DE102018116950A1 - Chip-scale lidar mit einem einzigen 2d-mems scanner - Google Patents

Chip-scale lidar mit einem einzigen 2d-mems scanner Download PDF

Info

Publication number
DE102018116950A1
DE102018116950A1 DE102018116950.7A DE102018116950A DE102018116950A1 DE 102018116950 A1 DE102018116950 A1 DE 102018116950A1 DE 102018116950 A DE102018116950 A DE 102018116950A DE 102018116950 A1 DE102018116950 A1 DE 102018116950A1
Authority
DE
Germany
Prior art keywords
photonic chip
optical fiber
light beam
chip
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102018116950.7A
Other languages
English (en)
Other versions
DE102018116950B4 (de
Inventor
Keyvan Sayyah
Oleg Efimov
Pamela R. Patterson
Raymond SARKISSIAN
James H. Schaffner
Biqin HUANG
David Hammon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/018,831 external-priority patent/US11002832B2/en
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of DE102018116950A1 publication Critical patent/DE102018116950A1/de
Application granted granted Critical
Publication of DE102018116950B4 publication Critical patent/DE102018116950B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

Ein LIDAR-System, ein LIDAR-Chip und ein Verfahren zur Herstellung eines LIDAR-Chips. Das LIDAR-System beinhaltet einen photonischen Chip, der zum Senden eines übertragenen Lichtstrahls und zum Empfangen eines reflektierten Lichtstrahls konfiguriert ist, einen Scanner zum Richten des übertragenen Lichtstrahls in eine Richtung im Raum und zum Empfangen des reflektierten Lichtstrahls aus der ausgewählten Richtung sowie einen glasfaserbasierten Optokoppler. Der photonische Chip und der Scanner sind auf einer Halbleiter-Integrationsplattform (SIP) angeordnet. Der glasfaserbasierte Optokoppler ist auf dem photonischen Chip platziert, zum optischen Koppeln mit dem photonischen Chip zum Richten des übertragenen Lichtstrahls von dem photonischen Chip zu dem Scanner, und zum Richten eines reflektierten Lichtstrahls von dem Scanner zu dem photonischen Chip.

Description

  • EINLEITUNG
  • Die vorliegende Offenbarung bezieht sich auf LIDAR-Systeme (Light Detection and Ranging-Systeme) und insbesondere auf ein LIDAR-System, das auf einem Chip gebildet ist.
  • LIDAR ist ein Fernerkundungsverfahren, das Licht in Form eines gepulsten oder frequenz- oder phasenmodulierten Lasers verwendet, um Bereiche und andere Parameter ausgewählter Objekte zu messen. Anwendungen für LIDAR-Systeme erfordern zunehmend reduzierte Formfaktoren und geringere Gewichte, während sie immer noch zuverlässige Messungen liefern. Daher ist es wünschenswert, ein LIDAR-System bereitzustellen, das leicht und klein ist.
  • KURZDARSTELLUNG
  • Bei einer exemplarischen Ausführungsform ist ein LIDAR-System offenbart. Das LIDAR-System beinhaltet einen photonischen Chip, der zum Senden eines übertragenen Lichtstrahls und zum Empfangen eines reflektierten Lichtstrahls konfiguriert ist, einen Scanner zum Richten des übertragenen Lichtstrahls in eine Richtung im Raum und zum Empfangen des reflektierten Lichtstrahls aus der ausgewählten Richtung sowie einen glasfaserbasierten Optokoppler, um das übertragene Licht von dem photonischen Chip zu dem Scanner zu lenken und um das reflektierte Licht von dem Scanner zu dem photonischen Chip zu lenken.
  • Zusätzlich zu einem oder mehreren der hierin beschriebenen Merkmale beinhaltet der glasfaserbasierte Optokoppler ferner einen glasfaserbasierten Zirkulator und einen glasfaserbasierten Kollimator. Eine erste Lichtleitfaser stellt eine optische Kommunikation des übertragenen Lichtstrahls von dem photonischen Chip zu dem glasfaserbasierten Zirkulator bereit, und eine zweite Lichtleitfaser stellt eine optische Kommunikation des reflektierten Lichtstrahls von dem glasfaserbasierten Zirkulator zu dem photonischen Chip bereit. Der photonische Chip beinhaltet ferner einen mit der ersten Lichtleitfaser ausgerichteten Senderstrahlkanten- oder Gitterkoppler, um den übertragenen Lichtstrahl zu dem glasfaserbasierten Zirkulator zu übertragen, und einen Empfängerstrahlkanten- oder Gitterkoppler, der mit der zweiten Lichtleitfaser zum Übertragen des reflektierten Lichtstrahls zu dem photonischen Chip ausgerichtet ist. Der photonische Chip und der Scanner sind auf einer Halbleiter-Integrationsplattform angeordnet und der glasfaserbasierte Optokoppler ist auf dem photonischen Chip angeordnet. Das System beinhaltet ferner einen Prozessor, der konfiguriert ist, den photonischen Chip zum Erzeugen des übertragenen Lichts und zum Empfangen von Daten bezüglich des reflektierten Lichts zu betreiben, um einen Parameter eines Objekts zu bestimmen, das das reflektierte Licht über die Wechselwirkung mit dem übertragenen Licht erzeugt. In verschiedenen Ausführungsformen ist die Lichtquelle eine verteilte Bragg-Gitter-Laserdiode und der Scanner ist ein zweidimensionaler mikroelektromechanischer Scanner (MEMS-Scanner).
  • In einer anderen exemplarischen Ausführungsform wird ein Verfahren zum Herstellen eines LIDAR-Chips offenbart. Das Verfahren beinhaltet das Anordnen eines photonischen Chips und eines Scanners auf einer Halbleiter-Integrationsplattform (SIP), Platzieren eines glasfaserbasierten Optokopplers auf dem photonischen Chip zum optischen Koppeln mit dem photonischen Chip zum Richten des übertragenen Lichtstrahls von dem photonischen Chip zu dem Scanner und zum Richten eines reflektierten Lichtstrahls von dem Scanner zu dem photonischen Chip.
  • Zusätzlich zu einem oder mehreren der hierin beschriebenen Merkmale beinhaltet der glasfaserbasierte Optokoppler ferner einen glasfaserbasierten Zirkulator und einen glasfaserbasierten Kollimator. Der glasfaserbasierte Optokoppler ist auf dem photonischen Chip angeordnet, um den glasfaserbasierten Zirkulator über eine erste Lichtleitfaser und eine zweite Lichtleitfaser optisch mit dem photonischen Chip zu koppeln. Insbesondere wird der glasfaserbasierte Koppler auf dem photonischen Chip platziert, sodass ein Senderstrahlkanten- oder Gitterkoppler des photonischen Chips mit der ersten Lichtleitfaser ausgerichtet ist und ein Empfängerstrahlkanten- oder Gitterkoppler des photonischen Chips mit der zweiten Lichtleitfaser ausgerichtet ist. Der photonische Chip ist mit einem Prozessor gekoppelt, indem der SIP mit einer Leiterplatte verbunden wird, die den Prozessor enthält. In verschiedenen Ausführungsformen beinhaltet die Leiterplatte einen Analog-Digital-Wandler.
  • In noch einer anderen exemplarischen Ausführungsform wird ein LIDAR-Chip offenbart. Der LIDAR-Chip beinhaltet eine Halbleiter-Integrationsplattform (SIP), einen photonischen Chip, der mit einer Oberseite des SIP gekoppelt ist und zum Senden eines übertragenen Lichtstrahls und zum Empfangen eines reflektierten Lichtstrahls konfiguriert ist, einen Scanner, der mit der Oberseite des SIP gekoppelt und konfiguriert ist, um den übertragenen Lichtstrahls in eine ausgewählte Richtung im Raum zu richten und den reflektierten Lichtstrahl aus der ausgewählten Richtung zu empfangen, und einen glasfaserbasierten Optokoppler, der auf dem photonischen Chip platziert wird, um das übertragene Licht von dem photonischen Chip zum Scanner zu lenken und um das reflektierte Licht von dem Scanner auf den photonischen Chip zu richten.
  • Zusätzlich zu einem oder mehreren der hierin beschriebenen Merkmale beinhaltet der glasfaserbasierte Optokoppler ferner einen glasfaserbasierten Zirkulator und einen glasfaserbasierten Kollimator. Eine erste Lichtleitfaser stellt eine optische Kommunikation des übertragenen Lichtstrahls von dem photonischen Chip zu dem glasfaserbasierten Zirkulator bereit, und eine zweite Lichtleitfaser stellt eine optische Kommunikation des reflektierten Lichtstrahls von dem glasfaserbasierten Zirkulator zu dem photonischen Chip bereit. Der photonische Chip beinhaltet ferner einen mit der ersten Lichtleitfaser ausgerichteten Senderstrahlkanten- oder Gitterkoppler, um den übertragenen Lichtstrahl zu dem glasfaserbasierten Zirkulator zu übertragen, und einen Empfängerstrahlkanten- oder Gitterkoppler, der mit der zweiten Lichtleitfaser zum Übertragen des reflektierten Lichtstrahls zu dem photonischen Chip ausgerichtet ist. Der SIP ist mit einer Leiterplatte verbunden, die einen Prozessor enthält. Der Prozessor ist konfiguriert, um einer dem photonischen Chip zugeordneten Lichtquelle eine Wellenform bereitzustellen, Daten von einem Photodetektor des photonischen Chips zu empfangen und einen Parameter eines Objekts aus den von dem photonischen Chip empfangenen Daten zu bestimmen.
  • Die oben genannten Eigenschaften und Vorteile sowie anderen Eigenschaften und Funktionen der vorliegenden Offenbarung gehen aus der folgenden ausführlichen Beschreibung in Verbindung mit den zugehörigen Zeichnungen ohne weiteres hervor.
  • Figurenliste
  • Andere Merkmale, Vorteile und Details erscheinen nur exemplarisch in der folgenden ausführlichen Beschreibung der Ausführungsformen, wobei sich die ausführliche Beschreibung auf die Zeichnungen bezieht, wobei gilt:
    • 1 zeigt ein Blockdiagramm eines LIDAR-Systems;
    • 2 zeigt einen exemplarischen photonischen Chip, der zur Verwendung in dem LIDAR-System von 1 geeignet ist;
    • 3A zeigt eine Seitenansicht eines zusammengebauten LIDAR-Chips in einer exemplarischen Ausführungsform;
    • 3B zeigt eine Draufsicht auf den integrierten LIDAR-Chip; und
    • 4 zeigt ein Ablaufdiagramm, das ein Verfahren zum Herstellen eines photonischen LIDAR-Chips veranschaulicht.
  • AUSFÜHRLICHE BESCHREIBUNG
  • Die folgende Beschreibung ist lediglich exemplarischer Natur und nicht dazu gedacht, die vorliegende Erfindung in ihren An- oder Verwendungen zu beschränken. Es sollte verstanden werden, dass in den Zeichnungen entsprechende Bezugszeichen gleiche oder entsprechende Teile und Merkmale bezeichnen.
  • Gemäß einer exemplarischen Ausführungsform zeigt 1 ein Blockdiagramm eines LIDAR-Systems 100. Das LIDAR-System 100 beinhaltet einen photonischen Chip 102, einen Optokoppler 104 und einen mikroelektromechanischen Systemscanner (MEMS-Scanner) 106. Ein Prozessor 108 steuert den Betrieb des photonischen Chips 102, um Operationen des LIDAR-Systems 100 durchzuführen. In verschiedenen Ausführungsformen ist das LIDAR-System 100 auf einem integrierten Halbleiterchip angeordnet, der sich auf einer gedruckten Leiterplatte befindet. Wie in Bezug auf 2 in weiterem Detail erörtert, enthält der photonische Chip 102 eine Lichtquelle, wie zum Beispiel einen Laser, ein Lichtwellenleiter-Netzwerk und einen Satz von Fotodioden. Der Laser erzeugt einen übertragenen Lichtstrahl 115, der zu einem Objekt 110 gesendet wird. Der reflektierte Lichtstrahl 117, der auf die Wechselwirkung des Objekts 110 und des übertragenen Lichtstrahls 115 zurückzuführen ist, wird optisch mit einem Bruchteil (<10 %) des Sendestrahls in einem Satz von Fotodioden gemischt. Der Prozessor 108 steuert den Betrieb der Lichtquelle durch Steuern einer Wellenform, die die Lichtquelle moduliert. Der Prozessor 108 empfängt ferner Daten von den Fotodioden und bestimmt verschiedene Parameter eines Objekts 110 aus den Daten.
  • Im Betrieb steuert der Prozessor 108 die Lichtquelle des photonischen Chips 102, um einen übertragenen Lichtstrahl 115 zu erzeugen. Der übertragene Lichtstrahl 115 passiert den Optokoppler 104, der den übertragenen Lichtstrahl 115 kollimiert und den übertragenen Lichtstrahl 115 auf den MEMS-Scanner 106 richtet. Der MEMS-Scanner 106 lenkt den übertragenen Lichtstrahl 115 über einen Bereich von Winkeln in einen umgebenden Bereich des LIDAR-Systems 100.
  • Der MEMS-Scanner 106 beinhaltet ein Vibrationselement wie einen Vibrationsspiegel. Der Prozessor 108 steuert eine Oszillation des Vibrationselements, um den übertragenen Lichtstrahl 115 über einen ausgewählten Winkelbereich zu lenken. In verschiedenen Ausführungsformen ist der MEMS-Scanner 106 ein zweidimensionales MEMS (2D-MEMS) und der Prozessor 108 steuert die Oszillation des Vibrationselements in zwei Winkelrichtungen, wie z. B. Azimut und Elevation.
  • Der reflektierte Lichtstrahl 117 wird gebildet, wenn das Objekt 110 mit dem übertragenen Lichtstrahl 115 interagiert. Ein Teil des reflektierten Lichtstrahls 117 wird an dem MEMS-Scanner 106 empfangen. Der MEMS-Scanner 106 lenkt den reflektierten Lichtstrahl 117 in den Optokoppler 104, der den reflektierten Lichtstrahl 117 in den photonischen Chip 102 umlenkt.
  • In verschiedenen Ausführungsformen kann das LIDAR-System 100 mit einem Fahrzeug assoziiert sein und das Objekt 110 kann ein beliebiges Objekt außerhalb des Fahrzeugs sein, wie etwa ein anderes Fahrzeug, ein Fußgänger, ein Telefonmast, etc. Das LIDAR-System 100 bestimmt Parameter wie Entfernung, Doppler und Azimut und Elevation des Objekts 110, und das Fahrzeug verwendet diese Parameter, um in Bezug auf das Objekt 110 zu navigieren, um einen Kontakt mit dem Objekt 110 zu vermeiden.
  • 2 zeigt einen exemplarischen photonischen Chip 102, der zur Verwendung in dem LIDAR-System 100 von 1 geeignet ist. In verschiedenen Ausführungsformen ist der photonische Chip 102 ein abtastfrequenzmodulierter Dauerstrich-LIDAR-Chip (FMCW-LIDAR-Chip). Der photonische Chip 102 kann in verschiedenen Ausführungsformen ein photonischer Siliziumchip sein. Der photonische Chip 102 empfängt Licht von einer kohärenten Lichtquelle, wie einem Laser 202. Der Laser 202 kann unabhängig von dem photonischen Chip 102 sein oder kann eine integrierte Komponente des photonischen Chips 102 sein. Der Laser 202 kann ein beliebiger Einzelfrequenzlaser sein, der frequenzmoduliert werden kann. In einer Ausführungsform ist der Laser 202 ein DBR-Laser (Distributed Bragg Reflector-Laser). In verschiedenen Ausführungsformen erzeugt der Laser 202 Licht mit einer Frequenz von 1550 Nanometer (nm) oder einer anderen Wellenlänge, die für das menschliche Auge als unschädlich gilt. Der Laser 202 ist mit einem Senderwellenleiter 204 über einen Kantenkoppler gekoppelt, der das Licht von dem Laser 202 empfängt. Der Senderwellenleiter 204 lenkt das Licht von dem Laser 202 aus dem photonischen Chip 102 über einen Senderstrahlkanten- oder Gitterkoppler 220 als übertragenen Lichtstrahl 115.
  • Ein Lokaloszillator-Wellenleiter (LO-Wellenleiter) 206 ist optisch mit dem Senderwellenleiter 204 über einen Richtkoppler/-splitter oder einen Multimode-Interferenz-Koppler/Splitter (MMI-Koppler/Splitter) 210 gekoppelt, der zwischen der Lichtquelle 202 und dem Kanten- oder Gitterkoppler 220 angeordnet ist. Der Richt- oder MMI-Koppler/Splitter 210 teilt das Licht von dem Laser 202 in einen übertragenen Lichtstrahl 115, der sich weiterhin in dem Senderwellenleiter 204 ausbreitet, und einen Lokaloszillatorstrahl, der sich in dem Lokaloszillatorwellenleiter 206 ausbreitet. In verschiedenen Ausführungsformen kann ein Teilungsverhältnis 90 % für den Senderstrahl und 10 % für den Lokaloszillatorstrahl betragen. Der Lokaloszillatorstrahl wird zu einem dual abgeglichenen Photodetektor 214 geleitet, der Strahlmessungen durchführt.
  • Der einfallende oder reflektierte Lichtstrahl 117 tritt in den Empfängerwellenleiter 208 über einen Empfängerstrahlkanten- oder Gitterkoppler 222 ein. Der Empfängerwellenleiter 208 lenkt den reflektierten Lichtstrahl 117 von dem Empfängerstrahlkanten- oder Gitterkoppler 222 zu dem dual abgeglichenen Photodetektor 214. Der Empfängerwellenleiter 208 ist optisch mit dem Lokaloszillatorwellenleiter 206 an einem Richt- oder MMI-Koppler/Kombinator 212 gekoppelt, der zwischen dem Kanten- oder Gitterkoppler 222 und den Photodetektoren 214 angeordnet ist. Der Lokaloszillatorstrahl und der reflektierte Lichtstrahl 117 interagieren daher am Richt- oder MMI-Koppler/Kombinierer 212 miteinander, bevor sie an dem dual abgeglichenen Photodetektor 214 empfangen werden. In verschiedenen Ausführungsformen können der Senderwellenleiter 204, der Lokaloszillatorwellenleiter 206 und der Empfängerwellenleiter 208 Lichtleitfasern sein.
  • Der dual abgeglichene Photodetektor 214 erfasst Frequenzdifferenzen in dem übertragenen Lichtstrahl 115 und dem reflektierten Lichtstrahl 117 aufgrund der Reflexion des Senderstrahls von dem Objekt 110, 1. Der dual abgeglichene Photodetektor 214 ist mit dem Prozessor 108, 1, gekoppelt. Der Prozessor 108, 1 bestimmt aus der Frequenzdifferenz Parameter des Objekts 110, wie z. B. Reichweite oder Entfernung, eine Ankunftsrichtung des Objekts 110 und eine Geschwindigkeit des Objekts 110 relativ zu dem LIDAR-System 100.
  • 3A zeigt eine Seitenansicht 300 eines zusammengebauten LIDAR-Chips in einer exemplarischen Ausführungsform. Der zusammengebaute LIDAR-Chip beinhaltet den photonischen Chip 102, den Optokoppler 104 und den MEMS-Scanner 106. Der photonische Chip 102 und der MEMS-Scanner 106 sind auf einer Oberseite einer Halbleiter-Integrationsplattform (SIP) 302 ausgebildet oder angeordnet. Die SIP 302 ist an einer Leiterplatte 320 befestigt. Die Leiterplatte 320 kann zum Ansteuern der Elektronik des photonischen Chips 102 und zum Nachbearbeiten von Daten von den Photodetektoren des photonischen Chips 102 einen Analog-Digital-Wandler und einen digitalen Signalprozessor wie den Prozessor 108 von 1 enthalten. In verschiedenen Ausführungsformen beinhaltet der photonische Chip 102 einen Laser 202, 2. Der Optokoppler 104 ist auf dem photonischen Chip 102 angeordnet, sodass der Senderstrahlkanten- oder Gitterkoppler 220 und der Empfängerstrahlkanten- oder Gitterkoppler 222 mit entsprechenden Wellenleitern des Optokopplers 104 ausgerichtet sind. Der Optokoppler 104 beinhaltet einen glasfaserbasierten Zirkulator 306 und einen glasfaserbasierten Kollimator 308, der in einem Substrat 304 eingeschlossen und von diesem getragen wird, das ein Kunststoffsubstrat sein kann. Verschiedene Lichtleitfasern, die in dem Substrat 304 eingeschlossen sind, verbinden optisch den Zirkulator 306, den Kollimator 308 und verschiedene Eingänge und Ausgänge des optischen Kopplers 104. Eine repräsentative Lichtleitfaser 312 veranschaulicht einen Lichtwellenleiter, der den photonischen Chip 102 mit dem Zirkulator 306 verbindet. Eine detailliertere Ansicht, die Lichtleitfaserverbindungen zwischen optischen Elementen zeigt, ist in 3B gezeigt.
  • 3B zeigt eine Draufsicht 320 auf das integrierte LIDAR-System 100. Die Draufsicht 320 zeigt Details der Lichtwellenleiter, die die verschiedenen optischen Elemente des Optokopplers 104 verbinden. Insbesondere stellt die Lichtleitfaser 312a einen optischen Weg von dem Senderstrahlkanten- oder Gitterkoppler 220 zu dem Zirkulator 306 bereit. Die Lichtleitfaser 312b stellt einen optischen Pfad von dem Zirkulator 306 zu dem Empfängerstrahlkanten- oder Gitterkoppler 222 bereit. Die Lichtleitfaser 314 stellt einen optischen Weg zwischen dem Zirkulator 306 und dem Kollimator 308 bereit.
  • Der Zirkulator 306 trennt die optischen Wege des übertragenen Lichtstrahls 115 und des reflektierten Lichtstrahls 117, sodass der reflektierte Lichtstrahl 117, der entlang eines ausgewählten optischen Wegs in den Zirkulator 306 eintritt, in den Empfängerstrahlkanten- oder Gitterkoppler 222 bei einer ersten Position des photonischen Chips 102 gerichtet wird, und der übertragene Lichtstrahl 115, der den photonischen Chip 102 über den Senderstrahlkanten- oder Gitterkoppler 220 an einer zweiten Position verlässt, wird entlang des gleichen ausgewählten Strahlengangs gerichtet.
  • Unter Bezugnahme auf die 3A und 3B breitet sich ein übertragener Lichtstrahl 115, der den photonischen Chip 102 verlässt, sequenziell durch den Zirkulator 306, den Kollimator 308 und aus dem Koppler 104 aus, um auf einen Spiegel 310 aufzutreffen, der den übertragenen Lichtstrahl 115 auf den MEMS-Scanner 106 reflektiert. Der MEMS-Scanner 106 lenkt den übertragenen Lichtstrahl 115 basierend auf der Winkelausrichtung seines Vibrationselements in eine ausgewählte Richtung im Raum. Der reflektierte Lichtstrahl 117, der sich in der umgekehrten Richtung des übertragenen Lichtstrahls 115 bewegt, trifft auf das Vibrationselement des MEMS-Scanners 106 und wird von dem MEMS-Scanner 106 auf den Spiegel 310 und in den Kollimator 308 reflektiert. Der reflektierte Lichtstrahl 117 läuft dann von dem Kollimator 308 durch den Zirkulator 306 und in den photonischen Chip 102. Obwohl der übertragene Lichtstrahl 115 und der reflektierte Lichtstrahl 117 in 3A verschiedene optische Wege aufweisen, dient dies nur der Veranschaulichung. In verschiedenen Ausführungsformen wird der übertragene Lichtstrahl 115 in eine ausgewählte Richtung im Raum gerichtet, und der reflektierte Lichtstrahl 117 wird von der gleichen ausgewählten Richtung im Raum empfangen. Daher bewegen sich der übertragene Lichtstrahl 115 und der reflektierte Lichtstrahl 117 entlang des gleichen optischen Wegs zwischen dem MEMS-Scanner 106 und der ausgewählten Richtung im Raum.
  • 4 zeigt ein Ablaufdiagramm, das ein Verfahren 400 zum Herstellen des hierin offenbarten photonischen LIDAR-Chips darstellt. In Kasten 402 wird der photonische Chip hergestellt. Die Herstellung des photonischen Chips beinhaltet das Bilden der verschiedenen Wellenleiter (d. h. Senderstrahlwellenleiter 204, Lokaloszillatorwellenleiter 206 und Empfängerstrahlwellenleiter 208), Richt- oder MMI-Koppler/Splitter 210 und 212 und Kanten- oder Gitterkoppler 220 und 222 innerhalb des photonischen Chips 102. In Kasten 404 ist ebenfalls ein Laser in den photonischen Chip integriert. In Kasten 406 sind der integrierte photonische Chip 102 und der MEMS-Scanner 106 auf einer Halbleiter-Integrationsplattform (SIP) 302 integriert. In Kasten 408 ist der glasfaserbasierte Optokoppler 104 auf dem photonischen Chip 102 angeordnet, um die Lichtleitfaser 312a des Senderstrahlkanten- oder Gitterkopplers 220 des Optokopplers 104 auszurichten und den Empfängerstrahlkanten- oder Gitterkoppler 222 mit der Lichtleitfaser 312b des Optokopplers 104 auszurichten. In Kasten 410 ist der SIP 302 auf einer Leiterplatte 320 integriert.
  • Während die obige Offenbarung mit Bezug auf exemplarische Ausführungsformen beschrieben wurde, werden Fachleute verstehen, dass unterschiedliche Änderungen vorgenommen und die einzelnen Teile durch entsprechende andere Teile ausgetauscht werden können, ohne vom Umfang der Offenbarung abzuweichen. Darüber hinaus können viele Modifikationen vorgenommen werden, um eine bestimmte Materialsituation an die Lehren der Offenbarung anzupassen, ohne von deren wesentlichem Umfang abzuweichen. Daher ist vorgesehen, dass die vorliegende Offenbarung nicht auf die speziellen offenbarten Ausführungsformen beschränkt ist, aber alle Ausführungsformen beinhaltet, die in deren Umfang fallen.

Claims (10)

  1. LIDAR-System, umfassend: einen photonischen Chip, der so konfiguriert ist, dass er einen Lichtstrahl überträgt und einen reflektierten Lichtstrahl empfängt; einen Scanner zum Richten des übertragenen Lichtstrahls in eine Richtung im Raum und zum Empfangen des reflektierten Lichtstrahls aus der ausgewählten Richtung; und einen glasfaserbasierten Optokoppler, um das übertragene Licht von dem photonischen Chip zu dem Scanner zu lenken und um das reflektierte Licht von dem Scanner zu dem photonischen Chip zu lenken.
  2. LIDAR-System nach Anspruch 1, worin der glasfaserbasierte Optokoppler ferner einen glasfaserbasierten Zirkulator und einen glasfaserbasierten Kollimator umfasst.
  3. LIDAR-System nach Anspruch 2, ferner umfassend eine erste Lichtleitfaser zur optischen Kommunikation des übertragenen Lichtstrahls von dem photonischen Chip zu dem glasfaserbasierten Zirkulator, und eine zweite Lichtleitfaser zur optischen Kommunikation des reflektierten Lichtstrahls von dem glasfaserbasierten Zirkulator zu dem photonischen Chip.
  4. LIDAR-System nach Anspruch 3, worin der photonische Chip ferner einen mit der ersten Lichtleitfaser ausgerichteten Senderstrahlkanten- oder Gitterkoppler umfasst, um den übertragenen Lichtstrahl zu dem glasfaserbasierten Zirkulator zu übertragen, und einen Empfängerstrahlkanten- oder Gitterkoppler, der mit der zweiten Lichtleitfaser zum Übertragen des reflektierten Lichtstrahls zu dem photonischen Chip ausgerichtet ist.
  5. LIDAR-System nach Anspruch 1, ferner umfassend einen Prozessor, der konfiguriert ist, um den photonischen Chip zum Erzeugen des übertragenen Lichts und zum Empfangen von Daten bezüglich des reflektierten Lichts zu betreiben, um einen Parameter eines Objekts zu bestimmen, das das reflektierte Licht über die Wechselwirkung mit dem übertragenen Licht erzeugt.
  6. Verfahren zur Herstellung eines LIDAR-Chips, umfassend: Platzieren eines photonischen Chips und eines Scanners auf einer Halbleiter-Integrationsplattform (SIP); und das Platzieren eines glasfaserbasierten Optokopplers auf dem photonischen Chip zum optischen Koppeln mit dem photonischen Chip zum Richten des übertragenen Lichtstrahls von dem photonischen Chip zu dem Scanner, und zum Richten eines reflektierten Lichtstrahls von dem Scanner zu dem photonischen Chip.
  7. Verfahren nach Anspruch 6, worin der glasfaserbasierte Optokoppler ferner einen glasfaserbasierten Zirkulator und einen glasfaserbasierten Kollimator umfasst.
  8. Verfahren nach Anspruch 7, ferner umfassend das Platzieren des glasfaserbasierten Optokopplers auf dem photonischen Chip, um den glasfaserbasierten Zirkulator über eine erste Lichtleitfaser und eine zweite Lichtleitfaser optisch mit dem photonischen Chip zu koppeln.
  9. Verfahren nach Anspruch 8, ferner umfassend das Platzieren des glasfaserbasierten Kopplers auf dem photonischen Chip, sodass ein Senderstrahlkanten- oder Gitterkoppler des photonischen Chips mit der ersten Lichtleitfaser ausgerichtet ist und ein Empfängerstrahlkanten- oder Gitterkoppler des photonischen Chips mit der zweiten Lichtleitfaser ausgerichtet ist.
  10. Verfahren nach Anspruch 6, ferner umfassend das Koppeln des photonischen Chips mit einem Prozessor durch Koppeln des SIP mit einer Leiterplatte, die den Prozessor enthält.
DE102018116950.7A 2017-07-12 2018-07-12 LIDAR-System und Verfahren zum Herstellen eines LIDAR-Chips Active DE102018116950B4 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762531414P 2017-07-12 2017-07-12
US62/531,414 2017-07-12
US16/018,831 US11002832B2 (en) 2017-07-12 2018-06-26 Chip-scale LIDAR with a single 2D MEMS scanner
US16/018,831 2018-06-26

Publications (2)

Publication Number Publication Date
DE102018116950A1 true DE102018116950A1 (de) 2019-01-17
DE102018116950B4 DE102018116950B4 (de) 2024-03-14

Family

ID=64745369

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018116950.7A Active DE102018116950B4 (de) 2017-07-12 2018-07-12 LIDAR-System und Verfahren zum Herstellen eines LIDAR-Chips

Country Status (1)

Country Link
DE (1) DE102018116950B4 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112099241A (zh) * 2019-06-18 2020-12-18 杭州海康威视数字技术股份有限公司 一种光束准直系统及方法、激光雷达
CN116381645A (zh) * 2019-04-22 2023-07-04 布莱克莫尔传感器和分析有限责任公司 在lidar系统中提供发射和接收模式的空间移位

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8659813B2 (en) 2012-03-12 2014-02-25 Microvision, Inc. Nanoscale integrated beam scanner
CN108603758A (zh) 2015-11-30 2018-09-28 卢米诺技术公司 具有分布式激光器和多个传感器头的激光雷达系统和激光雷达系统的脉冲激光器
US9823118B2 (en) 2015-12-26 2017-11-21 Intel Corporation Low power, high resolution solid state LIDAR circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116381645A (zh) * 2019-04-22 2023-07-04 布莱克莫尔传感器和分析有限责任公司 在lidar系统中提供发射和接收模式的空间移位
CN112099241A (zh) * 2019-06-18 2020-12-18 杭州海康威视数字技术股份有限公司 一种光束准直系统及方法、激光雷达
CN112099241B (zh) * 2019-06-18 2023-11-21 杭州海康威视数字技术股份有限公司 一种光束准直系统及方法、激光雷达

Also Published As

Publication number Publication date
DE102018116950B4 (de) 2024-03-14

Similar Documents

Publication Publication Date Title
US11002832B2 (en) Chip-scale LIDAR with a single 2D MEMS scanner
EP1405037B1 (de) Vorrichtung zur optischen distanzmessung über einen grossen messbereich
DE102004028117B4 (de) Optoelektronisches Bauelement und Verfahren zum Bilden eines optoelektronischen Bauelements
EP0475013B1 (de) Faserkreisel
WO2021209514A1 (de) Vorrichtung und verfahren zur scannenden messung des abstands zu einem objekt
DE102012223460B4 (de) Eine modifizierte Transistor Kontur Gehäuse Baueinheit zur Verwendung in optischen Kommunikationen
DE102019114624A1 (de) LIDAR IM CHIPMAßSTAB MIT EINZELNEM MEMS-SPIEGEL
US20230400554A1 (en) Ranging using a shared path optical coupler
DE4440976A1 (de) Optische Sende- und Empfangseinrichtung mit einem oberflächenemittierenden Laser
WO2003027744A1 (de) Sende- und empfangsanordnung für eine bidirektionale optische datenübertragung
DE102018116950A1 (de) Chip-scale lidar mit einem einzigen 2d-mems scanner
DE112017006183T5 (de) Laserradarvorrichtung
DE60120222T2 (de) Laser-anemometer
DE112008001441B4 (de) Optische Verbindung
DE102016221806A1 (de) Optische Komponenten für Wellenlängen-Multiplexverfahren mit optischen Verbindungsmodulen hoher Dichte
DE60012704T2 (de) Abstimmbarer laser mit einer integrierten vorrichtung zur wellenlängenüberwachung und zugehöriges betriebsverfahren
DE19607107A1 (de) Anordnung zur Kopplung von Signallicht zwischen einem Lichtwellenleiter und einer optoelektronischen Komponente
EP1402660A1 (de) Opto-elektronisches transceivermodul und verfahren zum empfang optischer signale
DE112008001951T5 (de) Optische Verbindung
DE102018116957B4 (de) Heterogene integration der gebogenen spiegelstruktur zur passiven ausrichtung in chip-scale lidar
DE102019124599B4 (de) Verfahren zum erfassen eines objekts und lidarsystem
EP0942302A2 (de) Elektrooptisches Modul
DE102005010557A1 (de) Optischer Multiplexer/Demultiplexer
DE102019126476A1 (de) Mehrfach photonen chip lidar systemarchitektur
DE102018116962A1 (de) Photonisch integrierte schaltungs-randverbundstruktur mit reduzierter reflexion für integrierte laserdioden

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: LKGLOBAL | LORENZ & KOPF PARTG MBB PATENTANWAE, DE

Representative=s name: LKGLOBAL ] LORENZ & KOPF PARTG MBB PATENTANWAE, DE

R016 Response to examination communication
R018 Grant decision by examination section/examining division