Lernen erhaltenen Datensätze als gelabelte Datensätze und verwendet diese als Trainingsdaten für ein nachgeschaltetes überwachtes Lernen. Hieraus ergibt sich ein Modell das mit den gelabelten Daten getestet werden kann.
  • Nach einer optionalen Modifikation der Erfindung kann vorgesehen sein, dass die Auswertung, ob eine von der Norm abweichende Leckage vorliegt, während des Betriebs des Hydraulikzylinders durchgeführt wird.
  • Weiter kann vorgesehen sein, dass die Auswertung, ob eine von der Norm abweichende Leckage vorliegt, durch die Klassifikation von zur selben Zeit gemessenen Druckwerten der beiden Kammern oder einer zeitlichen Abfolge von zur selben Zeit gemessenen Druckwerten der beiden Kammern erfolgt.
  • Ebenfalls möglich ist, dass zur Auswertung, ob eine von der Norm abweichende Leckage vorliegt, nicht nur die Druckwerte der beiden Drucksensoren sondern auch der Verfahrzustand des Hydraulikzylinders herangezogen werden.
  • Dabei kann ein Druckwert des ersten Drucksensors, ein Druckwert des zweiten Drucksensors und der Verfahrzustand des Hydraulikzylinders für einen gemeinsamen Zeitpunkt einen Datensatz bilden, und die Auswertung, ob eine von der Norm abweichende Leckage vorliegt, auf Grundlage dieses Datensatzes oder einer zeitlichen Abfolge mehrerer dieser Datensätze erfolgen.
  • Weitere Merkmale, Einzelheiten und Vorteile der Erfindung werden anhand der nachfolgenden Figurenbeschreibung ersichtlich. Dabei zeigen:
    • 1: eine schematische Darstellung der erfindungsgemäßen Vorrichtung an einem Hydraulikzylinder, und
    • 2: ein Ablaufdiagramm für das Verfahren der Leckageerkennung.
  • 1 zeigt eine schematische Darstellung eines Differenzialzylinders, der durch einen Kolben in eine erste Druckkammer 3 und eine zweite Druckkammer 4 unterteilt wird. Der Kolben besitzt dabei eine Dichtung 6, so dass die beiden Druckkammern fluidisch voneinander getrennt sind. Wird der Kolben bewegt, erfolgt dies über die Zufuhr und entsprechende Abfuhr eines Hydraulikfluids über die beiden Fluidanschlüsse 7.
  • Ist die Dichtung 6 jedoch defekt oder schon über das zulässige Maß hinaus abgenutzt, kommt es zu einer Leckage 5, so dass Hydraulikfluid von einer unter hohem Druck stehenden Kammer 3 zu einer unter weniger hohem Druck stehenden Kammer 4 strömt.
  • Da eine solche Leckage nicht von außen zu sehen ist, jedoch zu erhöhten Pumpaufwand des Hydraulikfluids führt und schlimmstenfalls sogar zu einer Beschädigung des Hydraulikzylinder führen kann, ist es von Vorteil, diesen Leckagezustand rechtzeitig zu erkennen.
  • Hierzu ist an jeder der beiden Druckkammern 3, 4 je ein Drucksensor 2 vorgesehen, um Druckwerte an eine Recheneinheit 1 zu übermitteln. In dieser Recheneinheit findet dann eine Auswertung statt, die anhand der ermittelten Druckwerte der beiden Druckkammern ein Leckage zwischen den beiden Kammern über den Kolben hinweg erkennen kann. Typischerweise ist dabei die Kolbendichtung verschlissen, so dass es eine Fluidpassage zwischen den beiden eigentlich durch den Kolben getrennten Druckkammern gibt.
  • Dabei werden in der Recheneinheit mittels maschinellen Lernen die Druckzustände klassifiziert, welche eindeutig den Leckagezustand des Hydraulikzylinders identifizieren. Während des Betriebs des Hydraulikzylinders werden die Drucksignale aus den beiden Kammern ausgewertet und auf den Betriebszustand der Kolbendichtung geschlossen.
  • Die Auswertung ist dabei anhand eines Flow-Charts erläutert, das in 2 dargestellt ist.
  • In S1 und S2 ist angegeben, dass sowohl ein vollständig intakter Hydraulikzylinder als Referenz wie auch ein defekter Hydraulikzylinder, der über eine verschlissene Kolbendichtung verfügt, erforderlich sind, um in S3 entsprechende Messdaten der beiden Hydraulikzylinder zu erzeugen. In S3 wird also der Druck eines Differenzialzylinders stangen- und kolbenseitig erfasst. Die Erfassung kann dabei über einen bestimmten Verfahrweg bei unterschiedlichen Druckbelastungen des Zylinders erfolgen und zudem auch auf Werte aus dem Wegmesssystem des Hydraulikzylinders zurückgreifen.
  • Nachdem die Messdaten von dem intakten Hydraulikzylinder erstellt worden sind, bilden diese Referenzmessdaten (S4). Analog dazu bilden die Messdaten des defekten Hydraulikzylinders Messdaten des defekten Zylinders (S5).
  • In S6 werden die Messdaten des intakten und des defekten Hydraulikzylinders zu einem gemeinsamen Datensatz vereinigt, um als Grundlage für ein unüberwachtes maschinelles Lernen verwendet zu werden. Dabei ist es vorliegend von Vorteil, wenn das zugrundeliegende Cluster-Verfahren ein dichtebasiertes Verfahren ist, das auf Algorithmen zur Daten-Dichte und Distanzfunktionen zurückgreift.
  • Hieraus erhält man dann die gelabelten Daten (S8), welche in S9 als Trainingsdaten für ein überwachtes maschinelles Lernen (S10) genutzt werden.
  • Das so trainierte neuronale Netz bildet auf Grundlage hiervon ein Modell (S11), das mit Testdaten (S12), die aus den gelabelten Daten (S8) gewonnen werden, getestet werden kann, so dass man im Ergebnis ein getestetes Modell (S13) erhält.
  • Dieses getestete Modell (S13) wird durch die Recheneinheit 1 angewandt, so dass man bei entsprechenden Druckwerten der beiden Drucksensoren zuverlässig auf einen Defekt in der Kolbendichtung schließen kann.
  • Dazu werden einfach kontinuierlich die erzeugten Druckwerte an die Recheneinheit 1 weitergegeben, die unter Zugrundelegung des getesteten Modells das Vorliegen einer von der Norm abweichenden Leckage erkennen kann, die durch eine defekte Kolbendichtung bedingt ist.

Claims (15)

  1. Vorrichtung zur Leckageerkennung bei einem Hydraulikzylinder, umfassend: einen ersten Drucksensor zum Erfassen eines Druckwerts in einer ersten Druckkammer eines Hydraulikzylinders, einen zweiten Drucksensor zum Erfassen eines Druckwerts in einer zweiten Druckkammer des Hydraulikzylinders, und eine Auswerteeinheit zum kontinuierlichen Erfassen der Druckwerte von dem ersten Drucksensor und dem zweiten Drucksensor, wobei die Auswerteeinheit dazu ausgelegt ist, aufgrund der erfassten Druckwerte des ersten Drucksensors und des zweiten Drucksensors eine von der Norm abweichende Leckage, vorzugsweise innere Leckage, des Hydraulikzylinders zu erkennen.
  2. Vorrichtung nach Anspruch 1, wobei die Auswerteeinheit zur Auswertung der erfassten Druckwerte des ersten Drucksensors und des zweiten Drucksensors ein neuronales Netz verwendet oder ein neuronales Netz ist.
  3. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Auswerteeinheit dazu ausgelegt ist, durch maschinelles Lernen Kombinationen von Druckwerten des ersten Drucksensors und des zweiten Drucksensors als in der Norm liegend oder außerhalb der Norm liegend zu klassifizieren.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Auswerteeinheit dazu ausgelegt ist, die Auswertung der erfassten Druckwerte während des laufenden Betriebs des Hydraulikzylinders durchzuführen.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Auswerteeinheit dazu ausgelegt ist, durch maschinelles unüberwachtes Lernen die Klassifikationsparameter zum Erkennen einer von der Norm abweichende Leckage des Hydraulikzylinders zu bilden.
  6. Vorrichtung nach Anspruch 5, wobei zum Trainieren des maschinellen unüberwachten Lernens Messdaten des ersten Drucksensors und des zweiten Drucksensors von einem defekten Hydraulikzylinder sowie Messdaten von einem nicht defekten Hydraulikzylinder herangezogen werden.
  7. Vorrichtung nach Anspruch 5 oder 6, wobei nach einem Trainieren des maschinellen unüberwachten Lernens die Auswerteeinheit dazu ausgelegt ist, eine Kombination von Druckwerten der beiden Drucksensoren einer Plausibilitätsprüfung zu unterziehen, die auf dem Prinzip des überwachten Lernens basiert.
  8. Verfahren zur Leckageerkennung bei einem Hydraulikzylinder, wobei in dem Verfahren: Druckwerte eines ersten Drucksensors, der den Druck in einer ersten Kammer eines Hydraulikzylinders misst, und Druckwerte eines zweiten Drucksensors, der den Druck in einer zweiten Kammer des Hydraulikzylinders misst, kontinuierlich aufgenommen werden, und auf eine von der Norm abweichende Leckage, vorzugsweise innere Leckage, anhand der erfassten Druckwerte geschlossen wird.
  9. Verfahren nach Anspruch 8, wobei die Abweichung von der Norm durch die Klassifikation von zur selben Zeit gemessenen Druckwerten der beiden Kammern oder einer Reihe von zur selben Zeit gemessenen Druckwerten der beiden Kammern erfolgt.
  10. Verfahren nach einem der vorhergehenden Ansprüche 8 oder 9, wobei für eine Beurteilung, ob eine Abweichung von der Norm vorliegt, maschinelles Lernen genutzt wird, insbesondere unüberwachtes maschinelles Lernen, vorzugsweise indem Messdaten des ersten Drucksensors und des zweiten Drucksensors von einem defekten Hydraulikzylinder sowie Messdaten des ersten Drucksensors und des zweiten Drucksensors von einem nicht defekten Hydraulikzylinder für eine Trainingssequenz des maschinellen unüberwachten Lernens herangezogen werden.
  11. Verfahren nach Anspruch 10, wobei die Ausgabe der Beurteilung, ob einer Abweichung von der Norm vorliegt, die aufgrund von maschinellen Lernen, insbesondere unüberwachtem maschinellen Lernen erhalten wird, als Trainingsdaten für ein überwachtes Lernen herangezogen werden, um zu verifizieren, ob die für das überwachte Lernen genutzten Annahmen korrekt sind.
  12. Verfahren nach einem der vorhergehenden Ansprüche 8 bis 11, wobei die Auswertung, ob eine von der Norm abweichende Leckage vorliegt, während des Betriebs des Hydraulikzylinders durchgeführt wird.
  13. Verfahren nach einem der vorhergehenden Ansprüche 8 bis 12, wobei die Auswertung, ob eine von der Norm abweichende Leckage vorliegt, durch die Klassifikation von zur selben Zeit gemessenen Druckwerten der beiden Kammern oder einer zeitlichen Abfolge von zur selben Zeit gemessenen Druckwerten der beiden Kammern erfolgt.
  14. Verfahren nach einem der vorhergehenden Ansprüche 8 bis 13, wobei zur Auswertung, ob eine von der Norm abweichende Leckage vorliegt, nicht nur die Druckwerte der beiden Drucksensoren sondern auch der Verfahrzustand des Hydraulikzylinders herangezogen wird.
  15. Verfahren nach Anspruch 14, wobei ein Druckwert des ersten Drucksensors, ein Druckwert des zweiten Drucksensors und der Verfahrzustand des Hydraulikzylinders für einen gemeinsamen Zeitpunkt einen Datensatz bilden, und die Auswertung, ob eine von der Norm abweichende Leckage vorliegt, auf Grundlage dieses Datensatzes oder einer zeitlichen Abfolge mehrerer dieser Datensätze erfolgt.
DE102019133491.8A 2019-12-09 2019-12-09 Vorrichtung und Verfahren zur Leckageerkennung bei einem Hydraulikzylinder Pending DE102019133491A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102019133491.8A DE102019133491A1 (de) 2019-12-09 2019-12-09 Vorrichtung und Verfahren zur Leckageerkennung bei einem Hydraulikzylinder
US17/783,243 US20230008702A1 (en) 2019-12-09 2020-12-09 Device and method for detecting leakage of a hydraulic cylinder
PCT/EP2020/085359 WO2021116219A1 (de) 2019-12-09 2020-12-09 Vorrichtung und verfahren zur leckageerkennung bei einem hydraulikzylinder
EP20824503.5A EP4058769A1 (de) 2019-12-09 2020-12-09 Vorrichtung und verfahren zur leckageerkennung bei einem hydraulikzylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019133491.8A DE102019133491A1 (de) 2019-12-09 2019-12-09 Vorrichtung und Verfahren zur Leckageerkennung bei einem Hydraulikzylinder

Publications (1)

Publication Number Publication Date
DE102019133491A1 true DE102019133491A1 (de) 2021-06-10

Family

ID=73835576

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019133491.8A Pending DE102019133491A1 (de) 2019-12-09 2019-12-09 Vorrichtung und Verfahren zur Leckageerkennung bei einem Hydraulikzylinder

Country Status (4)

Country Link
US (1) US20230008702A1 (de)
EP (1) EP4058769A1 (de)
DE (1) DE102019133491A1 (de)
WO (1) WO2021116219A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115450990A (zh) * 2022-11-14 2022-12-09 山东天力润滑油有限公司 用于对液压油泄漏进行检测的方法和设备
DE102021208743A1 (de) 2021-08-11 2023-02-16 Herbert Hänchen GmbH Verfahren zur Detektion einer Leckage von Hydraulikmedium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116183117B (zh) * 2023-04-28 2023-08-04 山东福阳液压科技有限公司 一种基于位移的液压缸密封性测试装置
CN116818207B (zh) * 2023-08-30 2023-12-08 济宁鲁威液压科技股份有限公司 一种液压元件的气密性性能检测装置及方法
CN116989955B (zh) * 2023-09-26 2024-01-09 山东宇飞传动技术有限公司 一种基于流体检测的液压缸密封性检测装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE291223T1 (de) * 1999-12-15 2005-04-15 Kistler Holding Ag Verfahren zur bestimmung des oberen totpunktes einer brennkraftmaschine mit neuronalem lernen
US7043975B2 (en) * 2003-07-28 2006-05-16 Caterpillar Inc Hydraulic system health indicator
KR101377802B1 (ko) * 2012-04-25 2014-03-25 현대제철 주식회사 유압 설비의 성능 변화 모니터링 장치
EP3196623A1 (de) * 2016-01-25 2017-07-26 Primetals Technologies Germany GmbH Einfache leckagebestimmung bei einer hydraulikzylindereinheit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021208743A1 (de) 2021-08-11 2023-02-16 Herbert Hänchen GmbH Verfahren zur Detektion einer Leckage von Hydraulikmedium
CN115450990A (zh) * 2022-11-14 2022-12-09 山东天力润滑油有限公司 用于对液压油泄漏进行检测的方法和设备

Also Published As

Publication number Publication date
US20230008702A1 (en) 2023-01-12
WO2021116219A1 (de) 2021-06-17
EP4058769A1 (de) 2022-09-21

Similar Documents

Publication Publication Date Title
DE102019133491A1 (de) Vorrichtung und Verfahren zur Leckageerkennung bei einem Hydraulikzylinder
EP1499825B1 (de) Diagnosesystem und -verfahren für ein ventil
DE102005018123B4 (de) Verfahren zur Bewertung von Messwerten zur Erkennung einer Materialermüdung
DE10142790B4 (de) Bremsdiagnose für Schienen- und Straßenfahrzeuge
EP3279756B1 (de) Diagnoseeinrichtung und verfahren zur überwachung des betriebs einer technischen anlage
DE102007048602A1 (de) Verfahren zum Diagnostizieren von Anomalitäten und Vorrichtung hierfür
DE112015004142T5 (de) System und Verfahren zur Vorhersage des Ausfalls von Maschinenkomponenten
EP3232282B1 (de) Diagnoseeinrichtung und verfahren zur überwachung des be-triebs einer technischen anlage
EP3273414A1 (de) Verfahren zum abschätzen einer erwarteten lebensdauer eines bauteils einer maschine
DE102011115244A1 (de) Verfahren und System zur Überwachung des Betriebszustands einer Pumpe
EP3210088B1 (de) Verfahren und assistenzsystem zur erkennung einer störung in einer anlage
EP3282399A1 (de) Verfahren zur verbesserten erkennung von prozessanomalien einer technischen anlage sowie entsprechendes diagnosesystem
DE102020212277A1 (de) Verfahren und Vorrichtung zum Bestimmen einer Restnutzungsdauer basierend auf einer prädiktiven Diagnose von Komponenten eines elektrischen Antriebssystems mithilfe Verfahren künstlicher Intelligenz
DE102019120696A1 (de) Vorrichtung und Verfahren zur Reifenprüfung
EP4264090A1 (de) Verfahren zum überwachen einer gleitringdichtungsanordnung sowie gleitringdichtungsanordnung
DE102021211610A1 (de) Verfahren zum Trainieren eines neuronalen Lernmodells zum Detektieren von Produktionsfehlern
DE102019216054B4 (de) Verfahren zum Überwachen von Injektoren einer Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines solchen Verfahrens
DE102021210500A1 (de) Ventilanordnung und Verfahren
EP3584480A1 (de) Erkennen mangelhafter sitz-integrität bei einem stellventil
DE102018116048A1 (de) Diagnose von möglichen Ursachen für Veränderungen an einem Stellventil
DE102017219549A1 (de) Verfahren zur Zustandsüberwachung einer Fertigungsanlage
DE102013100411B4 (de) Verfahren und Vorrichtung zur Zustandsüberwachung einer Kälteanlage
WO2023222159A1 (de) Verfahren und vorrichtung zur erfassung von messdaten einer maschine sowie reifenheizpresse aufweisend eine vorrichtung zur erfassung von messdaten
DE102022211058A1 (de) Computer-implementiertes Überwachungsverfahren, hydraulisches System und computerlesbares Speichermedium
WO2022090303A1 (de) Automatisierte bewertung von verwendeten schrauben