DE102017217464A1 - Verfahren zum Beschichten temperaturempfindlicher Substrate mit polykristallinem Diamant - Google Patents

Verfahren zum Beschichten temperaturempfindlicher Substrate mit polykristallinem Diamant Download PDF

Info

Publication number
DE102017217464A1
DE102017217464A1 DE102017217464.1A DE102017217464A DE102017217464A1 DE 102017217464 A1 DE102017217464 A1 DE 102017217464A1 DE 102017217464 A DE102017217464 A DE 102017217464A DE 102017217464 A1 DE102017217464 A1 DE 102017217464A1
Authority
DE
Germany
Prior art keywords
wire
substrate
power
temperature
fed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102017217464.1A
Other languages
English (en)
Inventor
Immo Garrn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guehring KG
Original Assignee
Guehring KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guehring KG filed Critical Guehring KG
Priority to DE102017217464.1A priority Critical patent/DE102017217464A1/de
Priority to PCT/EP2018/072193 priority patent/WO2019034728A1/de
Priority to EP18755814.3A priority patent/EP3669014A1/de
Publication of DE102017217464A1 publication Critical patent/DE102017217464A1/de
Priority to US16/792,975 priority patent/US11162172B2/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Beschichten temperaturempfindlicher Substrate mit polykristallinem Diamant in einem Heißdraht-CVD-Verfahren, wobei Wasserstoff und wenigstens ein Kohlenstoffträgergas in eine Beschichtungskammer eingespeist werden, wobei sich die eingespeisten Gase an einem elektrisch beheizten Draht derart aufspalten, dass sich Kohlenstoff bildet, welcher sich auf dem temperaturempfindlichen Substrat in Form seiner Diamantmodifikation abscheidet, wobei das Substrat in der unter vermindertem Druck stehenden Beschichtungskammer angeordnet ist; und wobei eine zur elektrischen Beheizung des Drahtes erforderliche elektrische Leistung einstellbar ist, wobei
das Verfahren hinsichtlich der zur elektrischen Beheizung des Drahtes eingespeisten elektrischen Leistung zyklisch geführt wird, wobei eine Basisleistung als unterer Schwellwert für eine vorbestimmte Zeit eingespeist wird (Grundlastphase), welche für eine weitere vorbestimmte Zeit auf eine Maximalleistung als oberen Schwellwert angehoben wird (Pulsphase) und dann wieder auf die Basisleistung abgesenkt wird; und wobei das Verfahren für eine Gesamtdauer von mehreren Stunden durchgeführt wird.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Beschichten temperaturempfindlicher Substrate mit polykristallinem Diamant in einem Heißdraht-CVD-Verfahren gemäß dem Oberbegriff des Anspruchs 1.
  • CVD-Diamantabscheideverfahren sind bereits seit 1982 verfügbar [Matsumoto S, et al. (1982): „Vapor deposition of diamond particles from methane." Jpn J Appl Phys; 21 (4): L183-5].
  • Eine Übersicht über den heutigen Stand der industriell eingesetzten CVD-diamantbeschichteten Werkzeuge und insbesondere spanabhebenden Schneidwerkzeuge und deren Nutzungspotential sowie unterschiedliche CVD-Diamantbeschichtungsverfahren findet sich in der Dissertation von Fiona Sammler unter dem Titel „Steigerung der Nutzungspotentiale von CVD-diamantbeschichteten Werkzeugen“ der Fakultät V-Verkehrs- und Maschinensysteme der Technischen Universität Berlin vom 17.04.2015.
  • Die chemische Gasphasenabscheidung erlaubt es, Diamantschichten direkt auf Werkzeugsubstraten, auch auf solchen mit komplexen Geometrien, abzuscheiden. Dies ermöglicht beispielsweise im Gegensatz zum weit verbreiteten Schneidstoff aus polykristallinem Diamant (PKD) der in Form von Blanks auf einen Hartmetallträger gelötet wird, eine insgesamt höhere geometrische Flexibilität der Werkzeuge.
  • Eine relativ einfache Möglichkeit, auf einem Funktionsbereich eines Werkzeugs eine Diamantbeschichtung aufzubringen, ist das so genannte Heißdraht-CVD-Verfahren, bei welchem ein Dampfabscheideverfahren durchgeführt wird durch Reaktion von Methan und Wasserstoff in einem Vakuum an einem heißen Wolframdraht, um den im Hochvakuum erzeugten Kohlenstoff auf der Substratoberfläche in seiner kubisch kristallinen Diamantmodifikation abzuscheiden.
  • Hierbei wird typischerweise der Wolframdraht mit einer konstanten elektrischen Leistung versorgt, um den Draht während der gesamten Abscheidung des Diamantfilms auf einer konstanten Temperatur zwischen 2000°C und 3000°C zu halten.
  • Insbesondere müssen an den Heizdrähten Temperaturen >2000°C herrschen, um beim Heißdraht-CVD-Beschichten technisch und wirtschaftlich sinnvolle Diamantabscheideraten zu erreichen und um die Zersetzungsreaktionen der Reaktionsgase auszulösen. Solche konstanten Temperaturen zwischen 2000 und 3000°C führen jedoch zwangsläufig zu einer Aufheizung der gesamten Reaktionskammer, so dass Arbeitstemperaturen zwischen 800°C und 1000°C erreicht werden.
  • Für viele Substrate ist diese Temperatur zu hoch, als dass sie den Beschichtungsprozess ohne Veränderung ihrer anwendungsrelevanten Eigenschaften überstehen würden. Stahl wird beispielsweise weich geglüht und erfährt Gefügeveränderungen oder gesinterte polykristalline Diamantschneideinsätze werden graphitisiert, d.h. der kubisch kristalline Diamant wandelt sich wieder in den hexagonalen Graphit um, wodurch die erwünschte Härte und der erhöhte tribilogische Widerstand signifikant leiden können oder gar verloren gehen.
  • Ferner ist aus dem Stand der Technik der DE 198 26 259 A1 ein Plasma-CVD-Verfahren zum Beschichten eines Substrates mit Kohlenstoff, insbesondere amorphem Kohlenstoff, oder Silicium bekannt, bei welchem an das elektrisch leitende Substrat zur Steuerung des Ionenbeschusses während der Beschichtung einer unabhängig vom Beschichtungsplasma erzeugte Substratspannung angelegt wird, die während der Beschichtung verändert wird, wobei es sich bei der Substratspannung um eine bipolar gepulste Gleichspannung mit einer Frequenz von 0,1 kHz bis 10MHz handelt.
  • Die DE 198 26 259 A1 stellt sich die Aufgabe, ein für industrielle Chargengrößen einsetzbares, hoch skalierbares Verfahren sowie eine Einreichung zu seiner Durchführung anzugeben, welches es gestattet, Substrate gleichmäßig und mit hohen Raten zu beschichten und eine verschleißfeste und reibmindernde Multilagenstruktur anzugeben.
  • Gemäß DE 198 26 259 A1 wird diese Aufgabe beim Plasma-CVD-Beschichtungsverfahren durch eine Trennung der Substratspannungserzeugung von der zur Plasmaerzeugung erforderlichen Spannung gelöst, was nach der Lehre der DE 198 26 259 A1 eine gezielte Einflussnahme auf die physikalischen Eigenschaften der erzeugten Schichten erlaubt. Insbesondere wird in der DE 198 26 259 A1 beschrieben, dass die Trennung von Plasmaerzeugung und Substratspannungserzeugung auch eine Regelung der Substrattemperatur erlaubt. Beschichtungen können gemäß DE 198 26 259 A1 vielfach bei Temperaturen von 200°C und darunter erfolgen.
  • Als Substratspannung wird gemäß DE 198 26 259 A1 eine gepulste bipolare Gleichspannung eingesetzt, die hinsichtlich Größe und Dauer des Negativimpulses, Größe und Dauer des Positivimpulses sowie der spannungsfreien Zwischenintervalle bzw. Pausenzeiten änderbar ist. Nachteilig an dem Verfahren der DE 198 26 259 A1 ist jedoch der große technische Aufwand, mit welchem die Substrattemperatur durch die Trennung von Plasmaerzeugung und Substratspannungserzeugung geregelt werden kann und welche beim Heißdraht-CVD-Diamantbeschichtungsverfahren nicht eingesetzt werden kann, da die technische Funktionsweise eine völlig andere ist.
  • Darüber hinaus beschreibt die CA 2 512 731 C ein Erwärmen der Wände einer Plasma-CVD-Beschichtungskammer, bei welcher Wasserstoffatome aus dem Plasma rekombinieren und somit nicht mehr an der Reaktion teilnehmen können. Um dieses Problem zu lösen, wird ein Verfahren zur Erzeugung eines Plasmas in der Nähe eines zu beschichtenden Substrates vorgeschlagen, wobei das Substrat einem Gas ausgesetzt wird, welches wenigstens Wasserstoff und Kohlenstoff enthält, wobei ein gepulstes Mikrowellenplasma mit einer Spitzenleistungsdichte von wenigstens 1OOW/cm3 zum Einsatz kommt, wobei die zwischen 700°C und 1000°C und der Druck zwischen 1OO mbar und 350 mbar gehalten wird. Mit einem derartigen Verfahren werden hohe Diamantabscheideraten und hohe Qualitäten der Diamantfilme erzielt.
  • Darüber hinaus sind noch Laser-CVD-Beschichtungsverfahren im Stand der Technik beschrieben. Beispielsweise offenbart die WO 9426425 A1 ein gepulstes Laserverfahren zum Beschichten eines Substrates aus einem Gasgemisch aus Wasserstoff und einem Kohlenwasserstoff.
  • Somit ist es die technische Aufgabe der vorliegenden Erfindung, ein Heißdraht-CVD-Diamantbeschichtungsverfahren zur Verfügung zu stellen, bei welchem die Substrattemperatur soweit abgesenkt wird, dass einerseits noch eine ausreichende Kristallisation von CVD-Diamant auftritt und andererseits die gewünschten Anwendungseigenschaften des Substrates nicht relevant beeinflusst oder gar zerstört werden. Zum Dritten muß die Temperatur des Heißdrahtes so hoch liegen, daß ausreichend Radikale zur Schichtsynthese bereitstehen.
  • Die Lösung dieser Aufgabe erfolgt durch die kennzeichnenden Merkmale des Patentanspruchs 1.
  • Insbesondere wird die Aufgabe dadurch gelöst, dass die Leistungseinbringung und die Heizdrähte basierend auf einer Grundlage, die für sich genommen die Beschichtungskammer zu einer Temperatur, die im unteren Bereich der für die Kristallisation und Schichtanbindung notwendigen liegt, welche „Basistemperatur“ genannt wird, aufheizen würde, pulsweise nur soweit erhöht wird, dass ausreichend Radikale entstehen, um einen Beschichtungsschub zu erreichen. Dieser Leistungspuls wird maximal solange geführt, bis die für die Kristallisation und Schichtanbindung maximal zulässige Substrattemperatur erreicht wird. Auf diesen Schub folgt eine Phase, in der nur die Grundlast eingespeist wird und die Substrattemperatur wieder auf die Basistemperatur absinkt. Dann beginnt der Zyklus von neuem und endet nach der Gesamtdauer tGes des Beschichtungsverfahrens.
  • Insbesondere betrifft die vorliegende Erfindung ein Verfahren zum Beschichten von temperaturempfindlichen Substraten mit polykristallinem Diamant in einem Heißdraht-CVD-Verfahren, wobei Wasserstoff und wenigstens ein Kohlenstoffträgergas in eine Beschichtungskammer eingespeist werden, wobei sich die eingespeisten Gase an einem elektrisch beheizten Draht derart aufspalten, dass sich Kohlenstoffradikale bilden, welche sich auf dem temperaturempfindlichen Substrat in Form seiner Diamantmodifikation abscheidet, wobei das Substrat in der unter vermindertem Druck stehenden Beschichtungskammer angeordnet ist und wobei eine zur elektrischen Beheizung des Drahtes erforderliche elektrische Leistung einstellbar ist, wobei das Verfahren hinsichtlich der zur elektrischen Beheizung des Drahtes eingespeisten elektrischen Leistung zyklisch geführt wird, wobei eine Basisleistung PBas als unterer Schwellwert für eine vorbestimmte Zeit t1 eingespeist wird (Grundlastphase), welche für eine weitere vorbestimmte Zeit t2 eine Maximalleistung PMax als oberen Schwellwert angehoben wird (Pulsphase) und dann wieder auf die Basisleistung PBas abgesenkt wird; und wobei das Verfahren für eine Gesamtdauer von tGes durchgeführt wird.
  • Obwohl grundsätzlich gepulste Verfahren aus den Plasma-CVD- und Laser-CVD-Diamantbeschichtungsverfahren bekannt sind, lassen sich diese Prinzipien nicht auf das Heißdraht-CVD-Diamantbeschichtungsverfahren übertragen, da hier völlig andere physikalische Umgebungsbedingungen gegeben sind. Insbesondere ist sämtlichen anderen als den Heißdraht-CVD-Diamantbeschichtungsverfahren gemeinsam, dass wenn die lonenquelle abgeschaltet wird, man praktisch eine ON/OFF-Situation vorfindet, d. h. man hat höchstens noch „Nachfliegzeiten“ der Ionen zu berücksichtigen, die bereits in Richtung Substratoberfläche beschleunigt wurden. Diese „Nachfliegzeiten“ liegen im Nanosekunden- bis Mikrosekundenbereich. Im Gegensatz zur vorliegenden Erfindung beim Heißdraht-CVD-Verfahren war es überraschend, dass das Versorgen mit gepulster Heizleistung des heißen Drahtes tatsächlich zu sinnvollen Diamantabscheideraten bei gleichzeitiger Temperaturerniedrigung des Substrates führt.
  • Für den Fachmann war es ferner nicht vorhersehbar, dass es im Rahmen der vorliegenden Erfindung ohne Störung der Beschichtung möglich ist, durch gepulste Beheizung des heißen Filamentes eine solche Substrattemperatur herzustellen, dass dieses in seinen kristallographischen und Gefügeeigenschaften nicht verändert wird. Beispielsweise darf bei der Beschichtung von Schneideinsätzen aus polykristallinem Diamant (PKD), welcher aus nanokristallinen CVD-Diamanten mit einer Korngrößenverteilung zwischen 0,1 und 50 µm gesintert ist, die Substrattemperatur von 650°C nicht überschritten werden, da sonst eine Graphitisierung des PKD, verbunden mit einem signifikanten Festigkeitsverlust auftritt. Um diese Temperatur zu erreichen, darf die in die Heizdrahtanordnung einer kommerziellen Beschichtungsanlage eingespeiste Leistung 14 kW nicht überschreiten. Dies entspricht einer Filamenttemperatur von ca. 2000°C. Unter diesen Bedingungen ergeben sich Diamantabscheideraten von < 30 nm/h, was nicht wirtschaftliche Abscheideraten sind, da die Beschichtung zu lange dauern würde.
  • Die Unteransprüche stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar.
  • Insbesondere ist es eine bevorzugte Ausführungsform der vorliegenden Erfindung, dass die Basisleistung PBas substratabhängig während der Grundlastphase ca. 50-75% der Leistung in der Pulsphase beträgt.
  • Bei der praktischen Durchführung des vorliegenden Verfahrens hat sich eine Dauer t1 der Grundlastphase zwischen 1 µs und 120 s als vorteilhaft herausgestellt.
  • Die Dauer t2 der Pulsphase liegt bevorzugt zwischen 1 µs und 60 s, was im Dauerbetrieb zu gleichmäßigen Beschichtungen bei sinnvollen Diamantabscheideraten führt.
  • Die Gesamtdauer tGes des Verfahrens liegt im Bereich von 5 bis 100 h insbesondere zwischen 50 und 60 h.
  • Während der Pulsphase kann die Temperatur des heißen Drahtes zwischen 2000°C und 3000°C liegen, wobei ein Wolframdraht typischerweise bevorzugt ist.
  • Eine vorteilhafte Ausführungsform der vorliegenden Erfindung liegt darin, dass die Temperatur des zu beschichtenden Substrates in Abhängigkeit von diesem in der Grundlastphase zwischen 500°C und 600°C und in der Pulsphase zwischen 600°C und 650°C liegt.
  • Mit dem vorliegenden Verfahren werden Diamantabscheideraten in der Pulsphase zwischen 100 nm/h und 200 nm/h, insbesondere ca. 150 nm/h erreicht.
  • Dies reicht aus, um wirtschaftlich Diamantfilme auf komplexen Geometrien eines spanabhebenden Werkzeuges zu erzeugen.
  • Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich anhand der Beschreibung eines Ausführungsbeispiels.
  • Beispiel
  • Für eine beispielhafte Diamantbeschichtung mit dem Heißdraht-CVD-Verfahren wird im vorliegenden Beispiel ein PKD-Schneideinsatz in die Reaktionskammer einer handelsüblichen Beschichtungsanlage, z. B. einer CemeCon CC800/5 Dia-Anlage eingebracht. Der PKD-Schneideinsatz ist ein Sinterkörper aus Diamanten mit einer Korngrößenverteilung zwischen 0,1 und 50 µm. Ein derartiger Solid-PKD darf eine Substrattemperatur von 650°C nicht überschreiten, da sonst eine Rückumwandlung des kubisch kristallinen Diamanten in eine hexagonale Kristallstruktur des Kohlenstoffs stattfindet, was im Allgemeinen mit „Graphitisierung“ bezeichnet wird. Solche Graphitisierungen des PKD's sind unweigerlich mit einem Festigkeitsverlust und auch der Zerstörung der Struktur des PKDs verbunden.
  • Zur Beschichtung eines solchen Solid-PKD-Schneideinsatzes darf die Heizdrahtanordnung der verwendeten HD-CVD-Beschichtungsanlage eine eingespeiste Leistung von 14 kW nicht überschreiten. Erfindungsgemäß wird die Leistungseinbringung mit einer Basisleistung von 13,5 kW für einen Zeitraum zwischen 0,5 s bis 5 s auf 20 kW in einer Folge von Pulsphasen gesteigert, so dass für diesen kurzen Zeitraum die Filamenttemperatur des eingesetzten Wolframdrahtes auf 2500°C ansteigt. Im konstant leistungsgeführten Dauerbetrieb würde dies zu einer Diamantabscheiderate von ca. 300 nm/h führen, wobei aber auch die Substrattemperatur 900°C erreichen würde, was dann aber zu den oben beschriebenen Graphitisierungseffekten und Gitterumbauten führen würde.
  • Erfindungsgemäß wird die Einbringung der elektrischen Leistung auf das oben genannte Zeitfenster t2 verkürzt und somit steigt die Substrattemperatur nicht über 650°C an, wobei die Abscheiderate noch ca. 150 nm/h beträgt. Mit dieser Diamantabscheiderate können Diamantfilme wirtschaftlich - im Beispielsfalle innerhalb von ca. 60 h - auf temperaturempfindlichen Substraten abgeschieden werden.
  • Funktionsbereiche von spanabhebenden Werkzeugen oder Schneideinsätze, welche mit dem erfindungsgemäßen Verfahren Diamant-beschichtet wurden, zeigen große Festigkeiten und lange Standzeiten und sind somit für die industrielle Produktion von spanabhebenden Werkzeugen mit Diamantbeschichtung bestens geeignet.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 19826259 A1 [0009, 0010, 0011, 0012]
    • CA 2512731 C [0013]
    • WO 9426425 A1 [0014]
  • Zitierte Nicht-Patentliteratur
    • Matsumoto S, et al. (1982): „Vapor deposition of diamond particles from methane.“ [0002]

Claims (8)

  1. Verfahren zum Beschichten temperaturempfindlicher Substrate mit polykristallinem Diamant in einem Heißdraht-CVD-Verfahren, wobei Wasserstoff und wenigstens ein Kohlenstoffträgergas in eine Beschichtungskammer eingespeist werden, wobei sich die eingespeisten Gase an einem elektrisch beheizten Draht derart aufspalten, dass sich Kohlenstoff bildet, welcher sich auf dem temperaturempfindlichen Substrat in Form seiner Diamantmodifikation abscheidet, wobei das Substrat in der unter vermindertem Druck stehenden Beschichtungskammer angeordnet ist; und wobei eine zur elektrischen Beheizung des Drahtes erforderliche elektrische Leistung einstellbar ist, dadurch gekennzeichnet, dass das Verfahren hinsichtlich der zur elektrischen Beheizung des Drahtes eingespeisten elektrischen Leistung zyklisch geführt wird, wobei eine Basisleistung PBas als unterer Schwellwert für eine vorbestimmte Zeit t1 eingespeist wird (Grundlastphase), welche für eine weitere vorbestimmte Zeit t2 auf eine Maximalleistung PMax als oberen Schwellwert angehoben wird (Pulsphase) und dann wieder auf die Basisleistung PBas abgesenkt wird; und wobei das Verfahren für eine Gesamtdauer von tGes durchgeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Basisleistung PBas substratabhängig während der Grundlastphase ca. 50 - 75% der Leistung in der Pulsphase beträgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Dauer t1 einer Grundlastphase zwischen 1 µs und 120 s liegt.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dauer t2 einer Pulsphase zwischen 1 µs und 60 s liegt.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gesamtdauer tGes 5 bis 100 h, insbesondere 50 bis 60 h, beträgt.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Temperatur des Drahtes in der Pulsphase zwischen 2000°C und 3000°C liegt.
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Temperatur des zu beschichtenden Substrates substratabhängig in der Grundlastphase zwischen 500°C und 600°C und in der Pulsphase zwischen 600°C und 650°C liegt.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Diamantabscheiderate in der Pulsphase zwischen 100 nm/h und 200 nm/h, insbesondere bei ca. 150 nm/h, liegt.
DE102017217464.1A 2017-08-18 2017-09-29 Verfahren zum Beschichten temperaturempfindlicher Substrate mit polykristallinem Diamant Pending DE102017217464A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102017217464.1A DE102017217464A1 (de) 2017-09-29 2017-09-29 Verfahren zum Beschichten temperaturempfindlicher Substrate mit polykristallinem Diamant
PCT/EP2018/072193 WO2019034728A1 (de) 2017-08-18 2018-08-16 Verfahren zum beschichten temperaturempfindlicher substrate mit polykristallinem diamant
EP18755814.3A EP3669014A1 (de) 2017-08-18 2018-08-16 Verfahren zum beschichten temperaturempfindlicher substrate mit polykristallinem diamant
US16/792,975 US11162172B2 (en) 2017-08-18 2020-02-18 Method for coating temperature-sensitive substrates with polycrystalline diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017217464.1A DE102017217464A1 (de) 2017-09-29 2017-09-29 Verfahren zum Beschichten temperaturempfindlicher Substrate mit polykristallinem Diamant

Publications (1)

Publication Number Publication Date
DE102017217464A1 true DE102017217464A1 (de) 2019-04-04

Family

ID=65728174

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017217464.1A Pending DE102017217464A1 (de) 2017-08-18 2017-09-29 Verfahren zum Beschichten temperaturempfindlicher Substrate mit polykristallinem Diamant

Country Status (1)

Country Link
DE (1) DE102017217464A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026425A1 (en) 1993-05-17 1994-11-24 Mcdonnell Douglas Corporation Laser absorption wave deposition process
DE19826259A1 (de) 1997-06-16 1998-12-17 Bosch Gmbh Robert Verfahren und Einrichtung zum Vakuumbeschichten eines Substrates
CA2512731C (en) 2003-01-10 2012-06-12 Centre National De La Recherche Scientifique-Cnrs High-speed diamond growth using a microwave plasma in pulsed mode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026425A1 (en) 1993-05-17 1994-11-24 Mcdonnell Douglas Corporation Laser absorption wave deposition process
DE19826259A1 (de) 1997-06-16 1998-12-17 Bosch Gmbh Robert Verfahren und Einrichtung zum Vakuumbeschichten eines Substrates
CA2512731C (en) 2003-01-10 2012-06-12 Centre National De La Recherche Scientifique-Cnrs High-speed diamond growth using a microwave plasma in pulsed mode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Matsumoto S, et al. (1982): „Vapor deposition of diamond particles from methane."

Similar Documents

Publication Publication Date Title
EP2148939B1 (de) Vakuumbehandlungsanlage und vakuumbehandlungsverfahren
EP2718481B1 (de) Entschichtungsverfahren für harte kohlenstoffschichten
EP1869690B1 (de) Verfahren zum betreiben einer gepulsten arcquelle
EP1864314B1 (de) Verfahren zum betrieb einer gepulsten arcverdampferquelle sowie eine vakuumprozessanlage mit gepulster arcverdampfungsquelle
DE3117299C2 (de)
EP2486163B1 (de) Atmosphärendruckplasmaverfahren zur herstellung oberflächenmodifizierter partikel und von beschichtungen
EP0668938B1 (de) Werkzeug und verfahren zur beschichtung eines werkzeuggrundkörpers
DE3614384A1 (de) Verfahren zur beschichtung von substraten in einer vakuumkammer
DE2330545B2 (de) Verfahren und vorrichtung zum abscheiden von karbiden durch bedampfen
EP0663023B1 (de) Heteroepitaktisch abgeschiedenes diamant
DE102006023018A1 (de) Plasmaverfahren zur Oberflächenbehandlung von Werkstücken
EP0432528A2 (de) Verfahren zur Erzeugung von Schichten aus harten Kohlenstoffmodifikationen und Vorrichtung zur Durchführung des Verfahrens
EP2893053A1 (de) Verfahren zur herstellung einer metallborocarbidschicht auf einem substrat
WO2010003476A1 (de) Beschichtungsverfahren und vorrichtung mittels einer plasmagestützen chemischen reaktion
DE102017217464A1 (de) Verfahren zum Beschichten temperaturempfindlicher Substrate mit polykristallinem Diamant
DE102017214432A1 (de) Verfahren zum beschichten temperaturempfindlicher substrate mit polykristallinem diamant
WO2019034728A1 (de) Verfahren zum beschichten temperaturempfindlicher substrate mit polykristallinem diamant
DE102016116762A1 (de) Verfahren zum Abscheiden einer Schicht mittels einer Magnetronsputtereinrichtung
DE102017205417A1 (de) Verfahren zur Ausbildung einer mit poly- oder einkristallinem Diamant gebildeten Schicht
WO1999030347A1 (de) Verfahren und vorrichtung zum vergüten von oberflächen
WO2003031675A2 (de) Verfahren zur diamantbeschichtung von substraten
DE2624005C2 (de) Verfahren und Vorrichtung zum Aufbringen von dünnen Schichten auf ein Substrat nach dem &#34;Ion-plating&#34;-Verfahren.
WO2019025098A1 (de) Anordnung zur beschichtung von substratoberflächen mittels elektrischer lichtbogenentladung
DE102012107163A1 (de) Verfahren zur Beschichtung eines Substrats mittels Hochenergieimpulsmagnetronsputtern
DD141932B1 (de) Verfahren und vorrichtung zur teilchenstromionisierung und hochratebeschichtung