DE102018006312A1 - Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine - Google Patents

Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine Download PDF

Info

Publication number
DE102018006312A1
DE102018006312A1 DE102018006312.8A DE102018006312A DE102018006312A1 DE 102018006312 A1 DE102018006312 A1 DE 102018006312A1 DE 102018006312 A DE102018006312 A DE 102018006312A DE 102018006312 A1 DE102018006312 A1 DE 102018006312A1
Authority
DE
Germany
Prior art keywords
model
internal combustion
combustion engine
gas path
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102018006312.8A
Other languages
English (en)
Other versions
DE102018006312B4 (de
Inventor
Knut Graichen
Michael Buchholz
Daniel Bergmann
Jens Niemeyer
Jörg Remele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Priority to DE102018006312.8A priority Critical patent/DE102018006312B4/de
Priority to PCT/EP2019/070558 priority patent/WO2020030481A1/de
Priority to CN201980052799.XA priority patent/CN112513447A/zh
Priority to EP19749301.8A priority patent/EP3833860A1/de
Publication of DE102018006312A1 publication Critical patent/DE102018006312A1/de
Priority to US17/164,915 priority patent/US20210180535A1/en
Application granted granted Critical
Publication of DE102018006312B4 publication Critical patent/DE102018006312B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3005Details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • F02D43/04Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment using only digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1412Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/143Controller structures or design the control loop including a non-linear model or compensator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

Vorgeschlagen wird ein Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine (1), bei dem in Abhängigkeit eines Sollmoments über ein Verbrennungsmodell (20) Einspritzsystem-Sollwerte zur Ansteuerung der Einspritzsystem-Stellglieder und über ein Gaspfadmodell (22) Gaspfad-Sollwerte zur Ansteuerung der Gaspfad-Stellglieder berechnet werden, bei dem das Verbrennungsmodell (20) in Form eines vollständig datenbasierten Modells im laufenden Betrieb der Brennkraftmaschine (1) angepasst wird, bei dem von einem Optimierer (23) ein Gütemaß über Veränderung der Einspritzsystem-Sollwerte und Gaspfad-Sollwerte innerhalb eines Prädiktionshorizonts minimiert wird und bei dem vom Optimierer (23) anhand des minimierten Gütemaßes die Einspritzsystem-Sollwerte und Gaspfad-Sollwerte als maßgeblich zur Einstellung des Betriebspunkts der Brennkraftmaschine (1) gesetzt werden.

Description

  • Die Erfindung betrifft ein Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine, bei dem in Abhängigkeit eines Sollmoments über ein Verbrennungsmodell Einspritzsystem-Sollwerte zur Ansteuerung der Einspritzsystem-Stellglieder und über ein Gaspfadmodell Gaspfad-Sollwerte zur Ansteuerung der Gaspfad-Stellglieder berechnet werden.
  • Das Verhalten einer Brennkraftmaschine wird maßgeblich über ein Motorsteuergerät in Abhängigkeit eines Leistungswunsches bestimmt. Hierzu sind in der Software des Motorsteuergeräts entsprechende Kennlinien und Kennfelder appliziert. Über diese werden aus dem Leistungswunsch, zum Beispiel einem Soll-Moment, die Stellgrößen der Brennkraftmaschine berechnet, zum Beispiel der Spritzbeginn und ein erforderlicher Raildruck. Mit Daten bestückt werden diese Kennlinien/Kennfelder beim Hersteller der Brennkraftmaschine bei einem Prüfstandslauf. Die Vielzahl dieser Kennlinien/Kennfelder und die Wechselwirkung der Kennlinien/Kennfelder untereinander verursachen allerdings einen hohen Abstimmungsaufwand.
  • In der Praxis wird daher versucht den Abstimmungsaufwand durch die Verwendung von mathematischen Modellen zu reduzieren. Aus der nicht vorveröffentlichten deutschen Patentanmeldung mit dem amtlichen Aktenzeichen DE 10 2017 005 783.4 ist ein modellbasiertes Steuerungs- und Regelungsverfahren für eine Brennkraftmaschine bekannt, bei dem über ein Verbrennungsmodell Einspritzsystem-Sollwerte zur Ansteuerung der Einspritzsystem-Stellglieder und über ein Gaspfadmodell Gaspfad-Sollwerte zur Ansteuerung der Gaspfad-Stellglieder berechnet werden. Von einem Optimierer werden dann diese Sollwerte mit dem Ziel verändert, ein Gütemaß innerhalb eines Prädiktionshorizonts zu minimieren. Das minimierte Gütemaß wiederum definiert dann den bestmöglichen Betriebspunkt der Brennkraftmaschine.
  • Aus der nicht vorveröffentlichten deutschen Patentanmeldung mit dem amtlichen Aktenzeichen DE 10 2018 001 727.4 ist ein Verfahren zur Adaption des Verbrennungsmodells in Ergänzung zu dem zuvor beschriebenen Steuerungs- und Regelverfahren bekannt. Adaptiert wird das Verbrennungsmodell über ein erstes Gauß-Prozessmodell zur Darstellung eines Grundgitters und über ein zweites Gauß-Prozessmodell zur Darstellung von Adaptionsdatenpunkten. Die Daten für das erste Gauß-Prozessmodell werden aus Messwerten bestimmt, welche auf einem Einzylinderprüfstand gewonnen wurden. Über eine anschließende physikalische Modellierung werden alle Eingangsgrößen durchvariiert, um den gesamten Arbeitsbereich der Brennkraftmaschine abzudecken. Die Daten für das zweite Gauß-Prozessmodell werden aus Messwerten eines Vollmotors bestimmt, welche bei einem DoE-Prüfstandslauf (DoE: Design of Experiments) der Brennkraftmaschine im stationär fahrbaren Bereich erzeugt wurden. Die physikalische Modellierung aus den Einzylinderdaten ist sehr zeitaufwendig und kostenintensiv, da entsprechende Software-Entwicklungstools und ein hohes Expertenwissen erforderlich sind.
  • Der Erfindung liegt daher die Aufgabe zugrunde, das zuvor beschriebene Adaptionsverfahren hinsichtlich des Zeitaufwands zu optimieren.
  • Gelöst wird diese Aufgabe durch die Merkmale von Anspruch 1. Die Ausgestaltungen sind in den Unteransprüchen dargestellt.
  • Beim erfindungsgemäßen Verfahren wird das Verbrennungsmodell in Form eines vollständig datenbasierten Modells im laufenden Betrieb der Brennkraftmaschine angepasst. Erzeugt wird das datenbasierte Modell, indem in einem ersten Schritt die Stellgrößen der Brennkraftmaschine auf einem Einzylinder-Prüfstand variiert werden, indem in einem zweiten Schritt Trendinformationen aus den Messgrößen des Einzylinder-Prüfstands erzeugt werden und indem in einem dritten Schritt eine Abweichung der Messgrößen des Einzylinder-Prüfstands zu einem ersten Gauß-Prozessmodell unter Einhaltung der Trendinformationen minimiert wird. Das datenbasierte Modell erlaubt es mittels Extrapolation neue, belastbare Datenwerte zu erzeugen. Diese Datenwerte gelten dann in den nicht vermessenen Betriebsbereichen der Brennkraftmaschine. Die aus dem Stand der Technik bekannte physikalische Modellierung wird durch das datenbasierte Modell ersetzt. Von Vorteil ist der deutlich verringerte Entwicklungsaufwand, da die Bestimmung der Trendinformationen aus den Einzylinder-Messdaten und die Anpassung an die DoE-Daten über mathematische Algorithmen automatisierbar sind. Hieraus resultiert auch ein hoher Zuverlässigkeitsgrad des datenbasierten Modells, es ist also robust. Durch die Extrapolation neuer Datenwerte für die nicht vermessenen Betriebsbereiche verhält sich das Modell gutmütig, das heißt, in den nicht vermessenen Betriebsbereichen der Brennkraftmaschine treten keine Extrema oder sprungförmige Reaktionen auf.
  • Ganz allgemein kann durch die erfindungsgemäße Vorgehensweise das Verhalten technischer Prozesse beschrieben werden, bei denen in definierten Betriebsbereichen Messdaten einer Einrichtung vorliegen und in nicht vermessen Betriebsbereichen ein Systemverhalten der Einrichtung anhand der Trendinformationen abgebildet wird. Unter einer Einrichtung ist zum Beispiel ein Abgas-Nachbehandlungssystem oder auch ein Batterie-Managementsystem zu verstehen.
  • In den Figuren ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen:
    • 1 ein Systemschaubild,
    • 2 ein modellbasiertes Systemschaubild,
    • 3 ein Ablaufdiagramm,
    • 4A, B ein Diagramm,
    • 5 ein Diagramm zum ersten Gauß-Prozessmodell und
    • 6 eine Tabelle.
  • Die 1 zeigt ein Systemschaubild einer elektronisch gesteuerten Brennkraftmaschine 1 mit einem Common-Railsystem. Das Common-Railsystem umfasst folgende mechanische Komponenten: eine Niederdruckpumpe 3 zur Förderung von Kraftstoff aus einem Kraftstofftank 2, eine veränderbare Saugdrossel 4 zur Beeinflussung des durchströmenden Kraftstoff-Volumenstroms, eine Hochdruckpumpe 5 zur Förderung des Kraftstoffs unter Druckerhöhung, ein Rail 6 zum Speichern des Kraftstoffs und Injektoren 7 zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine 1. Optional kann das Common-Railsystem auch mit Einzelspeichern ausgeführt sein, wobei dann zum Beispiel im Injektor 7 ein Einzelspeicher 8 als zusätzliches Puffervolumen integriert ist. Die weitere Funktionalität des Common-Railsystems wird als bekannt vorausgesetzt.
  • Der dargestellte Gaspfad umfasst sowohl die Luftzuführung als auch die Abgasabführung. Angeordnet sind in der Luftzuführung der Verdichter eines Abgasturboladers 11, ein Ladeluftkühler 12, eine Drosselklappe 13, eine Einmündungsstelle 14 zur Zusammenführung der Ladeluft mit dem rückgeführten Abgas und das Einlassventil 15. In der Abgasabführung angeordnet sind ein Auslassventil 16, die Turbine des Abgasturboladers 11 und ein Turbinen-Bypassventil 19. Aus der Abgasabführung zweigt ein Abgasrückführungspfad ab, in welchem ein AGR-Stellglied 17 zur Einstellung der AGR-Rate und der AGR-Kühler 18 angeordnet sind.
  • Die Betriebsweise der Brennkraftmaschine 1 wird durch ein elektronisches Steuergerät 10 (ECU) bestimmt. Das elektronische Steuergerät 10 beinhaltet die üblichen Bestandteile eines Mikrocomputersystems, beispielsweise einen Mikroprozessor, I/O-Bausteine, Puffer und Speicherbausteine (EEPROM, RAM). In den Speicherbausteinen sind die für den Betrieb der Brennkraftmaschine 1 relevanten Betriebsdaten als Modelle appliziert. Über diese berechnet das elektronische Steuergerät 10 aus den Eingangsgrößen die Ausgangsgrößen. Die maßgebliche Eingangsgröße ist ein Sollmoment M(SOLL), welches von einem Bediener als Leistungswunsch vorgegeben wird. Die auf das Common-Railsystem bezogenen Eingangsgrößen des Steuergeräts 10 sind der Raildruck pCR, der mittels eines Rail-Drucksensors 9 gemessen wird, und optional der Einzelspeicherdruck pES. Die auf den Luftpfad bezogenen Eingangsgrößen des elektronischen Steuergeräts 10 sind ein Öffnungswinkel W1 der Drosselklappe 13, die Motordrehzahl nIST, der Ladeluftdruck pLL, die Ladelufttemperatur TLL und die Feuchte phi der Ladeluft. Die auf den Abgaspfad bezogenen Eingangsgrößen des elektronischen Steuergeräts 10 sind ein Öffnungswinkel W2 des AGR-Stellglieds 17, die Abgastemperatur TAbgas, das Luft-Kraftstoffverhältnis Lambda und der NOx-Istwert stromab der Turbine des Abgasturboladers 11. Die weiteren nicht dargestellten Eingangsgrößen des elektronischen Steuergeräts 10 sind mit Bezugszeichen EIN zusammengefasst, beispielsweise die Kühlmitteltemperaturen.
  • In 1 sind als Ausgangsgrößen des elektronischen Steuergeräts 10 dargestellt: ein Signal PWM zur Ansteuerung der Saugdrossel 4, ein Signal ve zur Ansteuerung des Injektors 7 (Spritzbeginn/ Spritzende), ein Stellsignal DK zur Ansteuerung der Drosselklappe 13, ein Stellsignal AGR zur Ansteuerung des AGR-Stellglieds 17, ein Stellsignal TBP zur Ansteuerung des Turbinen-Bypassventils 19 und eine Ausgangsgröße AUS. Die Ausgangsgröße AUS steht stellvertretend für die weiteren Stellsignale zur Steuerung und Regelung der Brennkraftmaschine 1, beispielsweise für ein Stellsignal zur Aktivierung eines zweiten Abgasturboladers bei einer Registeraufladung oder einem variablen Ventiltrieb.
  • Die 2 zeigt ein modellbasiertes Systemschaubild. Bei dieser Darstellung sind die Eingangsgrößen des elektronischen Steuergeräts 10 eine erste Bibliothek Biblio1, eine zweite Bibliothek Biblio 2, Messgrößen MESS und das Sammelbezugszeichen EIN, welches stellvertretend für die in der 1 dargestellten Eingangsgrößen steht. Die erste Bibliothek Biblio 1 kennzeichnet den Betrieb der Brennkraftmaschine gemäß der Emissionsklasse MARPOL (Marine Pollution) der IMO oder gemäß der Emissionsklasse EU IV / Tier 4 final. Die zweite Bibliothek Biblio 2 kennzeichnet den Brennkraftmaschinentyp und eine maximale mechanische Bauteilbelastung, zum Beispiel den Verbrennungsspitzendruck oder die maximale Drehzahl des Abgasturboladers. Die Eingangsgröße MESS kennzeichnet die sowohl unmittelbar gemessenen physikalischen Größen als auch daraus berechnete Hilfsgrößen. Die Ausgangsgrößen des elektronischen Steuergeräts sind die Sollwerte für die unterlagerten Regelkreise, der Spritzbeginn SB und das Spritzende SE. Die unterlagerten Regelkreise sind ein Raildruck-Regelkreis 24, ein Lambda-Regelkreis 25 und ein AGR-Regelkreis 26. Innerhalb des elektronischen Steuergeräts sind ein Verbrennungsmodell 20, eine Adaptation 21, ein Gaspfadmodell 22 und ein Optimierer 23 angeordnet.
  • Sowohl das Verbrennungsmodell 20 als auch das Gaspfadmodell 22 bilden das Systemverhalten der Brennkraftmaschine als mathematische Gleichungen ab. Das Verbrennungsmodell 20 bildet statisch die Vorgänge bei der Verbrennung ab. Im Unterschied hierzu bildet das Gaspfadmodell 22 das dynamische Verhalten der Luftführung und der Abgasführung ab. Das Verbrennungsmodell 20 beinhaltet Einzelmodelle zum Beispiel für die NOx- und Rußentstehung, für die Abgastemperatur, für den Abgasmassenstrom und für den Spitzendruck. Diese Einzelmodelle wiederum hängen von den Randbedingungen im Zylinder und den Parametern der Einspritzung ab. Bestimmt wird das Verbrennungsmodell 20 bei einer Referenz-Brennkraftmaschine in einem Prüfstandslauf, dem sogenannten DoE-Prüfstandslauf (DoE: Design of Experiments) für den fahrbaren Bereich. Beim DoE-Prüfstandslauf werden systematisch Betriebsparameter und Stellgröße mit dem Ziel variiert, das Gesamtverhalten der Brennkraftmaschine in Abhängigkeit von motorischen Größen und Umweltrandbedingungen abzubilden. Ebenfalls im Verbrennungsmodell 20 verarbeitet werden die auf einem Einzylinder-Prüfstand ermittelten Messwerte. Ergänzt wird das Verbrennungsmodell 20 um die Adaption 21. Ziel der Adaption ist es, die Serienstreuung einer Brennkraftmaschine zu verringern.
  • Nach Aktivierung der Brennkraftmaschine 1 liest der Optimierer 23 zunächst aus der ersten Bibliothek Biblio 1 die Emissionsklasse und aus der zweiten Bibliothek Biblio 2 die maximalen mechanischen Bauteilbelastungen ein. Anschließend wertet der Optimierer 23 das Verbrennungsmodell 20 aus und zwar hinsichtlich des Sollmoments M(SOLL), der Emissionsgrenzwerte, der Umweltrandbedingungen, zum Beispiel der Feuchte phi der Ladeluft, der Betriebssituation der Brennkraftmaschine und der Adaptionsdatenpunkte. Definiert wird die Betriebssituation insbesondere durch die Motordrehzahl nIST, die Ladelufttemperatur TLL und den Ladeluftdruck pLL. Die Funktion des Optimierers 23 besteht nun darin, die Einspritzsystem-Sollwerte zur Ansteuerung der Einspritzsystem-Stellglieder und die Gaspfad-Sollwerte zur Ansteuerung der Gaspfad-Stellglieder zu bewerten. Hierbei wählt der Optimierer 23 diejenige Lösung aus, bei der ein Gütemaß minimiert wird. Berechnet wird das Gütemaß als Integral der quadratischen Soll-Istabweichungen innerhalb des Prädiktionshorizonts. Beispielsweise in der Form: J= [ w1 ( NOx ( SOLL ) NOx ( IST ) ] 2 + [ w2 ( M ( SOLL ) M ( IST ) ] 2 + [ w 3 ( . ) ] +
    Figure DE102018006312A1_0001
    Mit w1, w2 und w3 sind Gewichtungsfaktoren dargestellt. Bekanntermaßen ergeben sich die Stickoxidemission aus der Feuchte phi der Ladeluft, der Ladelufttemperatur, dem Spritzbeginn SB und dem Raildruck pCR. In die tatsächlichen Istwerte, zum Beispiel den NOx-Istwert oder den Abgastemperatur-Istwert, greift die Adaption 21 ein.
  • Minimiert wird das Gütemaß, indem vom Optimierer 23 zu einem ersten Zeitpunkt ein erstes Gütemaß berechnet wird, die Einspritzsystem-Sollwerte sowie die Gaspfad-Sollwerte variiert werden und anhand dieser ein zweites Gütemaß innerhalb des Prädiktionshorizonts prognostiziert wird. Anhand der Abweichung der beiden Gütemaße zueinander legt dann der Optimierer 23 ein minimales Gütemaß fest und setzt dieses als maßgeblich für die Brennkraftmaschine. Zur weiteren Vorgehensweise bezüglich der Prädiktion wird auf die nicht vorveröffentlichte deutsche Patentanmeldung mit dem amtlichen Aktenzeichen DE 10 2017 005 783.4 verwiesen.
  • Die 3 zeigt ein Ablaufdiagramm, welches die Programmschritte eines ausführbaren Programms zeigt. Dargestellt ist das Zusammenwirken der beiden Gauß-Prozessmodelle zur Erstellung des Verbrennungsmodells (2: 20). Gauß-Prozessmodelle sind dem Fachmann bekannt, zum Beispiel aus der DE 10 2014 225 039 A1 oder der DE 10 2013 220 432 A1 . Ganz allgemein wird ein Gauß-Prozess definiert durch eine Mittelwertfunktion und eine Kovarianzfunktion. Die Mittelwertfunktion wird häufig zu Null angenommen oder ein linearer/polynomieller Verlauf eingeführt. Die Kovarianzfunktion gibt den Zusammenhang beliebiger Punkte an und beschreibt die statistische Zuverlässigkeit des Modells in einem betrachteten Betriebspunkt der Brennkraftmaschine. Durch die Kovarianz wird ein Konfidenzbereich definiert, in welchem der Wert des realen Systems mit einer Wahrscheinlichkeit von 95% liegt. Ein Funktionsblock 27 beinhaltet die DoE-Daten des Vollmotors. Ermittelt werden diese Daten für eine Referenz-Brennkraftmaschine bei einem Prüfstandslauf, indem im stationär fahrbaren Bereich der Brennkraftmaschine alle Variationen der Eingangsgrößen über deren gesamten Stellbereich ermittelt werden. Diese Daten kennzeichnen mit hoher Genauigkeit das Verhalten der Brennkraftmaschine im stationär fahrbaren Bereich. Ein Funktionsblock 28 beinhaltet Daten, welche an einem Einzylinderprüfstand gewonnen werden. Beim Einzylinderprüfstand lassen sich diejenigen Betriebsbereiche einstellen, zum Beispiel große geodätische Höhe oder extreme Temperaturen, die bei einem DoE-Prüfstandslauf nicht abgeprüft werden können. Aus diesen Messdaten werden im Funktionsblock 29 automatisiert die Systemeigenschaften in Abhängigkeit einzelner Stellgrößen in Form einer Trendinformation berechnet. Die weitere Erläuterung erfolgt in Verbindung mit den 4A und 4B.
  • In der 4A ist auf der Abszisse der Einzelspeicherdruck pES, normiert auf den Maximaldruck pMAX des Einzelspeicherdrucks, dargestellt. Auf der Ordinate ist der NOx-Istwert als Messwert dargestellt. Die mit einem Kreuz eingetragenen Messwerte wurden ermittelt, indem ein VVT-Steller (VVT: variable Ventilsteuerung), der Spritzbeginn SB, die Motordrehzahl nIST, die Ladelufttemperatur TLL und die Feuchte phi der Ladeluft konstant gehalten wurden. Die eingespritzte Kraftstoffmenge wurde hierbei auf einen ersten Wert gesetzt. Danach wurde der Einzelspeicherdruck pES variiert, indem das geförderte Kraftstoffvolumen verändert wurde. Die mit einem Kreis gekennzeichneten Messwerte wurden ermittelt, indem die Kraftstoffmenge auf einen zweiten Wert gesetzt wurde, der Einzelspeicherdruck pES variiert wurde und die zuvor konstanten Parameter, also der VVT-Steller, der Spritzbeginn SB, die Motordrehzahl nIST, die Ladelufttemperatur TLL und die Feuchte phi der Ladeluft unverändert gelassen wurden. Die mit einem Dreieck eingetragenen Messwerte wurden ermittelt, indem die Motordrehzahl nIST auf einen neuen Wert gesetzt wurde, der Einzelspeicherdruck pES verändert wurde und die anderen Parameter unverändert übernommen wurden. Aus der 4A lässt sich als erste Aussage ableiten, dass sich mit erhöhendem Einzelspeicherdruck pES der NOx-Istwert erhöht und lässt sich als zweite Aussage ableiten, dass die Zunahme stetig steigend ist. Für das dargestellte Beispiel lautet die Trendinformation daher: monoton (steigend) sowie linear. In der 4B ist auf der Abszisse der Spritzbeginn SB, normiert auf einen Maximalwert SB(MAX) des Spritzbeginns, aufgetragen. Auf der Ordinate ist der NOx-Istwert als Messwert dargestellt. Die in der 4B dargestellten Datenwerte ergeben sich in analoger Vorgehensweise zur 4A, wobei hier der Einzelspeicherdruck pES konstant gehalten wurde und stattdessen der Spritzbeginn SB verändert wurde. Für die dargestellten Beispiele der 4B lautet die Trendinformation: nur monoton (steigend).
  • In der 3 ist das extrapolationsfähige Modell mit dem Bezugszeichen 30 gekennzeichnet, in welchem die Abweichung der Daten des Einzylinder-Prüfstands zu den DoE-Daten 27 unter Einhaltung der Trendinformationen minimiert wird. Mit Bezugszeichen 31 ist ein erstes Gauß-Prozessmodell 31 (GP1) zur Darstellung eines Grundgitters bezeichnet. Die Zusammenführung der beiden Mengen von Datenpunkten bildet das zweite Gauß-Prozessmodell 32. Damit werden Betriebsbereiche der Brennkraftmaschine, welche durch die DoE-Daten beschrieben sind, auch durch diese Werte festgelegt und es werden Betriebsbereiche, für die keine DoE-Daten vorliegen, durch Daten des Modells 30 wiedergegeben. Da das zweite Gauß-Prozessmodell im laufenden Betrieb adaptiert wird, dient es zur Darstellung der Adaptionspunkte. Ganz allgemein gilt also für das datenbasierte Modell 33: E [ x ] = GP 1 + GP 2
    Figure DE102018006312A1_0002
  • Hierbei entsprechen GP1 dem ersten Gauß-Prozellmodell zur Darstellung des Grundgitters, GP2 dem zweiten Gauß-Prozessmodell zur Darstellung der Adaptionsdatenpunkte. Das datenbasierte Modell E[x] wiederum ist die Eingangsgröße für den Optimierer, zum Beispiel einem NOx-Istwert oder einem Abgastemperatur-Istwert. Durch den Doppelpfeil in der Figur sind zwei Informationswege dargestellt. Der erste Informationsweg kennzeichnet die Datenbereitstellung des Grundgitters vom ersten Gauß-Prozessmodell 31 an das datenbasierte Modell 33. Der zweite Informationsweg kennzeichnet die Rückanpassung des ersten Gauß-Prozessmodells 31 über das zweite Gauß-Prozessmodell 32. Zur weiteren Vorgehensweise bezüglich der Adaption wird auf die nicht vorveröffentlichte deutsche Patentanmeldung DE 10 2018 001 727.4 verwiesen.
  • In der 5 ist in einem Diagramm das erste Gauß-Prozessmodell für den Einzelspeicherdruck pES, welcher auf Maximaldruck pMAX normiert ist, dargestellt. Auf der Ordinate ist der gemessene NOx-Wert aufgetragen. Innerhalb des Diagramms sind die am Vollmotor ermittelten DoE-Datenwerte mit einem Kreuz und der Verlauf des ersten Gauß-Prozessmodells aus den am Einzylinder erfassten Datenwerten mit einem Kreis gekennzeichnet. Beispielsweise sind dies die drei Datenwerte der Punkte A, B und C. In einem ersten Schritt wird die Lage der Datenwerte, also die Trendinformation (3: 29) zueinander ermittelt. Da sich aus dem Datenwert des Punkts B ein höherer NOx-Istwert als am Punkt A ergibt, ist die Funktion in diesem Bereich monoton. Für den Datenwert am Punkt C gilt dies in analoger Betrachtungsweise, das heißt, der NOx-Istwert am Punkt C ist höher als am Punkt B. Für die Datenwerte A bis C ergibt sich daher als Trendinformation: monoton. In einem zweiten Schritt wird dann die Abweichung (Modellfehler) dieser Datenwerte zu den DoE-Daten minimiert. Mit anderen Worten: Es wird eine mathematische Funktion bestimmt, welche bestmöglich die DoE-Datenwerte unter Berücksichtigung der Trendinformation abbildet. Für die Datenwerte A, B und C ist dies die monotone, lineare und ansteigende Funktion F1. Eine Funktion F2 ist durch die Datenwerte A, D und E nur als monoton gekennzeichnet. Eine Funktion F3 ist durch die Datenwerte A, F und G abgebildet. Mit Blick auf die 6 verhalten sich die exemplarisch dargestellten Messgrößen Einzelspeicherdruck pES, Kraftstoffmasse mKrSt, Spritzbeginn SB, Raildruck pCR und die Ladelufttemperatur TLL entsprechend der Funktion F1, das heißt, monoton und linear ansteigend. Die Messgröße Motordrehzahl nIST verhält sich entsprechend der Funktion F3, also unbeschränkt. Unbeschränkt bedeutet, dass zu dieser Messgröße keine Trendinformation vorliegt. Wie aus der 5 ebenfalls ableitbar ist, können Zwischenwerte, beispielsweise der Datenwert H, extrapoliert werden. Das Modell ist also extrapolationsfähig (3: 30). Die Bestimmung des ersten Gauß-Prozessmodells erfolgt automatisiert, das heißt, Expertenwissen ist nicht erforderlich. Die automatisierte Extrapolationsfähigkeit des Modells wiederum garantiert ein hohes Maß an Robustheit und Gutmütigkeit, da in unbekannten Bereichen das Modell anhand der Trendinformationen keine Extrema oder sprungförmigen Reaktionen zulässt.
  • Bezugszeichenliste
  • 1
    Brennkraftmaschine
    2
    Kraftstofftank
    3
    Niederdruckpumpe
    4
    Saugdrossel
    5
    Hochdruckpumpe
    6
    Rail
    7
    Injektor
    8
    Einzelspeicher
    9
    Rail-Drucksensor
    10
    Elektronisches Steuergerät
    11
    Abgasturbolader
    12
    Ladeluftkühler
    13
    Drosselklappe
    14
    Einmündungsstelle
    15
    Einlassventil
    16
    Auslassventil
    17
    AGR-Stellglied (AGR: Abgasrückführung)
    18
    AGR-Kühler
    19
    Turbinen-Bypassventil
    20
    Verbrennungsmodell
    21
    Adaption
    22
    Gaspfadmodell
    23
    Optimierer
    24
    Raildruck-Regelkreis
    25
    Lambda-Regelkreis
    26
    AGR-Regelkreis
    27
    Funktionsblock, DoE-Daten
    28
    Funktionsblock, Daten Einzylinder
    29
    Funktionsblock, Erzeugen Trendinformation
    30
    Modell
    31
    Erstes Gauß-Prozessmodell (GP1)
    32
    Zweites Gauß-Prozessmodell (GP2)
    33
    datenbasiertes Modell
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102017005783 [0003, 0017]
    • DE 102018001727 [0004, 0021]
    • DE 102014225039 A1 [0018]
    • DE 102013220432 A1 [0018]

Claims (4)

  1. Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine (1), bei dem in Abhängigkeit eines Sollmoments (M(SOLL)) über ein Verbrennungsmodell (20) Einspritzsystem-Sollwerte zur Ansteuerung der Einspritzsystem-Stellglieder und über ein Gaspfadmodell (22) Gaspfad-Sollwerte zur Ansteuerung der Gaspfad-Stellglieder berechnet werden, bei dem das Verbrennungsmodell (20) in Form eines vollständig datenbasierten Modells (33) im laufenden Betrieb der Brennkraftmaschine (1) angepasst wird, bei dem von einem Optimierer (23) ein Gütemaß (J) über Veränderung der Einspritzsystem-Sollwerte und Gaspfad-Sollwerte innerhalb eines Prädiktionshorizonts minimiert wird und bei dem vom Optimierer (23) anhand des minimierten Gütemaßes die Einspritzsystem-Sollwerte und Gaspfad-Sollwerte als maßgeblich zur Einstellung des Betriebspunkts der Brennkraftmaschine (1) gesetzt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das datenbasierte Modell (33) erzeugt wird, indem in einem ersten Schritt die Stellgrößen der Brennkraftmaschine (1) auf einem Einzylinder-Prüfstand variiert werden, indem in einem zweiten Schritt Trendinformationen (29) aus den Messgrößen des Einzylinder-Prüfstands erzeugt werden und indem in einem dritten Schritt eine Abweichung der Messgrößen des Einzylinder-Prüfstands zu einem ersten Gauß-Prozessmodell (31) unter Einhaltung der Trendinformationen (29) minimiert wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass über das datenbasierte Modell (33) mittels Extrapolation neue Datenwerte für nicht vermessene Betriebsbereiche der Brennkraftmaschine (1) erzeugt werden.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Trendinformationen (29) im Sinne einer linearen, monotonen oder unbeschränkten Funktion abgespeichert werden.
DE102018006312.8A 2018-08-10 2018-08-10 Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine Active DE102018006312B4 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102018006312.8A DE102018006312B4 (de) 2018-08-10 2018-08-10 Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
PCT/EP2019/070558 WO2020030481A1 (de) 2018-08-10 2019-07-30 Verfahren zur modellbasierten steuerung und regelung einer brennkraftmaschine
CN201980052799.XA CN112513447A (zh) 2018-08-10 2019-07-30 用于基于模型地控制和调节内燃机的方法
EP19749301.8A EP3833860A1 (de) 2018-08-10 2019-07-30 Verfahren zur modellbasierten steuerung und regelung einer brennkraftmaschine
US17/164,915 US20210180535A1 (en) 2018-08-10 2021-02-02 Method for the model-based control and regulation of an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018006312.8A DE102018006312B4 (de) 2018-08-10 2018-08-10 Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine

Publications (2)

Publication Number Publication Date
DE102018006312A1 true DE102018006312A1 (de) 2020-02-13
DE102018006312B4 DE102018006312B4 (de) 2021-11-25

Family

ID=67539490

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018006312.8A Active DE102018006312B4 (de) 2018-08-10 2018-08-10 Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine

Country Status (5)

Country Link
US (1) US20210180535A1 (de)
EP (1) EP3833860A1 (de)
CN (1) CN112513447A (de)
DE (1) DE102018006312B4 (de)
WO (1) WO2020030481A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020000327A1 (de) 2020-01-21 2021-07-22 Mtu Friedrichshafen Gmbh Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020001323A1 (de) * 2020-02-28 2021-09-02 Mtu Friedrichshafen Gmbh Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220432A1 (de) * 2013-10-10 2015-04-16 Robert Bosch Gmbh Modellberechnungseinheit für einen integrierten Steuerbaustein zur Berechnung von LOLIMOT
DE102014225039A1 (de) * 2014-12-05 2016-06-09 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bereitstellen von spärlichen Gauß-Prozess-Modellen zur Berechnung in einem Motorsteuergerät
DE102015225279A1 (de) * 2015-12-15 2017-06-22 Mtu Friedrichshafen Gmbh Verfahren und Einrichtung zum prädiktiven Steuern und/oder Regeln einer Brennkraftmaschine sowie Brennkraftmaschine mit der Einrichtung zur Ausführung des Verfahrens

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011081345A1 (de) * 2011-08-22 2013-02-28 Robert Bosch Gmbh Verfahren zum Erstellen eines Modells
DE102012018617B3 (de) * 2012-09-14 2014-03-27 Mtu Friedrichshafen Gmbh Verfahren zur Berechnung motorischer Kenngrößen, Datenverarbeitungssystem und Computerprogrammprodukt
DE102013012568A1 (de) * 2013-07-29 2015-01-29 Man Diesel & Turbo Se Verfahren zum Betreiben einer Brennkraftmaschine
DE102014207683A1 (de) * 2014-04-24 2015-10-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erstellen eines datenbasierten Funktionsmodells
CN104344959B (zh) * 2014-09-24 2019-02-12 中国船舶重工集团公司第七一一研究所 单缸机模拟整机的试验方法及装置
DE102017110795A1 (de) * 2016-05-25 2017-11-30 FEV Europe GmbH Verfahren zur verbesserten Kalibrierung der Steuerung einer Brennkraftmaschine
DE102017005783B4 (de) 2017-06-20 2021-12-02 Mtu Friedrichshafen Gmbh Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE102017009582B3 (de) * 2017-10-16 2018-07-26 Mtu Friedrichshafen Gmbh Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE102018001727B4 (de) 2018-03-05 2021-02-11 Mtu Friedrichshafen Gmbh Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220432A1 (de) * 2013-10-10 2015-04-16 Robert Bosch Gmbh Modellberechnungseinheit für einen integrierten Steuerbaustein zur Berechnung von LOLIMOT
DE102014225039A1 (de) * 2014-12-05 2016-06-09 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bereitstellen von spärlichen Gauß-Prozess-Modellen zur Berechnung in einem Motorsteuergerät
DE102015225279A1 (de) * 2015-12-15 2017-06-22 Mtu Friedrichshafen Gmbh Verfahren und Einrichtung zum prädiktiven Steuern und/oder Regeln einer Brennkraftmaschine sowie Brennkraftmaschine mit der Einrichtung zur Ausführung des Verfahrens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020000327A1 (de) 2020-01-21 2021-07-22 Mtu Friedrichshafen Gmbh Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine

Also Published As

Publication number Publication date
DE102018006312B4 (de) 2021-11-25
CN112513447A (zh) 2021-03-16
EP3833860A1 (de) 2021-06-16
WO2020030481A1 (de) 2020-02-13
US20210180535A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
DE102018001727B4 (de) Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE102017009583B3 (de) Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE102017009582B3 (de) Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE102017005783B4 (de) Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE102005020686A1 (de) Verfahren zum Steuern einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine
DE102012207124A1 (de) Verfahren zum Betrieb einer Brennkraftmaschine, Einrichtung zur Steuerung- und/oder Regelung einer Brennkraftmaschine, Brennkraftmaschine und Verwendung der Einrichtung zum Betrieb einer Brennkraftmaschine
DE102019127482A1 (de) Steuereinrichtung
DE102006004516B3 (de) Bayes-Netz zur Steuerung und Regelung einer Brennkraftmaschine
DE102018006312B4 (de) Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE102020003174B4 (de) Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE102012206046A1 (de) Maschinenkalibrierungssystem zu kalibrieren einer gesteuerten Variable für ein Betätigungsfeld
DE102020208938A1 (de) Verfahren zum Betreiben eines zweistufigen Aufladungssystems, Steuergerät und ein Kraftfahrzeug
DE102020000327A1 (de) Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE102020001323A1 (de) Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE102009001644A1 (de) Verfahren und Vorrichtung zum Korrelieren einer Zylinderladung und eines maximalen Einlassventilhubs eines Verbrennungsmotors
DE102019005996B4 (de) Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine
DE102017130719A1 (de) Steuerungsvorrichtung und Steuerungsverfahren für einen Verbrennungsmotor
WO2017182254A1 (de) Verfahren und vorrichtung zur einstellung des massenstromes eines abgasrückführventils
DE102006009319B4 (de) Verfahren und Vorrichtung zum Betrieb einer Verbrennungskraftmaschine
DE102005048704B3 (de) Verfahren zur Optimierung einer Ventilhubumschaltung bei Ottomotoren
DE102015214363A1 (de) Verfahren zum Bearbeiten von Sensorsignalen
WO2019219384A1 (de) Verfahren zur berechnung einer frischluftmasse in einem zylinder und steuerung
DE102018120974A1 (de) Verfahren zur Ermittlung eines Sollverbrennungsgaszustands für einen Dieselmotor
DE102017112212A1 (de) Verfahren zur Steuerung einer Brennkraftmaschine und Steuereinrichtung zur Ausführung des Verfahrens
DE102017204185A1 (de) Verfahren zum Betreiben eines Abgasturboladers

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R081 Change of applicant/patentee

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, DE

R020 Patent grant now final