DE102017217805A1 - Radarfüllstandmessgerät mit Synchronisationssignal auf verschiedenen Leitungstypen - Google Patents

Radarfüllstandmessgerät mit Synchronisationssignal auf verschiedenen Leitungstypen Download PDF

Info

Publication number
DE102017217805A1
DE102017217805A1 DE102017217805.1A DE102017217805A DE102017217805A1 DE 102017217805 A1 DE102017217805 A1 DE 102017217805A1 DE 102017217805 A DE102017217805 A DE 102017217805A DE 102017217805 A1 DE102017217805 A1 DE 102017217805A1
Authority
DE
Germany
Prior art keywords
radar
level gauge
signal
frequency
radar level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102017217805.1A
Other languages
English (en)
Other versions
DE102017217805B4 (de
Inventor
Steffen Wälde
Roland Welle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vega Grieshaber KG
Original Assignee
Vega Grieshaber KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vega Grieshaber KG filed Critical Vega Grieshaber KG
Priority to DE102017217805.1A priority Critical patent/DE102017217805B4/de
Priority to CN201880004910.3A priority patent/CN110088579A/zh
Priority to PCT/EP2018/075890 priority patent/WO2019068504A1/de
Priority to US16/339,071 priority patent/US11015970B2/en
Publication of DE102017217805A1 publication Critical patent/DE102017217805A1/de
Application granted granted Critical
Publication of DE102017217805B4 publication Critical patent/DE102017217805B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • G01S13/38Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal wherein more than one modulation frequency is used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/426Scanning radar, e.g. 3D radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/225Supports; Mounting means by structural association with other equipment or articles used in level-measurement devices, e.g. for level gauge measurement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/085Coaxial-line/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation
    • H01Q3/06Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation over a restricted angle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10098Components for radio transmission, e.g. radio frequency identification [RFID] tag, printed or non-printed antennas

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Radarfüllstandmessgerät zur Erfassung der Topologie einer Füllgutoberfläche in einem Behälter mit mindestens zwei Radarchips. Einer der Radarchips erzeugt ein Lokaloszillatorsignal, das zur Synchronisation der beiden Chips über eine Hochfrequenzleitungsanordnung auf diesen übertragen wird. Die Hochfrequenzleitungsanordnung weist unterschiedliche Leitungstypen auf, die zumindest teilweise seriell zueinander angeordnet sind.

Description

  • Gebiet der Erfindung
  • Die Erfindung betrifft die Füllstandmessung und die Erfassung der Topologie einer Füllgutoberfläche in einem Behälter. Insbesondere betrifft die Erfindung ein Radarfüllstandmessgerät zur Füllstandmessung oder zur Erfassung der Topologie einer Füllgutoberfläche in einem Behälter.
  • Hintergrund
  • Zur Füllstandmessung und zur Erfassung der Topologie einer Füllgutoberfläche werden heute Radarfüllstandmessgeräte verwendet. Im Gegensatz zu vielen anderen Bereichen wurde der Durchbruch für die Radartechnik in der Füllstandmessung erst möglich, nachdem extrem kleine Reflexionssignale von der Elektronik der Messgeräte erfasst und verarbeitet werden konnten.
  • Moderne Füllstandmessgeräte und Topologiemessgeräte, die in der Lage sind, die genaue Form der Oberfläche eines Füllguts zu erfassen, zeichnen sich nicht nur durch eine hohe Sendefrequenz, die typischerweise im Gigahertzbereich, beispielsweise im Bereich von 75 GHz bis 85 GHz liegt, aus, sondern sind auch in der Lage, Amplitudenunterschiede des reflektierten Signals in einem Bereich bis zu 100 dB sicher zu verarbeiten.
  • Zur Erzeugung und Verarbeitung der hochfrequenten Sendesignale im Bereich von 79 GHz kann ein monolithisch aufgebauter integrierter Mikrowellenschaltkreis (MMIC) vorgesehen sein. Dieser Baustein kann eine Vielzahl an Sende- und Empfangskanälen aufweisen, die in dieser Anmeldung auch als Radarkanäle bezeichnet werden, so dass die Füllgutoberfläche abgescannt werden kann.
  • Je genauer die Füllgutoberfläche abgescannt werden soll, desto mehr Sende- und Empfangskanäle sind erforderlich, um eine hochqualitative Abbildung zu erzielen, was mit entsprechend hohem Hardwareaufwand und Energiebedarf einhergeht.
  • Zusammenfassung der Erfindung
  • Es ist eine Aufgabe der Erfindung, ein Radarfüllstandmessgerät zum Messen eines Füllstands eines Mediums oder der Topologie eines Mediums in einem Behälter bereitzustellen.
  • Diese Aufgabe wird durch den Gegenstand des unabhängigen Patentanspruchs gelöst. Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der folgenden Beschreibung.
  • Ein erster Aspekt der Erfindung betrifft ein Radarfüllstandmessgerät, das zur Messung eines Füllstands eines Mediums in einem Behälter und/oder zur Erfassung der Topologie einer Füllgutoberfläche in dem Behälter eingerichtet ist. Das Radarfüllstandmessgerät weist einen ersten Radarchip und mindestens einen zweiten Radarchip auf. Sowohl der erste Radarchip als auch der zweite Radarchip weisen einen oder mehrere Sendekanäle zum Abstrahlen jeweils eines Sendesignals in Richtung der Füllgutoberfläche und einen oder mehrere Empfangskanäle zum Empfangen der an der Füllgutoberfläche reflektierten Sendesignale auf. Einer oder mehrere der Sendekanäle kann auch als kombinierter Sende-Empfangskanal ausgeführt sein.
  • Die Radarchips können insbesondere integrierte Mikrowellenschaltkreise sein, welche auch als Radarsystem on Chip bezeichnet werden können. Ein solches Radarsystem on Chip (RSoC) ist ein hochintegrierter Mikrowellenschaltkreis mit Schaltungskomponenten für digitale Funktionen, welches, gemäß einer Ausführungsform, in der Lage ist, die komplette Funktionalität eines herkömmlichen Radarsystems für die Signalerzeugung, die Signalverarbeitung und die Überführung der Empfangssignale, also der reflektierten Sendesignale, in digitale Darstellung auf einem einzigen Radarchip zu integrieren.
  • Jeder der Sendekanäle kann eingerichtet sein, ein hochfrequentes Sendesignal mit einer Frequenz im Gigahertzbereich zu erzeugen, beispielsweise im Bereich von 75 GHz bis 85 GHz oder darüber.
  • Der erste Radarchip weist eine erste Synchronisationsschaltung auf, welche zur Erzeugung eines Hochfrequenzsignals eingerichtet ist, bei dem es sich im Regelfall um ein Lokaloszillatorsignal des Radarchips handelt. Bei dem Hochfrequenzsignal kann es sich beispielsweise um ein frequenzgeteiltes Signal handeln, das somit eine geringere Frequenz aufweist als das vom Radarfüllstandmessgerät abgestrahlte Sendesignal. Beispielsweise weist das Hochfrequenzsignal eine Frequenz von 40 GHz oder 20 GHz auf.
  • Der zweite Radarchip weist eine zweite Synchronisationsschaltung auf und es ist eine Hochfrequenzleitungsanordnung vorgesehen, die eingerichtet ist zur Übertragung des Hochfrequenzsignals von der ersten Synchronisationsschaltung an die zweite Synchronisationsschaltung, und welches zur Synchronisation der beiden Radarchips vorgesehen ist. Durch die Frequenzteilung des Hochfrequenzsignals kann die Leiterbahnführung vereinfacht werden, da die Verlustleistung sinkt. Es kann vorgesehen sein, dass das Hochfrequenzsignal wieder vervielfacht wird, bevor es zur Synchronisation der beiden Radarchips eingesetzt wird, beispielsweise durch einen in der zweiten Synchronisationsschaltung angeordneten Frequenzvervielfacher.
  • Die Hochfrequenzleitungsanordnung zur Übertragung des Hochfrequenzsignals weist zwei oder mehr unterschiedliche Leistungstypen auf, die zumindest teilweise seriell zueinander angeordnet sind.
  • Beispielsweise weist die Hochfrequenzleitungsanordnung eine Mikrostreifenleitung auf, sowie einen Hohlleiter, beispielsweise einen Rechteckhohlleiter oder einen Rundhohlleiter, einen Koaxialleiter, einen im Substrat integrierten Hohlleiter (Substrate Integrated Waveguide, SIW) und/oder eine Koplanarleitung. Auch können andere planare Leitungstypen vorgesehen sein.
  • Durch den Wechsel von einem Leitungstyp auf einen anderen Leitungstyp kann die Verlustleistung weiter reduziert werden, weil der zweite Leitungstyp das Hochfrequenzsignal weniger stark dämpft.
  • Die Hochfrequenzleitungsanordnung kann darüber hinaus eine Hohlleitereinkopplung zum Einkoppeln des Hochfrequenzsignals von dem ersten Leitungstyp in einen Hohlleiter (zweiter Leitungstyp) aufweisen.
  • Beispielsweise ist die Hochfrequenzleitungsanordnung mithilfe eines oder mehrerer Hochfrequenzleistungsteiler aufgesplittet, um mehrere Radarchips zu synchronisieren.
  • Es kann vorgesehen sein, dass die beiden von dem Hochfrequenzleistungsteiler ausgehenden Leitungen, die zur zweiten Synchronisationsschaltung zweier weiterer Radarchips führen, dieselbe Signallaufzeit aufweisen, welche das gesplittete Hochfrequenzsignal benötigt, die entsprechende Synchronisationsschaltung des entsprechenden Radarchips zu erreichen.
  • Des Weiteren kann ein Hochfrequenzverstärker (oder mehrere davon) vorgesehen sein, der in der Hochfrequenzleitungsanordnung angeordnet ist und eingerichtet ist zur Verstärkung des Hochfrequenzsignals.
  • Der erste Radarchip kann als sogenannter Masterchip ausgeführt sein, der ein Synchronisationssignal erzeugt, mit dessen Hilfe der oder die weiteren Radarchips, der/die als Slavechips bezeichnet werden, synchronisiert werden.
  • Gemäß einer weiteren Ausführungsform der Erfindung ist das Hochfrequenzsignal im Verhältnis zum Sendesignal ein um einen ganzzahligen Faktor geteiltes Hochfrequenzsignal.
  • Es kann vorgesehen sein, dass die Verstärkerleistung des oder der in der Hochfrequenzleitungsanordnung angeordneten Hochfrequenzverstärker in Abhängigkeit vom Füllstand eingestellt wird, und/oder beispielsweise in Abhängigkeit davon, wie viele Radarchips momentan für die Füllstandmessung verwendet werden.
  • Gemäß einer weiteren Ausführungsform der Erfindung weist der Hochfrequenzverstärker einen Nutzfrequenzbereich von 20 GHz auf, oder von 40 GHz.
  • Gemäß einer weiteren Ausführungsform der Erfindung ist auf dem ersten und/oder dem zweiten Radarchip jeweils ein Analog-Digital-Wandler integriert, eingerichtet zum Umwandeln des Empfangssignals in ein digitalisiertes Zwischenfrequenzsignal, welches auf ein oder mehrere an der Füllgutoberfläche reflektierte Sendesignale zurückzuführen ist.
  • Gemäß einer weiteren Ausführungsform der Erfindung weisen zumindest zwei der Sendekanäle jeweils eine Antenne auf, die daran angeschlossen ist.
  • Gemäß einer weiteren Ausführungsform der Erfindung ist das Radarfüllstandmessgerät als FMCW-Radarfüllstandmessgerät ausgeführt, das ein frequenzmoduliertes Dauerstrichsignal zur Messung verwendet, wobei jeder Messzyklus einen Frequenzsweep umfasst, der beispielsweise eine Startfrequenz von 75 GHz aufweist und eine Maximalfrequenz von 85 GHz.
  • Gemäß einer weiteren Ausführungsform weist die Hochfrequenzleitungsanordnung eine erste Leiterbahn auf einer Platine, eine zweite Leiterbahn auf der Platine und einen dazwischen angeordneten Hohlleiter auf.
  • Die Hochfrequenzleitungsanordnung kann darüber hinaus Vias aufweisen, welche durch die Platine geführt sind und dazu dienen, die Platinenoberseite zu wechseln, so dass Teile der Hochfrequenzleitungsanordnung auf der einen Seite der Platine angebracht sind, und andere Teile der Hochfrequenzleitungsanordnung auf der gegenüberliegenden, anderen Seite.
  • Gemäß einer weiteren Ausführungsform der Erfindung ist das Radarfüllstandmessgerät zur Erfassung der Topologie eines Mediums in einem Behälter eingerichtet.
  • Gemäß einer weiteren Ausführungsform der Erfindung basiert der erste und der zweite Radarchip jeweils auf BiCMOS-Technologie. Gemäß einer weiteren Ausführungsform der Erfindung basieren die Radarchips auf SiGe-Technologie. Gemäß einer weiteren Ausführungsform der Erfindung basieren die Radarchips auf HF-CMOS-Technologie und weisen Hochfrequenzschaltungsteile für Frequenzen von 75 GHz und darüber auf.
  • Gemäß einer weiteren Ausführungsform der Erfindung handelt es sich bei dem Hochfrequenzverstärker um einen rauscharmen Verstärker (Low Noise Amplifier, LNA) mit separater Spannungsversorgung.
  • Gemäß einer Ausführungsform der Erfindung wird der Hochfrequenzverstärker ausschließlich in seinem linearen Bereich betrieben. Gegebenenfalls können mehrere Hochfrequenzverstärker in der Hochfrequenzleitungsanordnung vorgesehen sein.
  • Im Folgenden werden mit Verweis auf die Figuren Ausführungsformen der Erfindung beschrieben. Werden in der folgenden Figurenbeschreibung dieselben Bezugszeichen verwendet, so bezeichnen diese gleiche oder ähnliche Elemente. Die Darstellungen in den Figuren sind schematisch und nicht maßstäblich.
  • Figurenliste
    • 1A zeigt ein Radarfüllstandmessgerät, das in einem Behälter installiert ist, um die Topologie der Oberfläche eines Füllguts in dem Behälter zu erfassen.
    • 1B zeigt ein weiteres Radarfüllstandmessgerät.
    • 1C zeigt ein weiteres Radarfüllstandmessgerät.
    • 2 zeigt eine Array-Antenne eines Radarfüllstandmessgeräts.
    • 3 zeigt den Aufbau eines Radarfüllstandmessgeräts mit einem Radarchip.
    • 4A zeigt den Aufbau eines weiteren Radarfüllstandmessgeräts mit zwei Radarchips.
    • 4B zeigt den Aufbau eines weiteren Radarfüllstandmessgeräts.
    • 5 zeigt den Aufbau eines weiteren Radarfüllstandmessgeräts.
    • 6 zeigt den Aufbau eines weiteren Radarfüllstandmessgeräts.
    • 7 zeigt den Aufbau eines weiteren Radarfüllstandmessgeräts.
    • 8 zeigt einen Platinenlagenaufbau.
    • 9A zeigt eine Via-Anordnung eines Radarfüllstandmessgeräts.
    • 9B zeigt die metallisierten Elemente der Via-Anordnung der 9A.
    • 10A zeigt einen Ausschnitt einer Hochfrequenzleitungsanordnung.
    • 10B zeigt einen Ausschnitt einer weiteren Hochfrequenzleitungsanordnung.
    • 10C zeigt einen Ausschnitt einer weiteren Hochfrequenzleitungsanordnung.
    • 11 zeigt eine weitere Hochfrequenzleitungsanordnung mit Hohlleiter.
    • 12 zeigt eine weitere Hochfrequenzleitungsanordnung.
    • 13A zeigt die Draufsicht auf eine weitere Hochfrequenzleitungsanordnung.
    • 13B zeigt die Unterseite einer Platine der Leitungsanordnung der 13A.
    • 14A zeigt eine weitere Hochfrequenzleitungsanordnung mit Hohlleiter und Leistungsteiler.
    • 14B zeigt eine weitere Hochfrequenzleitungsanordnung mit Hohlleiter, Leistungsteiler und Verstärker.
    • 15A zeigt eine weitere Hochfrequenzleitungsanordnung mit Leistungsteiler.
    • 15B zeigt eine weitere Hochfrequenzleitungsanordnung mit Hohlleiter, Leistungsteiler und Verstärker.
    • 15C zeigt die Unterseite der Hochfrequenzleitungsanordnungen der 15A und 15B.
  • Detaillierte Beschreibung von Ausführungsformen
  • Hochintegrierte Radarchips (RSoCs, Radar System on Chips) 301 können mehrere Sender und Empfänger aufweisen. Diese können in Bereichen wie Fahrerassistenzsystemen, Verkehrsüberwachung, Objektüberwachung in Industriebetrieben, Drohnen und vielen weiteren Bereichen eingesetzt werden. Der Vorteil von mehrkanaligen Radarchips 301 ist, dass eine Art von Strahlformung durchgeführt werden kann. Die üblichen Radargeräte für obige Anwendungen benötigen teilweise ein bis vier Radarchips 301, um den Anforderungen gerecht zu werden.
  • Auch bei der Füllstandmessung finden sich für diese RSoCs 301 Einsatzgebiete. Die Topologie einer Füllgutoberfläche 107 erfassende Füllstandmessgeräte 101 können die Oberfläche von Schüttgütern abtasten, um dadurch mehr Informationen über den tatsächlichen Füllstand und dessen Volumen zu erhalten, wie man es bei einer klassischen Füllstandmessung erhalten würde.
  • Bei der Füllstandmessung ergibt sich das Problem, dass auch in großer Distanz noch kleine Öffnungswinkel benötigt werden, was mit einer großen Antennenapertur einhergeht.
  • Eine Möglichkeit dies zu erreichen, ist es, ein Ein-Kanal-Radargerät mechanisch zu schwenken (1A), um so die Oberfläche abzutasten. Eine weitere Möglichkeit ist ein teilmechanisches System (1B). Dort wird eine Kombination aus analoger oder digitaler Strahlformung mit einem mechanischen Schwenken kombiniert. Nachteile haben diese Systeme hinsichtlich Robustheit. Mechanische Komponenten sind in rauen Prozessbedingungen oft wartungsanfällig und in der Herstellung teuer. Aus diesem Grunde kann auch eine vollelektronische Strahlformung durchgeführt werden (1C).
  • Um mit diesen Beamforming-Radarsystemen vergleichbar große Antennenaperturen zu erreichen, sollte eine große Anzahl an Sendern und Empfängern vorgesehen sein. Eine Herausforderung bei der vollelektronischen Strahlformung ist es, dass viele Antennen mit verhältnismäßig kleiner Einzelapertur verwendet werden sollten. Außerdem sollten Sender und Empfänger, die üblicherweise mit jeweils einem Antennenelement 144, 303 versehen werden, in zwei Dimensionen (x- und y-Richtung) aufgereiht werden (2).
  • Für die topologieerfassende Füllstandmesstechnik werden deshalb üblicherweise eine Vielzahl an Sendern und Empfängern benötigt, was in einer Chipanzahl größer vier resultiert.
  • Die die Topologie erfassenden Radarfüllstandmessgeräte weisen meist mehrere Sende- und Empfangsantennen auf. Derartige Systeme sind auch als MIMO-Systeme (Multiple Input Multiple Output) bekannt. Durch bestimmte Verfahren der digitalen Strahlformung kann die Richtcharakteristik der Sende- und Empfangsgruppenantenne sowohl sende- als auch empfangsseitig digital beeinflusst werden, wodurch die Abtastung einer Füllgutoberfläche realisiert werden kann. Diese Füllstandmessgeräte verwenden für jeden Sende- und Empfangskanal mehrere diskrete Hochfrequenzbauelemente, wie Mischer, Low Noise Amplifier, Koppler, Frequenzvervielfacher, spannungsgesteuerte Oszillatoren etc. sowie diskrete Analog-/Digitalwandler, Phasenregelschleifen, Spannungsregler, Filter, Verstärker und weitere Niederfrequenzbauelemente. Diese Eigenschaft machen die MIMO-Systeme oft aufwändig, groß und teuer.
  • Hochintegrierte Radarchips 301 haben viele dieser oben genannten Komponenten bereits vollständig auf einem Chip 301 integriert. Bereits integriert sind: PLL, VCO, Mischer, ADCs, Filter, Steuerungseinheiten, SPI Schnittstelle, Verstärker, Schalter, Spannungsregler. Dadurch kann viel Platz auf einer Leiterkarte gespart werden. Ein weiterer Vorteil bieten diese Chips 301 hinsichtlich der Kosten, da diese günstiger sind als ein diskreter Aufbau mit mehreren verschiedenen Einzelkomponenten. Die MIMO-Chips 301 haben beispielsweise drei Sender- und vier Empfängerstufen. Ein möglicher Sendefrequenzbereich kann beispielsweise zwischen 55 und 65 GHz oder aber auch zwischen 75 und 85GHz liegen.
  • Die Radarchips 301 können über eine digitale Schnittstelle (mit zugehörigem Bus 305) (SPI, I2C, etc.) parametriert werden. Es können verschiedene Parameter gesetzt oder ausgelesen werden um die Modulationsart, Bandbreite, Frequenzbereich, Abtastfrequenz, ZF-Filtercharakteristika (Zwischenfrequenzsignal), etc. einzustellen. Üblicherweise werden die analogen ZF-Signale, die Informationen über Abstände und Winkel von Objekten aus dem Überwachungsbereich beinhalten, ebenfalls noch auf dem Radarchip 301 für die weitere Signalverarbeitung digitalisiert.
  • Das Radarverfahren, nach dem diese Radarchips 301 üblicherweise arbeiten, ist ein spezielles frequenzmoduliertes Dauerstrichradarverfahren (FMCW-Verfahren, frequency modulated continous wave). Es wird bei einer Messung jedoch nicht nur eine Frequenzrampe moduliert, sondern mehrere hintereinander, die in einem festen Zeitbezug zueinander stehen. Eine mögliche Anzahl an Rampen pro Messung ist beispielsweise 128. Diese 128 Rampen zusammengefasst werden als Frame bezeichnet.
  • Durch geschickte Signalverarbeitungsalgorithmen lassen sich neben Abständen auch Geschwindigkeiten von mehreren Objekten bestimmen. Die Rampendauer ist im Verhältnis zum klassischen FMCW-Verfahren sehr kurz und liegt üblicherweise im Bereich zwischen 10 und 500µs pro Rampe. Da die HF-Bandbreite der Sendesignale im Bereich zwischen mehreren Hundert Megahertz und vier (oder mehr) Gigahertz liegen kann, muss das Zwischenfrequenzsignal mit hoher Abtastrate digitalisiert werden.
  • Die Kombination aus hoher HF-Bandbreite und kurzen Rampendauern resultiert in einer hohen Abtastrate bei der Analog-Digital-Wandlung.
  • Die Schnittstelle für die digitalisierten Ausgangssignale ist meist eine schnelle serielle, differentielle Digitalschnittstelle 304 wie LVDS oder CSI2. Beim Beispiel eines Radarchips 301 mit vier Empfangskanälen weist der Radarchip 301 seitens der Digitalschnittstelle vier LVDS- bzw. CSI2-Schnittstellen auf, über die das digitalisierte Zwischenfrequenzsignal übertragen wird. Zusätzlich verwenden diese Digitalschnittstellen ein zusätzliches differentielles Clock-Signal, das beim Empfänger der digitalisierten Daten zur Synchronisation der Schnittstellen benötigt wird. Je nach Schnittstelle werden noch weitere Signalleitungen benötigt um Anfang und/oder Ende der Datenpakete zu kennzeichnen.
  • Für den Fall, dass der Radarchip 301 für die gewünschte Applikation dennoch zu wenig Sende- und Empfangskanäle 307, 308 (3) liefert, bieten diese Chips 301 die Möglichkeit einer Kaskadierung. Das bedeutet, dass mehrere Chips zu einer synchronisierten Radareinheit zusammengefasst werden. Somit wird es möglich Sender gleichzeitig mit einem synchronen Signal senden zu lassen und/oder Empfänger synchron Empfangen zu lassen obwohl diese sich physikalisch auf unterschiedlichen RSoCs befinden.
  • Das wird möglich, indem neben verschiedenen Taktsynchronisationsleitungen ebenfalls ein Hochfrequenzsignal auf einer Hochfrequenzleitungsanordnung 401 ausgehend von einer Synchronisationsschaltung 402 eines ersten Chips 301a an die Synchronisationsschaltungen 403 anderer Chips 301b verteilt wird. Das Hochfrequenzsignal wird als Lokaloszillatorsignal (LO-Signal) bezeichnet und ist vom Frequenzbereich her in Bezug auf den Sendefrequenzbereich um einen ganzzahligen Faktor geteiltes Signal. Möglich sind die Teilerfaktoren zwei oder vier aber auch andere ganzzahlige Teilerfaktoren. Hat der Radarchip beispielsweise einen Sendefrequenzbereich um 80 GHz, so kann das LO-Signal einen Frequenzbereich um 20 GHz oder 40 GHz umfassen.
  • Der Chip, der das Hochfrequenzsignal bereitstellt, wird als Master 301a bezeichnet. Die Chips, die das Hochfrequenzsignal empfangen, werden als Slaves 301b bezeichnet.
  • Beispielsweise hat ein kaskadiertes Radarsystem, das vier Radarchips beinhaltet (5), die wiederum jeweils vier Empfangskanäle aufweisen, sechzehn Digitalschnittstellen über die die zugehörigen Zwischenfrequenzsignale (Messdaten) übertragen werden.
  • Die Radarchips verwenden zur Verarbeitung dieser digitalen Messdaten meist speziell angepasste Signalprozessoren, die jedoch eine stark begrenzte Anzahl von Digitalschnittstellen aufweisen. Auf dem Radarchip selbst können Einheiten zur digitalen Signalverarbeitung integriert sein, was aber für eine Kaskadierung von Radarchips und im Kontext der radarbasierten, topologiebestimmenden Füllstandmessung nur begrenzt nützlich ist oder gar nicht verwendet werden kann.
  • Deshalb wird zur Umgehung dieses Problems vorgeschlagen, anstelle dem speziell angepassten Signalprozessor einen FPGA Baustein 310 (FPGA: Field Programmable Gate Array) zu verwenden (3, 4A, 4B und 5). Diese universell einsetzbaren Bausteine können in verschiedenen Ausführungsformen bereitgestellt werden. Das FPGA empfängt die digitalisierten Werte des Zwischenfrequenzsignals und übernimmt Rechenoperationen wie Mittelung, Fensterung oder die Berechnung von FFTs (Fast Fourier Transformation).
  • Vorteilhaft an der Kombination aus Radarchips und FPGA ist eine flexible Kombination von acht oder mehr Radarchips. Durch die Kaskadierung einer solch großen Anzahl von Radarchips wird diese Technologie für die Füllstandmesstechnik interessant.
  • Wird eine weit größere Anzahl an Radarchips benötigt, ist es möglich, ebenfalls mehrere FPGAs zu verwenden und diese dann ebenfalls untereinander zu synchronisieren.
  • In vorteilhafter Weise beinhaltet das FPGA neben den programmierbaren Logikzellen ein integriertes Prozessorsystem (PS) das Steuerungsaufgaben, wie die Parametrierung der Radarchips, das Energiemanagement, die Ansteuerung eines Displays oder die Kommunikation mit einem Computer oder einer Prozessleitstelle über ein Netzwerk übernehmen kann. Ebenfalls kann das Prozessorsystem über eine Digitalleitung 306 den Start einer Messung signalisieren.
  • Weiterhin kann das Prozessorsystem Signalverarbeitungsaufgaben wie sie aus bestehenden Füllstandradarmessgeräten bekannt sind, wie Echosuche, Störechoausblendung, etc. übernehmen.
  • Je nach Art des Radarchips und des FPGAs kann es notwendig sein, eine Pegelanpassung der Digitalschnittstellen vorzunehmen. Hierfür kann ein speziell angepasstes Widerstandsnetzwerk oder ein Anpassungschip verwendet werden.
  • Da die Digitalschnittstellen über die das digitalisierte ZF-Signal übertragen wird meist pro Kanal aus einem differentiellen Adernpaar besteht, müssen je nach FPGA diskrete Leitungsabschlusswiderstände vorgesehen werden. Diese haben meist den Wert von 100 Ohm.
  • Ein weiteres Bauelement, das in vorteilhafter Weise verwendet werden kann, ist ein Verstärker (oder mehrere davon) mit integriertem Splitter für Niederfrequenzsignale, die, ausgehend vom Master, den Start einer Messung signalisieren. Der Master sendet dieses Signal aus und verteilt es an alle Slaves. Wichtig dabei ist, dass die Leitungen in etwa die gleiche Länge aufweisen, damit es keine Zeitversätze in den einzelnen Radarchips gibt.
  • Da auf diese Art und Weise eine größere Anzahl an Radarchips kaskadiert werden kann, kann es vorkommen, dass die Ausgangsstufe des LO-Signals nicht ausreichend Ausgangsleistung liefert um alle Radarchips zu treiben. Problematisch an der Verteilung des LO-Signals auf der Hochfrequenzleitung 401 ist, dass Hochfrequenzleitungen eine nicht zu vernachlässigende Streckendämpfung aufweisen. Da die Radarchips 301 auf der Platine 904 meist mehrere Zentimeter (Größenordnung: 5-10 cm) räumlich voneinander getrennt sind, müssen die Hochfrequenzleitungen 401, die das LO-Signal führen mindestens genau so lang sein. Eine typische Mikrostreifenleitung auf einem Standard-Hochfrequenz-Substrat kann eine Dämpfung von 0,5 bis 2 dB / cm aufweisen. Dies ist hauptsächlich substrat- und frequenzabhängig. Hohlleiter hingegen können so aufgebaut werden, dass sie eine weitaus geringere Streckendämpfung besitzen. Aus diesem Grund macht es Sinn, nachdem das LO-Signal auf die Platine 904 mittels einer Mikrostreifenleitung ausgekoppelt wurde, das Signal in einen Hohlleiter einzukoppeln um weniger Verluste auf der Wegstrecke zum benachbarten Chip einzufahren (schematisch dargestellt in 11).
  • Eine weitere Möglichkeit bieten sich an, indem ein oder mehrere externe Hochfrequenzverstärker 601 eingesetzt werden um die HF-Leistung des LO-Signals auf der Hochfrequenzleitung 401 zu verstärken (6 und 7). In vorteilhafter Weise haben diese Verstärker eine geringe Rauschzahl (Noise Figure), da diese direkt auf die Systemperformance Auswirkung hat. Deshalb werden hierfür rauscharme Verstärker (engl. Low Noise Amplifiers, LNAs) vorgeschlagen. Diese LNAs sind aktive Bauelemente mit separater Spannungsversorgung. In vorteilhafter Weise werden diese zwischen den Radarframes und/oder in Sendepausen abgeschaltet um Energie zu sparen und um eine zu starke Erwärmung des Geräts zu vermeiden.
  • Weiterhin muss darauf geachtet werden, dass die LNAs in ihrem linearen Bereich betrieben werden, was bedeutet, dass die Eingangsleistung des Hochfrequenzsignals nicht zu groß ist. Ist dies der Fall kann es zu Signalverzerrungen kommen. Technologiebedingt liegen typische Ausgangsleistungen von Halbleiterbauelementen bei 80 GHz zwischen 8 und 15 dBm, ohne dass es zu wesentlichen Signalverzerrungen kommt.
  • Würde ein Hochfrequenzverstärker 601 mit 20 dB Gain mit einem Hochfrequenzsignal mit einer Leistung von 15 dBm gespeist werden, ergäbe sich theoretisch eine Ausgangsleistung von 35 dBm. Da der Hochfrequenzverstärker 601 dann aber nicht mehr in seinem linearen Bereich arbeiten würde, würde es zu unerwünschten Signalverzerrungen kommen. Deshalb muss das LO-Signal zunächst in einen Leistungsbereich gebracht werden, damit der Hochfrequenzverstärker 601 in seinem linearen Bereich arbeiten kann. Es gibt die Möglichkeit die LO-Ausgangsleistung der Radarchips 301 zu parametrieren und somit zu dämpfen. Ebenfalls kann eine lange Hochfrequenzleitung die Ausgangsleistung ebenfalls dämpfen.
  • Möglicherweise können die Hochfrequenzverstärker auch erst eingesetzt werden, nachdem das LO-Signal mithilfe eines Hochfrequenzleistungsteilers geteilt und somit in der Leistung niedriger gemacht wurde. Das ist der Fall, wenn mehrere Slaves 301b zum Einsatz kommen oder wenn je nach Radarchip 301 das LO-Signal wieder in den Master 301a zurückgeführt werden muss.
  • Es können mehrere Verstärker eingesetzt werden, wie in 7 zu sehen ist. Da ein Verstärker ebenfalls eine endliche Signaldurchlaufzeit hat, werden in vorteilhafter Weise die Verstärker so platziert, dass sich auf allen Leitungen im Wesentlichen die gleiche Signallaufzeit einstellt.
  • Da es sich beim LO-Signal um ein Hochfrequenzsignal handelt, werden in vorteilhafter Weise Hohlleiter, Mikrostreifenleiter 903 und/oder SIW-Leitungen (Substrate Integrated Waveguide) 1002 (10) verwendet. Ebenfalls werden zur Aufsplittung der Leitung in vorteilhafter Weise Leistungsteiler 501 (z.B. Wilkinson-Divider) und/oder Koppler 501 (z.B. Rat-Race-Koppler oder Magic T 1401) verwendet.
  • In vorteilhafter Weise werden die Radarchips auf der einen Seite der Platine 904 platziert und die Aufsplittung und Verteilung des LO-Signals geschieht auf der anderen Seite der Platine 904, so wie in den 5 bis 7 und ebenfalls in den 13a und 13b angedeutet. Die Ursache hierfür wird im Folgenden erläutert. Die Radarchips besitzen meist neun oder zehn Signaleingänge und Signalausgänge deren Frequenzbereich im zweistelligen Gigahertzbereich liegt. Bei der Kaskadierung der Radarchips müssen neben den Leitungen zu den Sende- und Empfangsantennen noch die LO-Signale von Chip zu Chip geroutet werden. Durch diese Vielzahl an Signalleitungen sind Kreuzungen von Signalen oftmals unausweichlich.
  • Da jedoch Kreuzungen von Signalleitungen auf einer Platine 904 nicht möglich sind, werden die Signale üblicherweise mit Vias in andere innenliegende Platinenebenen (Innenlagen) 803, 807 geleitet und dort aneinander vorbeigeführt. Ein typischer Platinenlagenaufbau ist in 8 zu sehen, wobei mehrere Substrate mit einer Klebefolie 804, 806 zusammengeklebt werden. Meist sind Innenlagen von Platinen 904 jedoch Standardsubstratmaterialien 804, 805, 806 und nicht für Hochfrequenzsignale geeignet. Aus Kosten- und Stabilitätsgründen werden nämlich oftmals nur eine oder beide der äußersten Substratlagen 802, 808 einer Platine 904 aus speziellem für die Hochfrequenztechnik optimiertem Substratmaterial (Beispielsweise Rogers RO3003) aufgebaut. Hochfrequenzsubstrate sind in der Regel weich und müssen bei hohen Frequenzen sehr dünn ausgeführt werden, z.B. mit 127µm.
  • Aus diesen Gründen wird vorgeschlagen, mit speziellen Leitungsstrukturen und Via-Anordnungen das LO-Signal von der chipseitigen Platinenebene auf die Rückseite zu führen, dort zu splitten, ggf. zu verstärken und zu verteilen und wieder auf die chipseitige Platinenebene aufzutauchen. Solche speziellen Leitungsstrukturen und Via-Anordnungen sind in und zu sehen ( zeigt die Leitung und Vias ohne die Substratmaterialien und Kupferflächen). Dabei werden um das Hauptvia 901 weitere Nebenvias 902 in einem konstanten Radius platziert und bilden so eine Art koaxiale Leiterplattendurchführung. Viadurchmesser und Abstand zum Hauptvia bestimmen maßgeblich die Impedanz der Durchführung und muss auf den verwendeten Frequenzbereich von beispielsweise 40 GHz angepasst werden.
  • Eine alternative Möglichkeit, die LO-Signale ohne Kreuzung der Leitungen zu routen ist, das Signal in einen Hohlleiter oder ein Koaxialkabel einzukoppeln und die Hohlleiter bzw. Koaxialkabel so aufzubauen, dass die Leitungen aneinander vorbeiführen. Um beispielsweise in einen Hohlleiter einzukoppeln, kann ein Übergang von Mikrostreifenleitung auf Hohlleiter 1101 verwendet werden.
  • Ein ebenfalls nützlicher Leitungstyp ist der Substrate Integrated Waveguide (SIW) (10A). Dieser Leitungstyp wird in vorteilhafter Weise dann verwendet, wenn beispielsweise ein Hohlleiter (1001) direkt auf einer Leiterkarte/Platine (904) aufliegt auf der ein LO-/HF-Signal mittels Mikrostreifenleitung unter dem Hohlleiter hindurchgeroutet werden muss. Da der Hohlleiter meist aus einem Metall besteht, würde er die Mikrostreifenleitung kurzschließen, was eine Signalübertragung unmöglich macht. Hier bietet der SIW Vorteile, da dieser auf der Platinenoberseite eine reine Metallfläche aufweist und es keine Rolle spielt ob ein Hohlleiter darüber liegt (siehe 10C). Ein Übergang von Mikrostreifenleitungstechnik auf SIW ist in gezeigt.
  • Anschließend muss das Signal wieder auf die Platine (904) in eine Mikrostreifenleitung eingekoppelt werden um in den Radarchip geroutet werden zu können.
  • Auszeichnend für Radarfüllstandmessgeräte sind robuste Antennenvorrichtungen, die bei rauen Prozessbedingungen, wie hohen und niedrigen Drücken, hohen und tiefen Temperaturen, Schmutz, Staub, Feuchtigkeit, Nebel, etc. noch funktionieren. Hinzu kommt, dass die Antennen ebenfalls die Elektronik vor obigen Einflüssen schützen müssen und oft so konstruiert sind, dass sie ebenfalls sicherheitskritische Aspekte wie Explosionsschutz erfüllen.
  • So kann auch bei topologieerfassenden Radarfüllstandmessgeräten diese Eigenschaft implementiert sein. Anders als bei Radargeräten in der Automobilindustrie, bei denen solche Anforderungen nicht so hoch sind, werden in der Prozessmesstechnik häufig Hohlleiter und Hornstrahler verwendet.
  • Darüber hinaus ist es bei Systemen zur digitalen Strahlformung vorteilhaft, wenn ein oder mehrere Antennenelemente einen Abstand ≤ λ/2 aufweisen, wobei λ die Wellenlänge des Sendesignals bezeichnet. Für solche Fälle müssen spezielle Hohlleitereinkopplungen 302 verwendet werden, um das Signal von einer Leiterkarte in eine (Horn-)Antenne 303 einzukoppeln.
  • Ein weiteres Problem topologieerfassenden Radarfüllstandmessgeräten mit kaskadierten Radarchips ist es, dass die oben beschriebenen Antennen nur in bestimmten Mustern angeordnet werden dürfen. Ein vorteilhaftes Muster wäre eine T- oder L-förmige Anordnung der Antennenelemente. Um bei den Hochfrequenzsignalen große Leitungslängen zu vermeiden, wird vorgeschlagen, die Radarchips auf der Platinen-Ober- und Unterseite zu platzieren damit die Leitungslängen von Radarchip zu Hohlleitereinkopplung für alle HF-Signale etwa gleich lang ist.
  • Ein Kerngedanke der Erfindung kann darin gesehen werden, dass ein die Topologie der Füllgutoberfläche erfassendes Radarfüllstandmessgerät 101 bereitgestellt wird, welches aus mehreren integrierten Radarchips 301 besteht oder diese zumindest aufweist, wobei die Radarchips 301 mit einem Hochfrequenzsignal (Lokaloszillatorsignal), das von einem Radarchip 301a generiert und auf einer Hochfrequenzleitung 401 geführt wird, miteinander synchronisiert werden, und wobei das Lokaloszillatorsignal, neben Leitungen vom Typ Mikrostreifenleitung 903, über mindestens einen zusätzlichen Leitungstyp übertragen wird.
  • 14A zeigt eine Hochfrequenzleitungsanordnung, die das Hochfrequenzsignal von der ersten Synchronisationsschaltung 402 (vgl. 5) des ersten Radarchips zu den entsprechenden Synchronisationsschaltungen 403 der Slave-Chips leitet, so dass der Master-Chip die Slave-Chips synchronisieren kann.
  • Die platinengebundene Leitung 903 mündet in eine Hohlleitereinkopplung, so dass das Hochfrequenzsignal daran anschließend von dem Hohlleiter 1401 weitergeführt werden kann. Im Hohlleiter 1401 ist ein Hochfrequenzleistungsteiler 501 vorgesehen, der das Hochfrequenzsignal auf zwei Hohlleiter aufteilt, die dann jeweils in eine platinengebundene Hochfrequenzleitung 903 münden, die das Hochfrequenzsignal an den jeweiligen Radarchip weiterleiten.
  • Im Vergleich zur 14A ist in der Ausführungsform gemäß 14B in der ersten platinengebundenen Leitung ein Hochfrequenzverstärker 601 vorgesehen, um das Hochfrequenzsignal zu verstärken, bevor es in den Hohlleiter 1401 eingekoppelt wird.
  • 15A zeigt eine weitere Ausführungsform einer Hochfrequenzleitungsanordnung auf der Oberseite der Platine mit einem Leistungsteiler 501. Der Anfangspunkt 1501 und die Endpunkte 1502, 1503 weisen jeweils eine Via auf, wie sie in den 9A und 9B näher gezeigt ist.
  • 15B entspricht der Ausführungsform der 15A und weist darüber hinaus einen Verstärker 601 vor dem Leistungsteiler 501 auf.
  • 15C zeigt die Unterseite der Platinen der 15A und 15B, auf welcher die Radarchips 301 und die anderen Synchronisationsschaltungen angeschlossene Leitungen zu sehen sind, die in die in den 15A und B gezeigten Vias münden.
  • Ergänzend sei darauf hingewiesen, dass „umfassend“ und „aufweisend“ keine anderen Elemente oder Schritte ausschließt und die unbestimmten Artikel „eine“ oder „ein“ keine Vielzahl ausschließen. Ferner sei darauf hingewiesen, dass Merkmale oder Schritte, die mit Verweis auf eines der obigen Ausführungsbeispiele beschrieben worden sind, auch in Kombination mit anderen Merkmalen oder Schritten anderer oben beschriebener Ausführungsbeispiele verwendet werden können. Bezugszeichen in den Ansprüchen sind nicht als Einschränkungen anzusehen.

Claims (14)

  1. Radarfüllstandmessgerät (101) zur Füllstandmessung oder zur Erfassung der Topologie einer Füllgutoberfläche in einem Behälter, aufweisend: einen ersten Radarchip (301a) und einen zweiten Radarchip (301b), wobei der erste Radarchip eine erste Synchronisationsschaltung (402) aufweist, welche zur Erzeugung eines Hochfrequenzsignals eingerichtet ist; wobei der zweite Radarchip eine zweite Synchronisationsschaltung (403) aufweist; eine Hochfrequenzleitungsanordnung (401), eingerichtet zur Übertragung des Hochfrequenzsignals von der ersten Synchronisationsschaltung an die zweite Synchronisationsschaltung zur Synchronisation der beiden Radarchips; wobei die Hochfrequenzleitungsanordnung zur Übertragung des Hochfrequenzsignals zwei oder mehr unterschiedliche Leitungstypen (903, 1001, 1002) aufweist, die seriell zueinander angeordnet sind.
  2. Radarfüllstandmessgerät (101) nach Anspruch 1, wobei die Hochfrequenzleitungsanordnung (401) eine Mikrostreifenleitung (903) aufweist.
  3. Radarfüllstandmessgerät (101) nach einem der vorhergehenden Ansprüche, wobei die Hochfrequenzleitungsanordnung (401) einen Hohlleiter, insbesondere einen Rechteckhohlleiter (1001) oder einen Rundhohlleiter, einen Koaxialleiter, einen im Substrat integrieren Hohlleiter, SIW (1002), und/oder eine Koplanarleitung aufweist.
  4. Radarfüllstandmessgerät (101) nach einem der vorhergehenden Ansprüche, wobei die Hochfrequenzleitungsanordnung (401) eine Hohlleitereinkopplung (1101) zum Einkoppeln des Hochfrequenzsignals von einem ersten Leitungstyp in einen Hohlleiter (1001) aufweist.
  5. Radarfüllstandmessgerät (101) nach einem der vorhergehenden Ansprüche, wobei die Hochfrequenzleitungsanordnung (401) mithilfe eines Hochfrequenzleistungsteilers (501) gesplittet ist, um mehrere Radarchips (301b) zu synchronisieren.
  6. Radarfüllstandmessgerät (101) nach Anspruch 5, wobei die beiden von dem Hochfrequenzleistungsteiler (501) ausgehenden Leitungen dieselbe Signallaufzeit aufweisen, bis das gesplittete Hochfrequenzsignal die Synchronisationsschaltung (403) des entsprechenden Radarchips (301b) erreicht.
  7. Radarfüllstandmessgerät (101) nach einem der vorhergehenden Ansprüche, weiter aufweisend einen Hochfrequenzverstärker (601), der in der Hochfrequenzleitungsanordnung angeordnet ist und eingerichtet ist zur Verstärkung des Hochfrequenzsignals.
  8. Radarfüllstandmessgerät (101) nach Anspruch 1, wobei das Hochfrequenzsignal im Verhältnis zum Sendesignal ein um einen ganzzahligen Faktor geteiltes Hochfrequenzsignal ist.
  9. Radarfüllstandmessgerät (101) nach einem der Ansprüche 7 oder 8, wobei der Hochfrequenzverstärker (601) einen Nutzfrequenzbereich von über 30 GHz aufweist.
  10. Radarfüllstandmessgerät (101) nach einem der vorhergehenden Ansprüche, wobei auf dem ersten und dem zweiten Radarchip (301a, 301b) jeweils ein Analog / Digitalwandler integriert ist.
  11. Radarfüllstandmessgerät (101) nach einem der vorhergehenden Ansprüche, wobei die Hochfrequenzleitungsanordnung (401) eine erste Leiterbahn (903) auf einer Platine (904), eine zweite Leiterbahn (903) auf der Platine und einen dazwischen angeordneten Hohlleiter (1001) aufweist.
  12. Radarfüllstandmessgerät (101) nach einem der vorhergehenden Ansprüche, eingerichtet zur Erfassung der Topologie eines Mediums in einem Behälter.
  13. Radarfüllstandmessgerät (101) nach einem der vorhergehenden Ansprüche, wobei der erste Radarchip (301a) und der zweite Radarchip (301b) jeweils einen oder mehrere Sendekanäle (307) zum Abstrahlen jeweils eines Sendesignals und einen oder mehrere Empfangskanäle (308) zum Empfangen jeweils der an der Füllgutoberfläche reflektierten Sendesignale aufweisen.
  14. Radarfüllstandmessgerät (101) nach einem der vorhergehenden Ansprüche, wobei das Füllstandmessgerät (100) als FMCW Füllstandmessgerät ausgeführt ist.
DE102017217805.1A 2017-10-06 2017-10-06 Radarfüllstandmessgerät mit Synchronisationssignal auf verschiedenen Leitungstypen Active DE102017217805B4 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102017217805.1A DE102017217805B4 (de) 2017-10-06 2017-10-06 Radarfüllstandmessgerät mit Synchronisationssignal auf verschiedenen Leitungstypen
CN201880004910.3A CN110088579A (zh) 2017-10-06 2018-09-25 具有不同线路类型上的同步信号的雷达物位测量装置
PCT/EP2018/075890 WO2019068504A1 (de) 2017-10-06 2018-09-25 Radarfüllstandmessgerät mit synchronisationssignal auf verschiedenen leitungstypen
US16/339,071 US11015970B2 (en) 2017-10-06 2018-09-25 Radar level measurement device comprising synchronisation signals on different line types

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017217805.1A DE102017217805B4 (de) 2017-10-06 2017-10-06 Radarfüllstandmessgerät mit Synchronisationssignal auf verschiedenen Leitungstypen

Publications (2)

Publication Number Publication Date
DE102017217805A1 true DE102017217805A1 (de) 2019-04-11
DE102017217805B4 DE102017217805B4 (de) 2019-05-02

Family

ID=63683893

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017217805.1A Active DE102017217805B4 (de) 2017-10-06 2017-10-06 Radarfüllstandmessgerät mit Synchronisationssignal auf verschiedenen Leitungstypen

Country Status (4)

Country Link
US (1) US11015970B2 (de)
CN (1) CN110088579A (de)
DE (1) DE102017217805B4 (de)
WO (1) WO2019068504A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3770632A1 (de) * 2019-07-25 2021-01-27 VEGA Grieshaber KG Kombinierte radarsensoren mit einem radarensor zur füllstandsmessung und einem radasensor zur umgebungsüberwachung
EP3859373A1 (de) * 2020-01-30 2021-08-04 Aptiv Technologies Limited Skalierbares kaskadierendes radarsystem
WO2023274606A1 (de) * 2021-06-28 2023-01-05 Robert Bosch Gmbh Radarsystem für kraftfahrzeuge

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11885653B2 (en) 2021-09-24 2024-01-30 Hydro Radar, LLC Flow and level monitoring fluid system including nadir-facing and angle flow sensors with MIMO phase radar sensors
WO2023143732A1 (en) * 2022-01-28 2023-08-03 Huawei Technologies Co., Ltd. Radar signal generator arrangement, radar arrangement and radar system
GB2622655A (en) * 2022-09-22 2024-03-27 Hydro Radar Llc Flow and level monitor for fluid systems
CN115421131B (zh) * 2022-11-04 2023-01-31 北京锐达仪表有限公司 等效多位置无死角的电磁波3d扫描雷达及物料测量方法
CN116068496B (zh) * 2023-04-06 2023-06-16 上海安其威微电子科技有限公司 一种相控阵雷达电路板及阵列

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014014307A1 (de) * 2014-09-25 2016-03-31 Audi Ag Verfahren zum Betrieb einer Mehrzahl von Radarsensoren in einem Kraftfahrzeug und Kraftfahrzeug
DE102015219612A1 (de) * 2015-10-09 2017-04-13 Vega Grieshaber Kg Systemarchitektur für einen MIMO Füllstandradar

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1189217A (zh) * 1995-06-29 1998-07-29 垓技术公司 便携式超声成像系统
US6995706B2 (en) * 2004-02-13 2006-02-07 Saab Rosemount Tank Radar Ab Method and an arrangement in a radar level gauging system
DE102006019688B4 (de) * 2006-04-27 2014-10-23 Vega Grieshaber Kg Patchantenne mit Keramikscheibe als Abdeckung
DE102006030965A1 (de) * 2006-07-03 2008-01-10 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Ermittlung und/oder Überwachung des Füllstandes eines Mediums
US7733265B2 (en) * 2008-04-04 2010-06-08 Toyota Motor Engineering & Manufacturing North America, Inc. Three dimensional integrated automotive radars and methods of manufacturing the same
CN101738600B (zh) * 2008-11-14 2012-05-30 武汉大学 高频地波雷达组网的时钟同步控制装置
CN101521953B (zh) * 2009-04-03 2010-09-01 合肥工业大学 三射频无线传感器网络节点及其信道分配方法
US8633851B2 (en) * 2010-02-19 2014-01-21 Honeywell International Inc. Low power, space combined, phased array radar
CN201753876U (zh) * 2010-08-11 2011-03-02 厦门市萨珀莱照明技术有限公司 一种大功率电子节能灯路灯
CN102404754B (zh) 2011-11-22 2015-07-15 中邮科通信技术股份有限公司 采用五类线传送gsm/td-scdma信号的方法及系统
CN102724007B (zh) * 2012-06-29 2015-03-04 青岛海信移动通信技术股份有限公司 通信终端测试方法及测试装置
CN103916172B (zh) * 2012-12-29 2018-03-02 锐迪科(重庆)微电子科技有限公司 一种射频收发信机及射频收发方法
EP2775273B1 (de) * 2013-03-08 2020-11-04 VEGA Grieshaber KG Multi-System-Radar für die Füllstandmessung
JP6263906B2 (ja) 2013-08-28 2018-01-24 富士通株式会社 電子回路および制御方法
EP2881752B1 (de) * 2013-12-03 2017-05-10 Nxp B.V. Multichip-Kfz-Radarsystem, Radarchip für ein solches System, und Verfahren zum Betrieb eines solchen Systems
US9395229B2 (en) * 2014-03-05 2016-07-19 Rosemount Tank Radar Ab Low power radar level gauge system with integrated microwave circuit
DE102014223469A1 (de) * 2014-11-18 2016-05-19 Robert Bosch Gmbh Elektronische Steuereinrichtung für Radarsensoren
US9910133B2 (en) 2015-02-25 2018-03-06 Infineon Technologies Ag Systems and methods for cascading radar chips having a low leakage buffer
KR101689353B1 (ko) * 2015-04-13 2016-12-23 성균관대학교산학협력단 실리콘 밀리미터파 칩용 칩상 도파관 급전기 및 급전 방법 및, 이를 이용한 다중 입출력 밀리미터파 송수신 장치
CN204539122U (zh) 2015-05-25 2015-08-05 西安科技大学 一种基于dds的同步信号源
WO2016202394A1 (de) 2015-06-18 2016-12-22 Vega Grieshaber Kg Hohlleitereinkopplung für einen zeilenscanner
US10061015B2 (en) * 2015-09-30 2018-08-28 Texas Instruments Incorporated Multi-chip transceiver testing in a radar system
WO2017084700A1 (de) 2015-11-17 2017-05-26 Vega Grieshaber Kg Antennenvorrichtung und verfahren zum senden und/oder empfangen eines signals
CN105721094B (zh) 2016-01-29 2018-12-21 努比亚技术有限公司 双通道移动终端及双通道数据同步方法
CN106199530A (zh) 2016-06-27 2016-12-07 芜湖航飞科技股份有限公司 一种二次雷达数字化显示系统设计装置
EP3301470A3 (de) * 2016-09-29 2018-06-20 Panasonic Corporation Multiradarsystem
US10142095B2 (en) * 2016-10-26 2018-11-27 Texas Instruments Incorporated Timing for IC chip
CN106990642B (zh) * 2017-05-31 2019-07-05 上海交通大学 基于调制器多通道解复用的光模数转换装置
US11041937B2 (en) * 2017-08-14 2021-06-22 Inxpects.P.A. Multiple radars on chip-based systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014014307A1 (de) * 2014-09-25 2016-03-31 Audi Ag Verfahren zum Betrieb einer Mehrzahl von Radarsensoren in einem Kraftfahrzeug und Kraftfahrzeug
DE102015219612A1 (de) * 2015-10-09 2017-04-13 Vega Grieshaber Kg Systemarchitektur für einen MIMO Füllstandradar

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3770632A1 (de) * 2019-07-25 2021-01-27 VEGA Grieshaber KG Kombinierte radarsensoren mit einem radarensor zur füllstandsmessung und einem radasensor zur umgebungsüberwachung
US20210026001A1 (en) * 2019-07-25 2021-01-28 Vega Grieshaber Kg Radar sensor, interchangeable radar sensor arrangement, field device and container
EP3859373A1 (de) * 2020-01-30 2021-08-04 Aptiv Technologies Limited Skalierbares kaskadierendes radarsystem
US11467250B2 (en) 2020-01-30 2022-10-11 Aptiv Technologies Limited Scalable cascading radar system
WO2023274606A1 (de) * 2021-06-28 2023-01-05 Robert Bosch Gmbh Radarsystem für kraftfahrzeuge

Also Published As

Publication number Publication date
US20200386601A1 (en) 2020-12-10
WO2019068504A1 (de) 2019-04-11
DE102017217805B4 (de) 2019-05-02
CN110088579A (zh) 2019-08-02
US11015970B2 (en) 2021-05-25

Similar Documents

Publication Publication Date Title
DE102017217805B4 (de) Radarfüllstandmessgerät mit Synchronisationssignal auf verschiedenen Leitungstypen
EP3467448B1 (de) Radarfüllstandmessgerät mit radarchips auf verschiedenen ebenen einer platine
EP3467449B1 (de) Radarfüllstandmessgerät mit hochfrequenzverstärker
DE60119335T2 (de) Hochintegrierter mehrstrahliger millimeterwellensensor auf einem einzelnem träger
EP2569820B1 (de) Fahrerassistenzeinrichtung für ein fahrzeug, fahrzeug und verfahren zum betreiben eines radargeräts
EP1792203B1 (de) Monostatischer planarer mehrstrahlradarsensor
DE112006003644B4 (de) Radarvorrichtung
DE19650544B4 (de) Ebene Antennengruppe und Phasenvergleichs-Monopulsradarsystem
EP1570291B1 (de) Verfahren und anordnung f r multistatische nachdistanzradarm essungen
EP1825561B1 (de) Antennenanordnung für einen radar-transceiver
DE112009000784B4 (de) Hochfrequenzmodul und Verfahren zu seiner Herstellung und Sender, Empfänger, Sender-Empfänger und Radarvorrichtung, die das Hochfrequenzmodul umfassen
DE112009001919B4 (de) Anpassungsschaltung sowie Leiterplatte, Sender, Empfänger, Sende-Empfänger und Radarvorrichtung, die die Anpassungsschaltung umfassen
DE102019115107B3 (de) Radar-system mit mehreren radar chips
DE112008001621T5 (de) Gleichstromsperrschaltung, Hybridschaltungsvorrichtung, Sender, Empfänger, Sender-Empfänger und Radarvorrichtung
EP2820674B1 (de) Halbleitermodul mit integrierten antennenstrukturen
DE102019106030A1 (de) Radar-system mit mehreren radar-chips
EP3467446B1 (de) Radarfüllstandmessgerät mit synchronisationssignal auf verschiedenen schichten einer platine
DE102004051276A1 (de) Radarsensor zur Ermittlung des Abstands und der Relativgeschwindigkeit von Objekten
DE102004059332A1 (de) Radar-Transceiver
US9947984B2 (en) Power divider and power combiner
DE102017216906A1 (de) Wellenleitersystem, Hochfrequenzleitung und Radarsensor
EP2438459B1 (de) Radarsensor mit störsignalkompensation
DE102007021730B4 (de) HF-Sende- und Empfangseinheit für ein Radarsystem
DE102016117920B4 (de) Frequenzwandler-Schaltung für ein Radar-basiertes Messgerät
DE202018105377U1 (de) Multikanalradarsystem

Legal Events

Date Code Title Description
R082 Change of representative

Representative=s name: MAIWALD GMBH, DE

Representative=s name: MAIWALD PATENTANWALTS- UND RECHTSANWALTSGESELL, DE

R163 Identified publications notified
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final