DE102018128469A1 - Magnetfeldsensor mit geringem Rauschen und hoher Bandbreite - Google Patents

Magnetfeldsensor mit geringem Rauschen und hoher Bandbreite Download PDF

Info

Publication number
DE102018128469A1
DE102018128469A1 DE102018128469.1A DE102018128469A DE102018128469A1 DE 102018128469 A1 DE102018128469 A1 DE 102018128469A1 DE 102018128469 A DE102018128469 A DE 102018128469A DE 102018128469 A1 DE102018128469 A1 DE 102018128469A1
Authority
DE
Germany
Prior art keywords
magnetic field
field sensor
hall effect
sensor system
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102018128469.1A
Other languages
English (en)
Other versions
DE102018128469B4 (de
Inventor
Sasa Spasic
Radivoje Popovic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senis AG
Original Assignee
Senis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senis AG filed Critical Senis AG
Priority to DE102018128469.1A priority Critical patent/DE102018128469B4/de
Priority to US17/293,930 priority patent/US11614503B2/en
Priority to KR1020217018235A priority patent/KR20210091268A/ko
Priority to PCT/IB2019/059785 priority patent/WO2020100078A1/de
Priority to EP19809166.2A priority patent/EP3881087A1/de
Priority to CN201980085540.5A priority patent/CN113227813A/zh
Publication of DE102018128469A1 publication Critical patent/DE102018128469A1/de
Application granted granted Critical
Publication of DE102018128469B4 publication Critical patent/DE102018128469B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0029Treating the measured signals, e.g. removing offset or noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/072Constructional adaptation of the sensor to specific applications
    • G01R33/075Hall devices configured for spinning current measurements

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

Magnetfeldsensorsystem umfassend einen ersten Magnetfeldsensor, einen oder mehrere zweite Magnetfeldsensoren und einen Verstärker und alle Magnetfeldsensoren sind in Reihe geschaltet, sodaß die jeweiligen Ausgangssignale zu einem gemeinsamen Eingangssignal des Verstärkers aufaddierbar sind.

Description

  • Technisches Gebiet
  • Die vorliegende Erfindung betrifft einen Magnetfeldsensor nach Anspruch 1.
  • Stand der Technik
  • Aus dem Stand der Technik sind Sensoren zur Messung eines Magnetfeldes, insbesondere auch Hall-Magnetfeldsensoren, in einer hinreichend breiten Vielfalt und hohen Vielzahl bekannt.
  • Sehr ausführlich werden die Grundlagen von Hall-Magnetfeldsensoren beispielsweise inR. S. Popovic: „Hall-effect devices", Journal for Sensors and Actuators, Volume 17, Issues 1-2, 3 May 1989, Pages 39-53 oder in R. S. Popovic „Hall Effect Devices", 2nd Edition CRC Press Taylor & Francis Group, LLC 2003, ISBN: 978-1-4200-3422-6 beschrieben.
  • Ferner knüpft die vorliegende Erfindung an die Offenbarung der US 6366076 B1 an. Darin wird ein Stromsensor beschrieben, der nebst einem Tiefpassfilter, einen niederfrequenten Magnetfeldsensor, wie z.B. einen Hall-Effekt Sensor, und eine induktive Spule, wie z.B. eine Rogowski-Spule, und eine Summiervorrichtung kombiniert, um Signale des Hall-Effekt Sensors und der induktiven Spule zusammenzuführen.
  • Ein mit dem Messprinzip und dem Sensoraufbau selbst, sowie einer Anordnung des Sensors innerhalb einer Messchaltung einhergehender Effekt dieser Erfindung ist ein bandbreitenbegrenztes Eingangsmesssignal und ein rauschüberlagertes Ausgangsmesssignal.
  • Eine bekannte Methode zur Reduzierung von Offset- und Niederfrequenzrauschen von Hall-Effekt-Bauelementen ist die Verwendung einer als Spinning-Strom-Technik bekannten schalterbasierten Drehstromtechnik in Kombination mit der sogenannten Chopper-Stabilisierungstechnik. Diese Verwendung in Sensorsystemen, die einen Hall-Effekt Sensor umfassen, führt zu einer Reduktion des Offset- und Niederfrequenzrauschen des Hall-Effekt-Bauelementes und eines Verstärkers, der die Hallspannung verstärkt.
  • Diese und weitere aus dem oben genannten Stand der Technik beschriebenen Ansätze stellen zwar neue Methoden und Schaltungsanordnungen zur Verfügung, sie stellen jedoch nicht im entferntesten einen Lösungsansatz zur Reduktion des Anteils weißen Rauschens des Rauschspektrums eines Hall-Effekt Sensorsystems zur Verfügung.
  • Zu den derzeit bekannten Magnetfeldsensoren zählen auch bekannte siliziumintegrierte Hall-Effekt Sensoren, die sich ebenfalls zur Messung von Magnetfeldern eignen. Diese weisen eine unzureichende Messauflösung und eine zu niedrige Frequenzbandbreite für viele moderne Anwendungen auf.
  • Obwohl nämlich Silizium integrierte Hall-Effekt Sensoren als diskrete Bauelemente eine Spektraldichte der rauschäquivalenten magnetischen Induktion (SNEMF-SD) von etwa 50 nT/√Hz aufweisen können, können solche Sensoren derzeit typischerweise nur eine SNEMF-SD > 100 nT/√Hz aufweisen.
  • Ebenso weisen bekannte Silizium integrierte Hall-Effekt Sensoren zur Messung von Magnetfeldern typischerweise eine Frequenzbandbreite (BW) von DC bis weniger als 200 kHz auf, obwohl eine Frequenzbandbreite von DC bis mehrere MHz für eine Vielzahl von Anwendungen erforderlich wäre.
  • Die Ursache für diese beiden Nachteile siliziumintegrierter Hall-Effekt Sensoren zur hochauflösenden Messung von breitbandigen Magnetfeldern liegt in der Tatsache begründet, daß die Hallspannung eines silizium integrierten Hall-Effekt Sensors an sich bereits sehr niedrig ist.
  • Die geringe Messauflösung eines siliziumintegrierte Hall-Effekt Sensors (Hall-Magnetfeldsensor) von Magnetfeldern entsteht, weil bei einem schwachen Magnetfeld die Hallspannung zwar nicht zu stark durch das Eigenrauschen des Hall-Effekt Sensors beeinflusst wird, aber geringer sein kann als das eingangsbezogene Rauschen des integrierten Verstärkers selbst.
  • Mit anderen Worten, im Rauschbudget des modernen siliziumintegrierten Hall-Magnetfeldsensorsystems dominiert das Rauschen des Verstärkers als solches.
  • Die Begrenzung der Bandbreite entsteht, weil der Verstärker aufgrund der geringen Hallspannung mit einer hohen Verstärkung arbeiten muss und die Grenzfrequenz des Verstärkers aufgrund des begrenzten Verstärkung-Bandbreite-Produktes des integrierten Verstärkers niedrig ist.
  • Grundsätzlich könnte sowohl das eingangsbezogene Rauschen eines integrierten Verstärkers als auch dessen Verstärkungsbandbreitenprodukt durch Vergrößerung der vom Verstärker belegten Fläche des Siliziumchips und durch Erhöhung der Leistungsaufnahme des Verstärkers verbessert werden. Aber dann wäre ein solcher siliziumintegrierter Hall-Magnetfeldsensor zu teuer und unpraktisch in der Handhabung.
  • Ein Ziel der Erfindung ist es, nebst die zuvor aufgeführten Nachteile des Standes der Technik zu überkommen, die Leistung von Magnetfeldsensorsystemen, insbesondere Hall-Effekt basierter, hinsichtlich ihrer Messauflösung eines zu messenden Magnetfeldes und der Frequenzbandbreite des zu messenden Magnetfeldes zu verbessern.
  • Beschreibung der Erfindung
  • In einem ersten Aspekt der Erfindung umfasst ein Magnetfeldsensorsystem einen ersten Magnetfeldsensor, einen oder mehrere zweite Magnetfeldsensoren und einen Verstärker.
  • Auch kann im Sinne der Erfindung ein Magnetfeldsensorsystem einen ersten Magnetfeldsensor und /oder ein Magnetfeldsensor-Subsystem und einen oder mehrere zweite Magnetfeldsensoren und einen Verstärker umfassen.
  • Das Magnetfeldsonsor-Subsystem umfasst dabei einen ersten Magnetfeldsensor, der in Kombination mit mindestens einem weiteren Bauelement, ausgewählt aus der Gruppe bestehend aus Hall-Effekt Sensoren, Magnetoresistivsensoren, Induktionsschleifen oder Induktionsspulen, und einem weiteren Verstärker verschaltet ist, und wobei das Bauelement dem weiteren Verstärker vorgeschaltet ist.
  • Vorzugsweise sind alle Magnetfeldsensoren so dimensioniert und ausgelegt, daß sie Magnetfelder im Bereich bis zu 1 mT oder bis zu 3 mT, vorzugswiese bis zu 10 mT oder 30 mT und im Speziellen bis zu 100 mT oder 300 mT, vorzugsweise in einer Temperaturumgebung von -40°C bis +125 °C, messen können.
  • Erfindungsgemäß sind die Magnetfeldsensoren und/oder das Magnetfeldsensor-Subsystem mit dem Eingang des Verstärkers in Reihe geschaltet, um so die jeweiligen Ausgangssignale zu einem gemeinsamen Eingangssignal des Verstärkers aufzuaddieren.
  • Vorzugsweise sind die Magnetfeldsensoren und/oder das Magnetfeldsensor-Subsystem mit dem Eingang des Verstärkers kaskadiert in Reihe geschaltet, um so die jeweiligen Ausgangssignale zu einem gemeinsamen Eingangssignal des Verstärkers aufzuaddieren.
  • In einem zweiten Aspekt der Erfindung ist bei einem Magnetfeldsensorsystem, vorzugsweise, ein Versorgungskontakt des ersten Magnetfeldsensors an eine Spannungsquelle angeschlossen, und alle übrigen Versorgungskontakte der Magnetfeldsensoren sind jeweils an eine Konstantstromquelle oder an eine Konstantstromsenke angeschlossen.
  • Bevorzugt ist der erste Magnetfeldsensor und einer oder mehrere der zweiten Magnetfeldsensoren ein Bauelement, ausgewählt aus der Gruppe bestehend aus Hall-Effekt Sensoren, Magnetoresistivsensoren in, vorzugsweise Wheatstone'scher, Brückenschaltung, Induktionsschleifen oder Induktionsspulen oder eine beliebige Kombination aus diesen.
  • Dies hat beispielsweise bei einer Kombination eines Hall-Effekt Sensors mit einem induktiven Bauelement zum Vorteil, daß bei der Messung eines Magnetfelds eine hohe Messauflösung über ein breites Frequenzband erzielbar ist, da bei unteren Frequenzen die Ausgangsspannung des Hall-Effekt Sensors dominiert und bei höheren Frequenzen die rauscharme Ausgangsspannung des induktiven Bauelements dominiert, sodaß bei einer Reihenschaltung das Signal-Rauschen-Verhältnisses der Ausgangsspannung über die gesamte Frequenzbandbreite größer ist als eine der einzelnen Ausgangsspannungen.
  • In einem weiteren Aspekt der Erfindung umfasst bei einem Magnetfeldsensorsystem mit einem Magnetfeldsensor-Subsystem das Magnetfeldsensor-Subsystem eine Kombination aus mindestens einem Bauelement, ausgewählt aus der Gruppe bestehend aus Hall-Effekt Sensoren, Magnetoresistivsensoren in, vorzugsweise Wheatstone'scher, Brückenschaltung, Induktionsschleifen oder Induktionsspulen, und einem weiteren Verstärker, wobei das Bauelement dem weiteren Verstärker vorgeschaltet ist.
  • Bevorzugt sind dazu die Ausgangkontakte des MagnetfeldsensorSubsystems an die Eingangskontakte des weiteren Verstärkers elektrisch gekoppelt.
  • In einem weiteren Aspekt der Erfindung weist ein Magnetfeldsensorsystem und ein Magnetfeldsensor-Subsystem als auch nur ein Magnetfeldsensorsystem oder ein Magnetfeldsensor-Subsystem schaltbare Kontakte für einen Betrieb mittels Spinning-Stromtechnik oder eine Chopper-Stabilisierung auf.
  • Bevorzugt weist ein Magnetfeldsensorsystem und ein Magnetfeldsensor-Subsystem als auch nur ein Magnetfeldsensorsystem oder ein Magnetfeldsensor-Subsystem schaltbare Kontakte für einen Betrieb mittels Spinning-Stromtechnik und eine Chopper-Stabilisierung auf.
  • Dies hat zum Vorteil, daß im Fall des Spinning-Strom-Strombetriebs oder einer Chopper-Stabilisierung als auch bei einer kombinierten Anwendung eines Spinning-Strom-Strombetriebs zusammen mit einer Chopper-Stabilisierung, die Gleichstrom- als auch die Niederfrequenzleistung eines integrierten Systems signifikant verbessert wird.
  • In einem weiteren Aspekt der Erfindung weist ein Magnetfeldsensorsystem - in Gegenwart einer Induktionsschleife oder einer Induktionsspule als Teil des Magnetfeld-Sensorsystems - zusätzlich einen Integrator oder einen Tiefpassfilter zur Kompensation der Frequenzabhängigkeit der in der Induktionsschleife oder in der Induktionsspule induzierten Spannung auf.
  • Bei einem Aspekt der Erfindung ist - in Gegenwart einer Kombination eines Hall-Effekt Sensors oder eines Magnetoresistivsensors wie beispielsweise einem AMR-Sensor oder einem GMR-Sensor in, vorzugsweise Wheatstone'scher, Brückenschaltung und einer Induktionsschleife oder einer Induktionsspule als Teil des Magnetfeldsensorsystems - das induktive Element so geschaltet, daß die Phase einer darin induzierten Spannung VL relativ zur Phase der Spannung des Hall-Effekt Sensors oder des Magnetoresistivsensors vorausseilend ist.
  • In einem weiteren Aspekt der Erfindung ist bei einem Magnetfeldsensorsystem der erste Magnetfeldsensor und mindestens einer der zweiten Magnetfeldsensoren und das Magnetfeldsensor-Subsystem als integrierter Schaltkreis ausgebildet.
  • In einem weiteren Aspekt der Erfindung ist bei einem Magnetfeldsensorsystem der erste Magnetfeldsensor und mindestens einer der zweiten Magnetfeldsensoren oder das Magnetfeldsensor-Subsystem als integrierter Schaltkreis ausgebildet.
  • In einem weiteren Aspekt der Erfindung ist bei einem Magnetfeldsensorsystem der erste Magnetfeldsensor oder mindestens einer der zweiten Magnetfeldsensoren und das Magnetfeldsensor-Subsystem als integrierter Schaltkreis ausgebildet.
  • In einem weiteren Aspekt der Erfindung ist bei einem Magnetfeldsensorsystem der erste Magnetfeldsensor oder mindestens einer der zweiten Magnetfeldsensoren oder das Magnetfeldsensor-Subsystem als integrierter Schaltkreis ausgebildet.
  • In einem weiteren Aspekt der Erfindung ist das Magnetfeldsensorsystem vorzugsweise als integrierter Schaltkreis ausgebildet. Bevorzugt ist der integrierte Schaltkreis dabei mit einer, vorzugsweise extern zugeschalteten, Induktionsschleife oder einer, vorzugsweise extern zugeschalteten, Induktionsspule in Reihe geschaltet, um auf diese Weise die Ausgangssignale aufzuaddieren. Dies hat zum Vorteil, daß ein weitaus stärkeres Ausgangssignal gebildet werden kann. Im Falle eines nachgeschalteten Verstärkers liegen die einzelnen aufaddierten, zum Teil im Einzelnen auch schwachen Ausgangssignale deswegen als ein starkes Eingangssignal am Eingang des Verstärkers an. Auf diese Weise überlagert das Eigenrauschen des Verstärkers daher sowohl Phase als auch Amplitude des zu verstärkenden Signals nicht mehr.
  • In einem weiteren Aspekt der Erfindung umfasst der integrierte Schaltkreis eines Magnetfeldsensorsystem mindestens einen Hall-Effekt Sensor für jede Raumrichtungskomponente eines Magnetfeldvektors, und die Induktionsschleife oder die Induktionsspule oder eine Kombination aus diesen umgeben zumindest teilweise den integrierten Schaltkreis derart räumlich, daß alle Raumrichtungskomponenten des Magnetfeldvektors erfassbar sind.
  • In einem weiteren Aspekt der Erfindung umfasst der integrierte Schaltkreis eines Magnetfeldsensorsystems mindestens einen Hall-Effekt Sensor und eine Induktionsschleife oder eine Induktionsspule für jede Raumrichtungskomponente eines Magnetfeldsektors, sodaß eine, zwei oder drei Raumrichtungskomponenten des Magnetfeldvektors erfassbar sind.
  • In einem weiteren Aspekt der Erfindung sind Hall-Effekt Sensoren vorzugsweise horizontal und damit parallel zur Oberfläche eines Chips im Falle eines integrierten Hall-Effekt Sensors oder vertikal und damit senkrecht zur Oberfläche eines Chips im Falle eines integrierten Hall-Effekt Sensors angeordnet. Dies hat zum Vorteil, daß horizontal ausgerichtete Hall-Effekt Sensoren auf eine Magnetfeldkomponente senkrecht zur Chipebene reagieren, wobei die vertikal ausgerichteten Hall-Effekt Sensoren auf eine Magnetfeldkomponente parallel zur Chipoberfläche reagieren. Im Falle einer Kombination eines Hall-Effekt Sensors mit einem induktiven Bauelement, muss die Empfindlichkeitsrichtung des Hall-Effekt Sensors und des induktiven Bauelement als Sensorelement übereinstimmen.
  • In einem weiteren Aspekt der Erfindung liegt der Wert der SNEMF-SD eines Magnetfeldsensors oder eines Magnetfeldsensorsubsystems nahe der eines handelsüblichen siliziumintegrierten Hall-Effekt Sensors wie beispielsweise vom Typ Allegro A1324, A1325 oder A1326, vom Typ AKM EQ-430L, EQ-431L, EQ-432L oder EQ-433L oder vom Typ LEM FHS Minisense, vorzugsweise im Bereich von 50 (+/- max 10) nT/√Hz.
  • In einem weiteren Aspekt der Erfindung liegt die Frequenzbandbreite (BW) eines Magnetfeldsensors oder eines Magnetfeldsensorsubsystems im Bereich von Gleichstrom (DC) bzw. 0 Hz bis mindestens 1 MHz oder 2 MHz, vorzugsweise bis 3 MHz und im Speziellen bis max. 5 MHz.
  • In einem weiteren Aspekt der Erfindung umfasst ein bevorzugtes Magnetfeldsensorsystem einen Hall-Effekt Sensor und ein in Reihe geschaltetes induktives Bauelement, wobei sowohl das Ausgangssignal des Hall-Effekt Sensors als auch das Ausgangssignal des induktiven Bauelements um den gleichen Faktor verstärkt werden, sodaß ein Magnetfeld-Messbereich von 5 mT bis 3 T in einem niederen Frequenzbereich mit einer Bandbreite von 0 Hz (DC) bis 1 kHz mit einer Messauflösung von 500 nT, d.h. mit einem Faktor 10-4 des kleinsten Messbereichs von 5mT Messbereich, sonst mit einem Faktor 10-5 des Messbereiches, abdeckbar ist.
  • In einem weiteren Aspekt der Erfindung umfasst ein bevorzugtes Magnetfeldsensorsystem einen Hall-Effekt Sensor und ein in Reihe geschaltetes induktives Bauelement, wobei das Ausgangssignal des Hall-Effekt Sensors stärker verstärkt wird als das Ausgangssignal des induktiven Bauelements, sodaß ein Magnetfeld-Messbereich von 5 mT bis 300 mT in einem mittleren Frequenzbereich mit einer Bandbreite von 0 Hz (DC) bis 200 kHz mit einer Messauflösung von 5 mT, d.h. mit einem Faktor 10-3 des kleinsten Messbereichs von 5 mT Messbereich, sonst mit einem Faktor 10-4 des Messbereiches, abdeckbar ist.
  • In einem weiteren Aspekt der Erfindung umfasst ein bevorzugtes Magnetfeldsensorsystem einen Hall-Effekt Sensor und ein in Reihe geschaltetes induktives Bauelement, wobei das Ausgangssignal des Hall-Effekt Sensors stärker verstärkt wird als das Ausgangssignal des induktiven Bauelements, sodaß ein Magnetfeld-Messbereich von 3 mT bis 30 mT in einem hohen Frequenzbereich mit einer Bandbreite von 0 Hz (DC) bis 2 MHz mit einer Messauflösung von 15 µT, d.h. mit einem Faktor 5×10-2 des kleinsten Messbereichs von 3mT Messbereich, sonst mit einem Faktor 10-3 des Messbereiches, abdeckbar ist.
  • Weitere vorteilhafte Ausgestaltungen der Erfindungen ergeben sich aus den Figuren samt zugehöriger detaillierter Beschreibung.
  • Diese zeigen in
    • 1 ein Blockschaltbild eines aus dem Stand der Technik bekannten typischen Hall-Magnetfeldsensorsubsystems;
    • 2 ein Blockschaltbild eines bevorzugten Magnetfeldsensorsystems mit drei in Reihe geschalteten Hall-Effekt Sensoren;
    • 3 ein Blockschaltbild eines bevorzugten Magnetfeldsensorsystems mit einem Hall-Effekt Sensoren in Reihe geschaltet mit einer Induktionsschleife;
    • 4 ein Blockschaltbild eines bevorzugten Magnetfeldsensorsystems mit zwei Hall-Effekt Sensoren in Reihe geschaltet mit einer Induktionsschleife;
    • 5 ein Blockschaltbild eines bevorzugten Magnetfeldsensorsystems;
    • 6 ein Blockschaltbild eines weiteren bevorzugten Magnetfeldsensorsystems mit einem Hall-Magnetfeldsensorsubsystems;
    • 7 ein Blockschaltbild eines bevorzugten Magnetfeldsensorsystem umfassend ein Hall-Magnetfeldsensorsubsystem;
    • 8 eine schematische Darstellung einer bevorzugten Ausführungsform einer in Planartechnologie gefertigten Induktionsspule;
    • 9 eine schematische Darstellung einer bevorzugten Ausführungsform eines Chips auf einer Bodenplatte;
    • 10a bis 10c jeweils eine schematische Darstellung einer bevorzugten Ausführungsform umfassend eine sandwicheartige Anordnung eines Chips;
    • 11 eine schematische Darstellung einer bevorzugten Ausführungsform einer mit ihren Windungen senkrecht zur Oberfläche eines Chips angeordneten Induktionsspule;
    • 12a bis 12c jeweils eine schematische Darstellung einer bevorzugten Ausführungsform einer um einen Chip gewickelten angedeuteten Spule;
    • 13 eine schematische Darstellung einer bevorzugten Ausführungsform eines Chips samt Luftspulenanordnung;
    • 14 eine schematische Darstellung einer weiteren bevorzugten Ausführungsform eines Chips samt Luftspulenanordnung.
  • 1 zeigt ein Blockschaltbild eines aus dem Stand der Technik bekannten typischen Hall-Magnetfeldsensorsubsystems 500 in Form eines integrierten Schaltkreises (IHMFS - Integrated Hall Magnetic Field Sensor) mit einem Hall-Effekt Sensor 100, welcher im Spinning-Stromverfahren mit den Schalter 110 und 111 betrieben wird und mit den Schaltern 112 und 210 Chopperstabilisiert ist. Der Hall-Effekt Sensor 100 ist, ebenso wie auch in den 5, 6 abgebildet, ein Hall-Effekt Sensorelement mit zugehöriger üblicher peripherer Schaltungstechnik. Die als Schalter 110, 111 und 112 ausgeführten schaltbaren Kontakte beidseits an Ein- und Ausgängen des Hall-Effekt Sensors 100 wandeln dazu die Hallspannung VH in eine Wechselspannung mit einer durch das Taktsignal 700 vorgegebenen Frequenz 702 zur Steuerung der Schalter 110, 111, 112 und 210 durch die Steuerungseinheit 701 um, während das Offset- und Niederfrequenzrauschen des Hall-Effekt Sensors 100 unverändert bleibt. Die Schalter 210 zwischen dem Verstärker 40 und dem Tiefpassfilter 200 demodulieren (oder gleichrichten) die verstärkte Hallspannung VH , so daß die Hallspannung VH in ihr ursprüngliches Basisband zurückkehrt. Gleichzeitig wandeln die Schalter 210 das verstärkte Offset- und/oder Niederfrequenzrauschen des Hall-Effekt Sensors 100 und das verstärkte Offset- und Niederfrequenzrauschen des Verstärkers 40 in ein Wechselstromsignal um. Der Tiefpassfilter 40 filtert störende Wechselspannungen und Schaltspitzen verursacht durch die Schalter 110, 111 und 112 heraus. Als Ergebnis dieser Signalwandlung liegt die Ausgangsspannung Vout zwischen den beiden Ausgangsklemmen des Tiefpassfilters 200 an, welche der verstärkten Hallspannung VH entspricht und im Ergebnis frei von Offset- und niederfrequentem Überrauschen ist. Die Ausgangsspannung Vout erfüllt die Bedingung V out = G * V H
    Figure DE102018128469A1_0001
    wobei G die Verstärkung des Verstärkers 40 ist. Die Schalter 111 ziehen im geschlossenen Zustand den Hall-Effekt Sensor 100 über die Stromsenke 61 auf das Potential v-.
  • Typischerweise wird ein IHMFS mit einer Bandbreite (BW) von DC bis 500Hz begrenzt durch ein Tiefpassfilter 200 1.Ordnung mit einer Grenzfrequenz fc = 500Hz. Es umfasst als Sensorelement typischerweise einen Hall-Effekt Sensor 100 mit einer absoluten Sensitivität SH = 0,1 V/T, einem Ausgangswiderstand von RH = 500 Ω und einer Spektraldichte der thermischen Rauschspannung des Hall-Effekt Sensors 100 von VHn = 2,8 nV/√Hz.
  • Die eingangsbezogene Rauschspannung Van des integrierten Verstärkers 40 weist, einschließlich des parasitären Rauschens des Spinning-Strom-Strombetriebs zusammen mit einer Chopper-Stabilisierung, auch als Spin-Chopper-System bezeichenbar, einen Wert von 10 nV/√Hz auf. Damit ergibt sich die gesamte eingangsbezogene Rauschspannung des IHMFS zu Vtn = 10,4 nV/√Hz. Der Wert der SNEMF-SD des IHMFS ergibt sich damit zu SNEMF-SD = Vtn / SH = 104 nT/√Hz und BWn = fc * π / 2 = 785 Hz. Für das integrierte rauschäquivalente Magnetfeld des IHMFS ergibt sich folglich Bn = SNEMF-SD * √BWn = 2,9 µTrms.
  • 2 zeigt ein Blockschaltbild eines Ausführungsbeispiels eines Magnetfeldsensorsystems mit drei Hall-Effekt Sensoren 10, 20, 30, wobei die drei Hall-Effekt Sensoren 10, 20, 30 in Reihe geschaltet sind, um die drei an den jeweiligen Ausgängen 12, 22, 32 der Hall-Effekt Sensoren 10, 20, 30 anliegenden Ausgangssignale zu einem gemeinsamen Eingangssignal für den Verstärker 40 aufzuaddieren. Die Hall-Effekt Sensoren 10, 20, 30 sind ebenso wie auch in den 3 und 4 abgebildet, reine Sensorelemente, üblicherweise auch als Hall-Elemente bezeichnet. Der Hall-Effekt Sensor 10 wird an Klemme 11 durch die einerseits auf dem Potential v+ gelegte Stromquelle 50a und an Klemme 13 durch die andererseits auf dem Potential v- gelegt Stromsenke 60a betrieben. Der Hall-Effekt Sensor 20 wird an Klemme 21 durch die auf dem Potential v+ gelegte Stromquelle 50b und mittels einer an Klemme 23 angelegte Referenzspannung Vref betrieben. Der Hall-Effekt Sensor 30 wird an Klemme 31 durch die einerseits auf dem Potential v+ gelegte Stromquelle 50c und an Klemme 33 durch die andererseits auf dem Potential v- gelegt Stromsenke 60c betrieben. Im vorliegenden Ausführungsbeispiel ermöglicht erst diese spezielle Anordnung der Stromquelle 50a, 50b, 50c sowie der beiden Stromsenken 60a und 60c in Verbindung mit der angelegten Referenzspannung Vref die Reihenschaltung der Hall-Effektsensoren 10, 20, 30 und die daraus resultierende Aufaddierung der einzelnen Ausgangssignale zu einem grösseren Eingangssignal für den Verstärker 40.
  • 3 zeigt ein Blockschaltbild eines Magnetfeldsensorsystems, umfassend einen Hall-Effekt Sensor 10 mit Anschlussklemmen 11, 12, 13, 14, wobei die Hallspannung VH an den Klemmen 11 und 13 anliegt, und eine Induktionsschleife 150, einen Verstärker 40 und einen optionalen Tiefpassfilter 200, welchen allesamt in Reihe geschaltet sind. Der Hall-Effekt Sensor 10 und die Induktionsschleife 150 sind dabei so miteinander verschaltet, daß die Phase der in der Induktionsschleife 150 induzierten Spannung VL , vorzugsweise um π/2, gegenüber der Phase der HallSpannung VH vorauseilend ist. Ausschlaggebend hierfür ist die der 3 entnehmbare Flussrichtung des Vorspannungsstroms Ih des Hall-Effekt Sensors 10. Die Spannung VL , welche proportional zur zeitlichen Ableitung des Magnetfeldes dB/dT ist, ist proportional zur Frequenz f des Magnetfeldes B Der Tiefpassfilter 200 1. Ordnung weist vorzugsweise eine Übertragungsfunktion auf, welche genau umgekehrt proportional zu den aufaddierten Sensorspannungen VH + VL ist, um die Frequenzabhängigkeit der Sensorspannungen VH + VL aufzuheben. Die Grenzfrequenz fc des Tiefpassfilters 200 erfüllt die Bedingung f c = S h / ( 2 * π * A )
    Figure DE102018128469A1_0002
    wobei Sh die absolute magnetische Sensitivität des Hall-Effekt Sensors 10 und A die Fläche der Induktionsschleife 150 bezeichnet. Im Falle einer induktiven Spule 160 anstelle einer Induktionsschleife 150 wie in 3 dargestellt, ergäbe sich die Fläche für (2) zu A = N c × A a ,
    Figure DE102018128469A1_0003
    wobei Nc die Anzahl der Windungen der Spule 160 ist, und Aa die durchschnittliche Fläche einer Windung der Spule 160 ist.
  • Die magnetische Sensitivität des Hall-Effekt Sensors 10 ergibt sich durch S h = S i *I h
    Figure DE102018128469A1_0004
    oder alternativ durch S h = S v *V bh
    Figure DE102018128469A1_0005
    wobei Si die strombezogene Sensitivität, Sv die spannungsabhängige Sensitivität und Vbh die Vorspannung des Hall-Effekt Sensors 10 sind.
  • Die Rauschbandbreite der Reihenschaltung ergibt sich durch die Grenzfrequenz des Tiefpassfilters 200 wie folgt B Wn = f c * π / 2
    Figure DE102018128469A1_0006
  • Für die maximale Frequenz fm und maximale Amplitude Bm des gemessenen Magnetfeldes gilt wegen der maximalen Spannung Vm , die am Ausgang des Verstärkers 40 anliegt: f m * B m < V m * f c / ( S h * G )
    Figure DE102018128469A1_0007
    f m * B m < V m / ( 2* π *A * G )
    Figure DE102018128469A1_0008
    wobei gilt V m V s u p ,
    Figure DE102018128469A1_0009
    mit Vsup als Versorgungsspannung des Magnetfeldsensorsystems.
  • Wenn die maximale Amplitude des gemessenen Magnetfeldes Bm klein genug ist, dann kann gemäß Gleichung (7) die maximale Frequenz fm des Magnetfeldes B viel höher sein als beispielsweise die Grenzfrequenz fc des Tiefpassfilters 200, nämlich f m > ( 10 100 ) * f c
    Figure DE102018128469A1_0010
  • Unter Berücksichtigung von Gleichung (6) bedeutet dies, daß das integrale weiße Rauschen eines Magnetfeldsensorsystems umfassend eine Reihenschaltung aus einem Hall-Effekt Sensor 10 und eine Induktionsschleife 150 gemäß 3, in der Regel drei- bis zehnmal niedriger ist als ein Magnetfeldsensorsystem ohne Induktionsschleife 150.
  • Desweiteren liegt die Ausgangsspannung Vout an den Ausgangsklemmen dieser Reihenschaltung an. Die elektrische Versorgung der Reihenschaltung erfolgt über die Potentiale v+ und v- in Verbindung mit der Stromsenke 61. Ferner ist die Ausrichtung des Sensors 10 zum Magnetfeld eingezeichnet.
  • 4 zeigt ein Blockschaltbild eines bevorzugten Magnetfeldsensorsystem mit zwei Hall-Effekt Sensoren 10 und 20 und einer Induktionsspule 160, welche in Reihe geschaltet sind, um die drei an den jeweiligen Klemmen 24, und 14 der Hall-Effekt Sensoren 10 und 20 sowie der dazwischen geschalteten Induktionsspule 160 anliegenden Ausgangssignale zu einem gemeinsamen Eingangssignal für den Verstärker 40 aufzuaddieren. Der Hall-Effekt Sensor 10 wird an Klemme 11 durch die einerseits auf dem Potential v+ gelegte Stromquelle 50a und an Klemme 13 durch die andererseits auf dem Potential v- gelegt Stromsenke 60a betrieben. Der Hall-Effekt Sensor 20 wird an Klemme 21 durch die einerseits auf dem Potential v+ gelegte Stromquelle 50c und an Klemme 23 durch die andererseits analog zur 3 auf dem Potential v- gelegte Stromsenke 60c betrieben.
  • Für die hierfür angepasste Grenzfrequenz fc gilt gemäß Gleichung (2) verallgemeinert: f c = N h * S h / ( 2 * π * A )
    Figure DE102018128469A1_0011
    wobei Nh die Anzahl der in Reihe geschalteten Hall-Effekt Sensoren 10, 20 ist. Bei vorliegender Ausführung ist Nh = 2.
  • Gemäß den Gleichungen (11), (3) und (6) ist es durch die Verwendung einer Spule 160 mit mehreren Windungen anstelle einer einzigen Induktionsschleife 150 möglich, die Rauschbandbreite des Magnetfeldsensorsystem zu verringern und so dessen magnetische Auflösung zu verbessern.
  • Bei bevorzugten Ausführungsformen des in 4 dargestellten Magnetfeldsensorsystem weisen die Spule 160 und die Hall-Effekt Sensoren 10, 20 eine aufeinander abgestimmte geometrische und elektrische Symmetrie auf, die dazu beiträgt, Gleichtaktstörsignale zu unterdrücken. Die Referenzspannung Vref definiert eine geeignete Gleichtaktspannung am Eingang des Verstärkers 40.
  • Ferner umfassen bevorzugte Ausführungsformen des in 4 dargestellten Magnetfeldsensorsystems ausgangsseitig einen Tiefpassfilter 200.
  • Typischerweise weist eine bevorzugte Ausführungsformen eines Magnetfeldsensorsystems ein IHMFS eine Bandbreite BW von DC bis mindestens 500Hz und maximal bis 100kHz auf. Es umfasst typischerweise die in 4 dargestellte Reihenschaltung der Spule 160 mit den zwei Hall-Effekt Sensoren 10, 20 (Nh = 2). Jeder der beiden Hall-Effekt Sensoren 10, 20 weist jeweils eine absolute Sensitivität von SH = 0,1 V/T, einen jeweiligen Ausgangswiderstand von RH = 1000 Ω auf und alle beiden Hall-Effekt Sensoren 10, 20 zusammen weisen eine Spektraldichte der thermischen Rauschspannung von VHn = 5,7 nV/√Hz auf. Die Spule 160 umfasst eine durchschnittliche Windungsfläche Aa von 5 mm × 5 mm = 25 mm2. Bei Nc = 50 Windungen und einem Drahtdurchmesser von 0,025mm ergibt sich bei einem Kupferdraht ein Spulenwiderstand von 34 Ohm und eine thermische Rauschspannung von 0,7 nV/VHz.
  • Die eingangsbezogene Rauschspannung Van des integrierten Verstärkers 40 weist, einschließlich des parasitären Rauschens des Spinning-Strom-Strombetriebs zusammen mit einer Chopper-Stabilisierung einen Wert von 10 nV/VHz bei einer Verstärkung von 100 auf.
  • Damit ergibt sich die gesamte eingangsbezogene Rauschspannung des IHMFS bei einer Frequenz f << Grenzfrequenz fc zu Vtn = 11,5 nV/√Hz und der Wert der SNEMF-SD des IHMFS ergibt sich zu SNEMF-SD = Vtn / (Nh * SH) = 58 nT/√Hz. Mit der Grenzfrequenz der Tiefpassfilters fc = Nh * SH / (2 * π * A) = 25,5 Hz ergibt sich die Rauschbandbreite zu BWn = fc * π / 2 = 785 Hz. Für das integrierte rauschäquivalente Magnetfeld des IHMFS ergibt sich folglich Bn = SNEMF-SD * √BWn = 0,37 µTrms.
  • Im Ergebnis liegt bei dieser bevorzugten Ausführungsform der Erfindung ein bis zu einem Faktor 8 geringeres Rauschen gegenüber dem Stand der Technik gemäss 1 vor.
  • Die Anwendungsgrenzen ergeben sich wie oben hergeleitet beispielsweise bei Vm = 5V und fm = 500Hz mit fm * Bm < Vm * fc / (Nh * SH * G) zu fm * Bm < 6.7T/s und im Ergebnis zu Bm < 12.7mT.
  • 5 zeigt ein Blockschaltbild eines bevorzugten Magnetfeldsensorsystems, umfassend einem Hall-Effekt Sensor 100 und eine Induktionsschleife 150, wobei die Ausgangsklemmen dieser Geräte in Reihe geschaltet sind wie auch in 3 gezeigt. In 5 wird der Hall-Effekt Sensor 100 im Spinning-Stromverfahren betrieben und ist Chopperstabilisiert. Dazu wandeln die Schalter 110, 111 und 112 beidseits an Ein- und Ausgängen des Hall-Effekt Sensors 100 die Hallspannung VH in eine Wechselspannung mit einer durch das Taktsignal 700 vorgegebenen Frequenz 702 zur Steuerung der Schalter 110, 111 und 112 durch die Steuerungseinheit 701 um, während das Offset- und Niederfrequenzrauschen des Hall-Effekt Sensors 100 unverändert bleibt. Der Schalter 112 schaltet die Hallspannung VH seriell auf die Induktionsschleife 150. Die sodann an den Eingängen des Schalters 113 aufaddierte Ausgangspannung VH+VL wird seriell auf den Verstärker 40 zur Verstärkung aufgeschaltet. Die Schalter 210 zwischen dem Verstärker 40 und dem optionalen Tiefpassfilter 200 demodulieren (oder gleichrichten) die verstärkte Hallspannung VH so, daß sie in ihr ursprüngliches Basisband zurückkehrt. Gleichzeitig wandeln die Schalter 210 das verstärkte Offset- und/oder Niederfrequenzrauschen des Hall-Effekt Sensors 100 und das verstärkte Offset- und Niederfrequenzrauschen des Verstärkers 40 in ein Wechselstromsignal um. Der Tiefpassfilter 40 filtert störende Wechselspannungen und Schaltspitzen verursacht durch die Schalter 110, 111 und 112 heraus. Als Ergebnis dieser Signalwandlung liegt die Ausgangsspannung Vout zwischen den beiden Ausgangsklemmen des optionalen Tiefpassfilters 200 oder das Ausgangssignal OUT liegt an zwischen den Ausgangsklemmen eines weiteren in Reihe geschalteten Bauelements 300, vorzugsweise ein Ausgangsverstärker oder ein Analog-Digital-Wandler, an. Im Ergebnis ist VH Signale frei von Offset- und niederfrequentem Überrauschen, und gegebenenfalls das Ausgangssignal OUT digitalisiert. Die Ausgangsspannung Vout erfüllt die Bedingung (1). Die Schalter 111 ziehen im geschlossenen Zustand den Hall-Effekt Sensor 100 über die Stromsenke 61 auf das Potential v-.
  • Ferner umfassen bevorzugten integrierte Ausführungsformen des in 5 dargestellten Magnetfeldsensorsystem ausgangsseitig einen Tiefpassfilter 200, vorzugsweise realisiert mittels schaltbarer Kondensatoren.
  • 6 zeigt ein Blockschaltbild eines weiteren bevorzugten Magnetfeldsensorsystems mit einem Hall-Magnetfeldsensorsubsystems 500 aus 1, wobei zwischen den Demodulationsschaltern 112 und dem strichliert angedeuteten optionalen Tiefpassfilter 200 eine Induktionsschleife 150 mit Ausgangsspannung VL in Reihe geschaltet ist.
    Am Ausgang des Hall-Magnetfeldsensorsubsystems 500 liegt die verstärkte Hallspannung VH gemäß Gleichung (1) an. Aus diesem Grund ist anstelle von Gleichung (2) die ausreichende Grenzfrequenz fc des Tiefpassfilters 200 gegeben durch f c = G * S h / ( 2 * π * A )
    Figure DE102018128469A1_0012
    wobei G die Verstärkung des Verstärkers 40 innerhalb des Hall-Magnetfeldsensorsubsystems 500 bezeichnet. Vergleicht man beide Gleichungen (2) und (12) miteinander, ergibt sich, daß die Repositionierung der Induktionsschleife 150 vom Eingang des Verstärkers 40 zum Ausgang des Verstärkers 40 von einer Erhöhung der Grenzfrequenz fc des Tiefpassfilters 200 um den Faktor G mit G > 1 einhergeht.
  • Desweitern gilt für die maximale Frequenz fm und die maximale Amplitude Bm des gemessenen Magnetfeldes B aufgrund der Repositionierung der Induktionsschleife 150 nicht mehr durch die Gleichungen (7) oder (8), sondern f m * B m < V m * f c / ( S h )
    Figure DE102018128469A1_0013
    bzw. f m * B m < V m / ( 2 * π * A )
    Figure DE102018128469A1_0014
  • Das Produkt aus der maximale Frequenz fm und die maximale Amplitude Bm erhöht sich demzufolge um den Faktor G mit G > 1.
  • Dabei gilt, daß wenn beide Ausgangssignale, also die Ausgangsspannung VH des Hall-Effekt Sensor 100 sowie die Ausgangsspannung VL der Induktionsschleife 150 um den gleichen Faktor G verstärkt werden, das Magnetfeldsensorsystem besonders für den Niedrig-Frequenzbereich von DC bis zu 1kHz geeignet ist.
  • Falls die Ausgangsspannung VH des Hall-Effekt Sensors 100 stärker verstärkt wird als die Ausgangsspannung VL der Induktionsschleife 150 ist das Magnetfeldsensorsystem besonders für den breitbandigen Hochfrequenz-Betrieb von DC bis 2 MHz geeignet.
  • 7 zeigt ein Blockschaltbild eines bevorzugten Magnetfeldsensorsystem umfassend ein Hall-Magnetfeldsensorsubsystem 500 mit einem integrierten Ausgangsverstärker 201 und einer nachgeschalteten nicht integrierten Induktionsspule 160 an welcher die Ausgangsspannung VH des Hall-Magnetfeldsensorsubsystems 500 als Eingangsspannung anliegt, einem RC-Glied als Tiefpassfilter 200 1. Ordnung und einen strichliert dargestellten optionalen Verstärker 40, welche allesamt in Reihe geschalteten sind. Die dargestellte Ausführungsform eignet sich aufgrund der variabel gestaltbaren externen Induktionsspule 160 insbesondere für hochfrequente Messanwendungen in einem breitbandigen Frequenzbereich von DC bis 1MHz, vorzugsweise bis zu 1,5 MHz und im Speziellen bis zu 2 MHz.
  • Sowohl die Grenzfrequenz fc als auch das Produkt fm * Bm sind von der effektiven Wirkfläche der Induktionsspule abhängig und sind demzufolge, so auch in den 8 bis 14 gezeigt, durch Form und Gestaltung sowie Anzahl Windungen der Spulen gestaltbar.
  • Typischerweise weist eine bevorzugte Ausführungsformen eines Magnetfeldsensorsystems ein IHMFS einer Bandbreite BW von DC bis maximal 100 kHz auf. Das IHMFS weist eine Sensitivität von 100 V/T auf. Es umfasst typischerweise die in 7 dargestellte Reihenschaltung aus einem IHMFS gemäss einer der 1 bis 6 und den drei Hall-Effekt Sensoren 10, 20, 30, sowie der externen Spule 160 und dem Tiefpassfilter 200. Jeder der drei Hall-Effekt Sensoren 10, 20, 30 weist jeweils einen absolute Sensitivität von SH = 0,1 V/T, einen jeweiligen Ausgangswiderstand von RH = 1000 Ω auf und alle drei Hall-Effekt Sensoren 10, 20, 30 weisen zusammen eine Spektraldichte der thermischen Rauschspannung von VHn = 6,9 nV/VHz auf.
  • Die eingangsbezogene Rauschspannung Van des zu dem IHMFS zählenden und bereits darin integrierten Verstärkers 40 weist, einschließlich des parasitären Rauschens des Spinning-Strom-Strombetriebs zusammen mit einer Chopper-Stabilisierung einen Wert von 10 nV/√Hz bei einer Verstärkung von 100 auf.
    Die Sensitivität des IHMFS ergibt sich zu SIHMFS = Nh * SH * G = 30 V/T.
    Die gesamte eingangsbezogene Rauschspannung des IHMFS ergibt sich bei einer Frequenz f << Grenzfrequenz fc zu Vtn = 11,5 nV/√Hz und der Wert der SNEMF-SD des IHMFS ergibt sich zu SNEMF-SD = Vtn / (Nh * SH) = 58 nT/√Hz.
  • Die externe Spule 160 umfasst eine durchschnittliche Windungsfläche Aa von 5 mm × 5 mm = 25 mm2, hat Nc = 20 Windungen und eine Fläche A von 5 * 10-4 m2.
  • Mit der Grenzfrequenz des externen Tiefpassfilters fc = G Nh * SH / (2 * π * A) = 9,5 kHz ergibt sich die Rauschbandbreite zu BWn = fc * π / 2 = 14,9 kHz. Für das integrierte rauschäquivalente Magnetfeld der bevorzugten Ausführungsformen eines Magnetfeldsensorsystems ergibt sich folglich Bn = SNEMF-SD * √BWn = 4,9 µTrms.
  • Die Anwendungsgrenzen ergeben sich wie oben hergeleitet beispielsweise mit Vm = 10V und fm * Bm < Vm / (2 * π * A) zu fm * Bm < 3,2 * 103 T/s. Damit wäre bei einem maximalen Magnetfeld von Bm = 3 mT eine maximalen Frequenz fm von 1 MHz möglich.
  • 8 zeigt eine schematische Darstellung einer Ausführungsform einer in Planartechnologie gefertigten Induktionsspule 160, die vorzugsweise auf einem Chip mit weiteren Komponenten des Magnetfeldsensor-Systems integriert ist. Die Anzahl der Windungen ist anwendungsbezogen frei wählbar über den Wählschalter 114 mit den schematisch dargestellten drei zuschaltbaren Windungen. Die windungszahlabhängige Fläche A der Induktionsspule 160 lässt sich weit über diese schematisch dargestellten drei Windungen anwendungsbezogen variieren.
  • 9 zeigt eine schematische Darstellung einer Ausführungsform eines Chips 600 auf einer Bodenplatte 170 umgeben von einer parallel zur Chipoberfläche auf der Bodenplatte 170 angeordneten Spulenanordnung 160, wobei die Windungen um den Chip 600 herum verlaufen. Die Spule 160 weist die Anschlüsse 171, 172 in Form von Bondpads auf. Im Sinne der Erfindung umfasst der Chip 600 ein Magnetfeldsensor-Subsystem.
  • 10a bis 10c zeigen schematische Darstellungen bevorzugter Ausführungsformen umfassend eine sandwicheartigen Anordnung des Chips 600 zwischen jeweils zwischen einer Deckplatte 170 und einer Bodenplatte 170' aufweisen. Bei 10a weisen die beide Platten 170, 170' jeweils an die zu dem Chip 600 anliegenden sich gegenüberliegenden Flächen jeweils eine Spule 160, 160' mit jeweiligen Anschlüsse 171, 172 und 171', 172' in Form von Bondpads auf. Bei 10b ist die Spule 160 mit den beiden Spulenstrukturen 161, 162 räumlich derart beschaffen, daß zwischen beiden Spulenstrukturen 161, 162 mit ihren jeweiligen Windungen ein räumlicher Abstand eingebracht ist, welcher mindestens 10% der Breite einer der beiden Spulenstruktur 161, 162 entspricht, sodaß die Windungen der beiden Spulenstrukturen 161, 162 auf und/oder in die Deckplatte 170 und in die Bodenplatte 170' integriert, den Chip 600 umlaufen. Die beiden Spulenstrukturen 161, 162 können elektrisch miteinander derart verschaltet sein, daß sie als eine Spule 160 wirken oder elektrisch voneinander unabhängig als zwei einzelne Spulen 160 wirken.
  • Bei 10c umlaufen die Windungen der Spule 160 ohne eine wie in 10b abgebildete Beabstandung zwischen den beiden Spulenstrukturen 161, 162 den Chip 600.
  • 11a zeigt eine schematische Darstellung einer Ausführungsform zweier mit ihren Windungen senkrecht zur Oberfläche des Chips 600 auf einem Substrat umfassend Seitenwände 163, 164 und Bodenplatte 165 angeordneten Spulenstrukturen 161, 162, welches durch Falzen oder Biegen des, vorzugsweise aus sogenanntem flexiblen Flexprint-Leiterplattenmaterial oder starrem Flexprint-Leiterplattenmaterial oder auch beliebigem starren oder flexiblen Plattenmaterial, vorzugsweise u-förmig, hergestellt wurde. Vorzugsweise sind die Spulenstrukturen 161, 162 in Planartechnologie gefertigt. Auch verlegbare Windungen aus Draht sind möglich. Die beiden Spulenstrukturen 161, 162 sind elektrisch zu einer Spule 160 oder zu zwei voneinander unabhängig wirkenden Spulen 160 elektrisch miteinander verschaltbar.
  • 11b und 11c zeigen die in 11a dargestellte Ausführungsform mit jeweils auf den Seitenwände 163, 164 aufgebrachten Spulenstrukturen 161, 162. Aus der Sicht- und Transparenzliniendarstellung in 11c ergibt sich, daß die Spulenstrukturen 161, 162 zusammen mit der Bodenplatte 165 jeweils u-förmig einen Chip 600, umgeben, da sie auch teilweise noch bis in und/oder auf die Bodenplatte 165 reichen. Die beiden Spulenstrukturen 161, 162 sind elektrisch zu einer Spule 160 oder zu zwei voneinander unabhängig wirkenden Spulen 160 elektrisch miteinander verschaltbar.
  • 12a bis 12c zeigen jeweils eine schematische Darstellung einer um den Chip 600 gewickelten angedeuteten Spule 160 in drei verschiedenen Konfigurationen, die den drei verschiedenen orthogonalen Abtastrichtungen des Magnetfeldes, nämlich den Raumrichtungskomponten Bx , By , Bz , entsprechen.
  • 13 zeigt eine schematische Darstellung einer bevorzugten Ausführungsform eines Chip 600, auf einer Bodenplatte 170 mit einer darauf einseitig zum Chip 600, angeordneten Spule 160 in Form einer Luftspule.
  • 14 zeigt eine schematische Darstellung einer bevorzugten Ausführungsform eines Chips 600 auf einer Bodenplatte 170 mit zwei darauf angeordneten Spulen 160, 160' in Form zweier Luftspulen. Die Spulen 160, 160' sind parallel mit Ihrem Windungsverlauf sandwicheartig an zwei sich gegenüberliegenden Seiten des Chips 600 angeordnet.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 6366076 B1 [0004]
  • Zitierte Nicht-Patentliteratur
    • R. S. Popovic: „Hall-effect devices“, Journal for Sensors and Actuators, Volume 17, Issues 1-2, 3 May 1989, Pages 39-53 oder in R. S. Popovic „Hall Effect Devices“, 2nd Edition CRC Press Taylor & Francis Group, LLC 2003, ISBN: 978-1-4200-3422-6 beschrieben [0003]

Claims (14)

  1. Magnetfeldsensorsystem umfassend: - einen ersten Magnetfeldsensor; - einen oder mehrere zweite Magnetfeldsensoren; und - einen Verstärker; und alle Magnetfeldsensoren sind in Reihe geschaltet, sodaß die jeweiligen Ausgangssignale zu einem gemeinsamen Eingangssignal des Verstärkers aufaddierbar sind.
  2. Magnetfeldsensorsystem nach Anspruch 1, wobei ein Versorgungskontakt des ersten Magnetfeldsensors an eine Spannungsquelle angeschlossen ist, und alle übrigen Versorgungskontakte der Magnetfeldsensoren jeweils an eine Konstantstromquelle oder an eine Konstantstromsenke angeschlossen sind.
  3. Magnetfeldsensorsystem nach Anspruch 1 oder 2, wobei der erste Magnetfeldsensor und einer oder mehrere der zweiten Magnetfeldsensoren ein Bauelement ist, ausgewählt aus der Gruppe bestehend aus Hall-Effekt Sensoren, Magnetoresistivsensoren in, vorzugsweise Wheatstone'scher, Brückenschaltung, Induktionsschleifen oder Induktionsspulen oder eine beliebige Kombination aus diesen.
  4. Magnetfeldsensorsystem nach Anspruch 1 bis 3, wobei der erste Magnetfeldsensor in Kombination mit mindestens einem Bauelement, ausgewählt aus der Gruppe bestehend aus Hall-Effekt Sensoren, Magnetoresistivsensoren, Induktionsschleifen oder Induktionsspulen, und einem weiteren Verstärker verschaltet ist, und wobei das Bauelement dem weiteren Verstärker vorgeschaltet ist.
  5. Magnetfeldsensorsystem nach Anspruch 1 bis 4, wobei das Magnetfeldsensorsystem und/oder das Magnetfeldsensor-Subsystem schaltbare Kontakte für einen Spinning-Current Betrieb des ersten Magnetfeldsensors und/oder einer Chopper-Stabilisierung des Verstärkers aufweist.
  6. Magnetfeldsensorsystem nach Anspruch 3 oder 4, wobei das MagnetfeldSensorsystem - in Gegenwart einer Induktionsschleife oder einer Induktionsspule als Teil des Magnetfeld-Sensorsystems - zusätzlich einen Integrator oder einen Tiefpassfilter zur Kompensation der Frequenzabhängigkeit der in der Induktionsschleife oder der Induktionsspule induzierten Spannung aufweist.
  7. Magnetfeldsensorsystem nach Anspruch 3 oder 4, wobei - in Gegenwart einer Kombination eines Hall-Effekt Sensors oder eines Magnetoresistivsensors und einer Induktionsschleife oder einer Induktionsspule als Teil des Magnetfeldsensorsystems - das induktive Element so geschaltet ist, daß die Phase einer darin induzierten Spannung VL relativ zur Phase der Spannung des Hall-Effekt Sensors oder des Magnetoresistivsensors vorausseilend ist.
  8. Magnetfeldsensorsystem nach einem der Ansprüche 1 bis 7, wobei das erste Magnetfeldsensorsystem und/oder mindestens einer der zweiten Magnetfeldsensoren und/oder das Magnetfeldsensor-Subsystem als integrierter Schaltkreis ausgebildet ist.
  9. Magnetfeldsensorsystem nach Anspruch 4, wobei der erste Magnetfeldsensor in Kombination mit dem mindestens einen weiteren Bauelement als integrierter Schaltkreis ausgebildet ist, und sein Ausgang mit einer Induktionsschleife oder einer Induktionsspule in Reihe geschaltet ist, um die Ausgangssignale aufzuaddieren.
  10. Magnetfeldsensorsystem nach Anspruch 1 bis 8, wobei der integrierte Schaltkreis mindestens einen Hall-Effekt Sensor und eine Induktionsschleife oder eine Induktionsspule für mindestens eine Raumrichtungskomponente eines Magnetfeldsektors umfasst, sodaß eine, zwei oder drei Raumrichtungskomponenten des Magnetfeldvektors erfassbar sind.
  11. Magnetsensorsystem nach Anspruch 9, wobei der integrierte Schaltkreis mindestens einen Hall-Effekt Sensor für mindestens eine Raumrichtungskomponente eines Magnetfeldvektors umfasst, und die Induktionsschleife oder die Induktionsschleifen oder die Induktionsspule oder die Induktionsspulen oder eine Kombination aus diesen zumindest teilweise den integrierten Schaltkreis derart räumlich umgeben, sodaß eine, zwei oder drei Raumrichtungskomponenten des Magnetfeldvektors erfassbar sind.
  12. Magnetfeldsensorsystem nach einem der Ansprüche 1 bis 8, umfassend einen Hall-Effekt Sensor und ein in Reihe geschaltetes induktives Bauelement, wobei sowohl das Ausgangssignal des Hall-Effekt Sensors als auch das Ausgangssignal des induktiven Bauelements um den gleichen Faktor verstärkt werden, sodaß ein Magnetfeld-Messbereich von 5 mT bis 3 T in einem niederen Frequenzbereich mit einer Bandbreite von 0 Hz (DC) bis 1 kHz mit einer Messauflösung von 500 nT, d.h. mit einem Faktor 10-4 des kleinsten Messbereichs von 5mT Messbereich, sonst mit einem Faktor 10-5 des Messbereiches, abdeckbar ist.
  13. Magnetfeldsensorsystem nach einem der Ansprüche 1 bis 8, umfassend einen Hall-Effekt Sensor und ein in Reihe geschaltetes induktives Bauelement, wobei das Ausgangssignal des Hall-Effekt Sensors stärker verstärkt wird als das Ausgangssignal des induktiven Bauelements, sodaß ein Magnetfeld-Messbereich von 5 mT bis 300 mT in einem mittleren Frequenzbereich mit einer Bandbreite von 0 Hz (DC) bis 200 kHz mit einer Messauflösung von 5 mT, d.h. mit einem Faktor 10-3 des kleinsten Messbereichs von 5 mT Messbereich, sonst mit einem Faktor 10-4 des Messbereiches, abdeckbar ist.
  14. Magnetfeldsensorsystem nach einem der Ansprüche 1 bis 8, umfassend einen Hall-Effekt Sensor und ein in Reihe geschaltetes induktives Bauelement, wobei das Ausgangssignal des Hall-Effekt Sensors stärker verstärkt wird als das Ausgangssignal des induktiven Bauelements, sodaß ein Magnetfeld-Messbereich von 3 mT bis 30 mT in einem hohen Frequenzbereich mit einer Bandbreite von 0 Hz (DC) bis 2 MHz mit einer Messauflösung von 15 µT, d.h. mit einem Faktor 5×10-2 des kleinsten Messbereichs von 3mT Messbereich, sonst mit einem Faktor 10-3 des Messbereiches, abdeckbar ist.
DE102018128469.1A 2018-11-14 2018-11-14 Magnetfeldsensor mit geringem Rauschen und hoher Bandbreite Active DE102018128469B4 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102018128469.1A DE102018128469B4 (de) 2018-11-14 2018-11-14 Magnetfeldsensor mit geringem Rauschen und hoher Bandbreite
US17/293,930 US11614503B2 (en) 2018-11-14 2019-11-14 Magnetic sensor with low noise and a high bandwidth
KR1020217018235A KR20210091268A (ko) 2018-11-14 2019-11-14 저 노이즈 및 고 대역폭을 갖는 자기 센서
PCT/IB2019/059785 WO2020100078A1 (de) 2018-11-14 2019-11-14 Magnetfeldsensor mit geringem rauschen und hoher bandbreite
EP19809166.2A EP3881087A1 (de) 2018-11-14 2019-11-14 Magnetfeldsensor mit geringem rauschen und hoher bandbreite
CN201980085540.5A CN113227813A (zh) 2018-11-14 2019-11-14 噪声小且带宽高的磁场传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018128469.1A DE102018128469B4 (de) 2018-11-14 2018-11-14 Magnetfeldsensor mit geringem Rauschen und hoher Bandbreite

Publications (2)

Publication Number Publication Date
DE102018128469A1 true DE102018128469A1 (de) 2020-05-14
DE102018128469B4 DE102018128469B4 (de) 2020-11-12

Family

ID=68655587

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018128469.1A Active DE102018128469B4 (de) 2018-11-14 2018-11-14 Magnetfeldsensor mit geringem Rauschen und hoher Bandbreite

Country Status (6)

Country Link
US (1) US11614503B2 (de)
EP (1) EP3881087A1 (de)
KR (1) KR20210091268A (de)
CN (1) CN113227813A (de)
DE (1) DE102018128469B4 (de)
WO (1) WO2020100078A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022129671B3 (de) 2022-11-09 2024-03-07 Senis Ag Magnetfeldsensorsystem mit einem temperaturgangskompensierten Ausgangssignal sowie Verfahren für die Temperaturgangskompensation eines Ausgangssignals eines Magnetfeldsensorsystems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116500330B (zh) * 2023-06-27 2023-09-08 中国科学院合肥物质科学研究院 一种用于超导变压器二次回路电流的检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2749784A1 (de) * 1977-03-18 1978-09-21 Tokyo Shibaura Electric Co Multiplizierschaltung, insbesondere fuer wattstundenzaehler
US5200701A (en) * 1990-09-20 1993-04-06 Siemens Aktiengesellschaft Magnetic resonance imaging apparatus with regulator for reducing eddy current effects
US6366076B1 (en) 1997-04-21 2002-04-02 Liaisons Electroniques-Mecaniques Lem Sa Device with wide passband for measuring electric current intensity in a conductor
DE102008030411A1 (de) * 2007-06-29 2009-01-02 Infineon Technologies Austria Ag Integrierter Hybrid-Stromsensor
US20090167301A1 (en) * 2007-12-27 2009-07-02 Infineon Technologies Ag Integrated circuit including a magnetic field sensitive element and a coil
DE102010028719A1 (de) * 2010-05-07 2011-11-10 Robert Bosch Gmbh Suchgerät
DE102011102483A1 (de) * 2011-05-24 2012-11-29 Austriamicrosystems Ag Verfahren zum Betreiben einer Hallsensoranordnung und Hallsensoranordnung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1679524A1 (de) * 2005-01-11 2006-07-12 Ecole Polytechnique Federale De Lausanne Epfl - Sti - Imm - Lmis3 Hallsensor und Verfahren zum Betrieb eines Hallsensors
JP4731927B2 (ja) * 2005-01-31 2011-07-27 キヤノン株式会社 磁性体センサおよび検出キット
DE102010031147A1 (de) * 2010-05-07 2011-11-10 Robert Bosch Gmbh Erfassung eines metallischen oder magnetischen Objekts
US9329057B2 (en) * 2012-05-31 2016-05-03 Allegro Microsystems, Llc Gear tooth sensor with peak and threshold detectors
CN103472409B (zh) * 2013-09-12 2016-02-03 中国科学院电子学研究所 感应式三轴磁场传感器
US9551762B1 (en) * 2015-07-29 2017-01-24 Allegro Microsystems, Llc Circuits and methods for removing a gain offset in a magnetic field sensor
US10197638B2 (en) * 2016-06-17 2019-02-05 Texas Instruments Incorporated High bandwidth hall sensor
EP3355475B1 (de) * 2017-01-31 2022-09-07 ams AG Signalverarbeitungsanordnung für einen hall-sensor und signalverarbeitungsverfahren für einen hall-sensor
US11428755B2 (en) * 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10917092B2 (en) * 2018-04-06 2021-02-09 Allegro Microsystems, Llc Magnetic field sensor with switching network

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2749784A1 (de) * 1977-03-18 1978-09-21 Tokyo Shibaura Electric Co Multiplizierschaltung, insbesondere fuer wattstundenzaehler
US5200701A (en) * 1990-09-20 1993-04-06 Siemens Aktiengesellschaft Magnetic resonance imaging apparatus with regulator for reducing eddy current effects
US6366076B1 (en) 1997-04-21 2002-04-02 Liaisons Electroniques-Mecaniques Lem Sa Device with wide passband for measuring electric current intensity in a conductor
DE102008030411A1 (de) * 2007-06-29 2009-01-02 Infineon Technologies Austria Ag Integrierter Hybrid-Stromsensor
US20090167301A1 (en) * 2007-12-27 2009-07-02 Infineon Technologies Ag Integrated circuit including a magnetic field sensitive element and a coil
DE102010028719A1 (de) * 2010-05-07 2011-11-10 Robert Bosch Gmbh Suchgerät
DE102011102483A1 (de) * 2011-05-24 2012-11-29 Austriamicrosystems Ag Verfahren zum Betreiben einer Hallsensoranordnung und Hallsensoranordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. S. Popovic: „Hall-effect devices", Journal for Sensors and Actuators, Volume 17, Issues 1-2, 3 May 1989, Pages 39-53 oder in R. S. Popovic „Hall Effect Devices", 2nd Edition CRC Press Taylor & Francis Group, LLC 2003, ISBN: 978-1-4200-3422-6 beschrieben

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022129671B3 (de) 2022-11-09 2024-03-07 Senis Ag Magnetfeldsensorsystem mit einem temperaturgangskompensierten Ausgangssignal sowie Verfahren für die Temperaturgangskompensation eines Ausgangssignals eines Magnetfeldsensorsystems
WO2024100596A1 (de) 2022-11-09 2024-05-16 Senis Ag Magnetfeldsensorsystem mit einem temperaturgangskompensierten ausgangssignal sowie verfahren für die temperaturgangskompensation eines ausgangssignals eines magnetfeldsensorsystems

Also Published As

Publication number Publication date
CN113227813A (zh) 2021-08-06
WO2020100078A1 (de) 2020-05-22
US11614503B2 (en) 2023-03-28
KR20210091268A (ko) 2021-07-21
EP3881087A1 (de) 2021-09-22
US20220128635A1 (en) 2022-04-28
DE102018128469B4 (de) 2020-11-12

Similar Documents

Publication Publication Date Title
DE3133908C2 (de) Kompensierter Meßstromwandler
DE102009024268B4 (de) Magnetfeldkompensation
EP3028053B1 (de) Vorrichtung zum erfassen von wechselstromanteilen in einem gleichstromkreis und verwendung der vorrichtung
DE112016005046T5 (de) Magnetfeld-Erfassungsvorrichtung und Magnetfeld-Erfassungsverfahren
DE102021101952A1 (de) Stromsensor, magnetsensor und schaltung
DE112005003226T5 (de) Verfahren zum Messen eines schwachen Magnetfelds und Magnetfeldsensor mit verbesserter Empfindlichkeit
DE102005028572B4 (de) Stromsensoranordung mit einem Magnetkern
DE102005037905A1 (de) Magnetfeldsensor zum Messen eines Gradienten eines magnetischen Feldes
DE102017213605A1 (de) Magnetfeldsensorschaltung in einem Package mit Mittel zum Addieren eines Signals aus einer Spule
CH414010A (de) Anordnung zur Messung von Strömen in Hochspannungsleitungen
DE102018128469B4 (de) Magnetfeldsensor mit geringem Rauschen und hoher Bandbreite
DE102013112760A1 (de) Leistungsmodul mit integrierter Strommessung
DE102013106099A1 (de) Stromsensoranordnung
DE102007036674A1 (de) Anordnung zur Messung eines in einem elektrischen Leiter fließenden Stroms
DE102018210466A1 (de) Stromstärkeerfassungsgerät und Messgerät
DE102012208404A1 (de) Magnetische Differenzfeldsensoranordnung
EP3417244B1 (de) Positionssensor
DE102008061014A1 (de) Verfahren zur Unterdrückung von externen Störfeldern in einer Brückenanordnung aus Magnetfeldsensoren und zugehörige Vorrichtung
DE102007032300A1 (de) Stromsensor zur Gleich- oder Wechselstrommessung
DE102013205474A1 (de) Strommesssensor
DE102019120666B3 (de) Sensorvorrichtung zur breitbandigen Messung von elektrischen Strömen durch einen Leiter und Verfahren zur breitbandigen Messung
DE102012216553A1 (de) Strommessung
WO2016030197A1 (de) Sensor
DE102021201042B3 (de) Magnetfeldsensorvorrichtung und Verfahren zum Herstellen einer Magnetfeldsensorvorrichtung
EP0267498B1 (de) Flusskompensierter Stromwandler

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R163 Identified publications notified
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final