DE102017209386A1 - Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb - Google Patents

Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb Download PDF

Info

Publication number
DE102017209386A1
DE102017209386A1 DE102017209386.2A DE102017209386A DE102017209386A1 DE 102017209386 A1 DE102017209386 A1 DE 102017209386A1 DE 102017209386 A DE102017209386 A DE 102017209386A DE 102017209386 A1 DE102017209386 A1 DE 102017209386A1
Authority
DE
Germany
Prior art keywords
internal combustion
combustion engine
tract
intake
trim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102017209386.2A
Other languages
English (en)
Other versions
DE102017209386B4 (de
Inventor
Auf Teilnichtnennung Antrag
Tobias Braun
Matthias Delp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Priority to DE102017209386.2A priority Critical patent/DE102017209386B4/de
Priority to JP2019565371A priority patent/JP6896110B2/ja
Priority to CN201880036507.9A priority patent/CN110770427B/zh
Priority to PCT/EP2018/064237 priority patent/WO2018220045A1/de
Priority to KR1020197038999A priority patent/KR102237017B1/ko
Publication of DE102017209386A1 publication Critical patent/DE102017209386A1/de
Priority to US16/696,489 priority patent/US11359563B2/en
Application granted granted Critical
Publication of DE102017209386B4 publication Critical patent/DE102017209386B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/005Oscillating pipes with charging achieved by arrangement, dimensions or shapes of intakes pipes or chambers; Ram air pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0015Controlling intake air for engines with means for controlling swirl or tumble flow, e.g. by using swirl valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10301Flexible, resilient, pivotally or movable parts; Membranes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

In dem erfindungsgemäßen Verfahren werden dynamische Druckschwingungen im Einlasstrakt oder Auslasstrakt des betreffenden Verbrennungsmotors im Normalbetrieb gemessen und daraus ein entsprechendes Druckschwingungssignal erzeugt. Gleichzeitig wird ein Kurbelwellen-Phasenwinkelsignal ermittelt. Aus dem Druckschwingungssignal wird ein Istwert zumindest eines Charakteristikums zumindest einer ausgesuchten Signalfrequenz der gemessenen Druckschwingungen in Bezug auf das Kurbelwellen-Phasenwinkelsignal ermittelt und auf Basis des ermittelten Istwertes wird unter Heranziehung von Referenzwerten des entsprechenden Charakteristikums der jeweils gleichen Signalfrequenz für unterschiedliche Trimmungen des Einlasstraktes, die aktuelle Trimmung des Einlasstraktes ermittelt.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors aus einem im Ansaugtrakt oder im Abgastrakt gemessenen Druckschwingungssignal während des Betriebs des Verbrennungsmotors.
  • Hubkolben-Verbrennungsmotoren, die in diesem Zusammenhang und im Folgenden verkürzt auch nur als Verbrennungsmotoren bezeichnet werden, weisen ein oder mehrere Zylinder auf in denen jeweils ein Hubkolben angeordnet ist. Zur Veranschaulichung des Prinzips eines Hubkolben-Verbrennungsmotors wird im Folgenden Bezug auf 1 genommen, die beispielhaft einen Zylinder eines ggf. auch mehrzylindrigen Verbrennungsmotors mit den wichtigsten Funktionseinheiten darstellt.
  • Der jeweilige Hubkolben 6 ist linear beweglich im jeweiligen Zylinder 2 angeordnet und schließt mit dem Zylinder 2 einen Brennraum 3 ein. Der jeweilige Hubkolben 6 ist über ein sogenanntes Pleuel 7 mit einem jeweiligen Hubzapfen 8 einer Kurbelwelle 9 verbunden, wobei der Hubzapfen 8 exzentrisch zur Kurbelwellendrehachse 9a angeordnet ist. Durch die Verbrennung eines Kraftstoff-Luft-Gemisches im Brennraum 3 wird der Hubkolben 6 linear „abwärts“ angetrieben. Die translatorische Hubbewegung des Hubkolbens 6 wird mittels Pleuel 7 und Hubzapfen 8 auf die Kurbelwelle 9 übertragen und in eine Rotationsbewegung der Kurbelwelle 9 umgesetzt, die den Hubkolben 6 aufgrund ihrer Massenträgheit, nach Überwindung eines unteren Totpunktes im Zylinder 2 wieder in Gegenrichtung „aufwärts“ bis zu einem oberen Totpunkt bewegt. Um einen kontinuierlichen Betrieb des Verbrennungsmotors 1 zu ermöglichen, muss während eines sogenannten Arbeitsspiels eines Zylinders 2 zunächst der Brennraum 3 über den sogenannten Ansaugtrakt mit dem Kraftstoff-Luft-Gemisch befüllt, das Kraftstoff-Luft-Gemisch im Brennraum 3 verdichtet, dann gezündet (im Falle eines Benzin-Verbrennungsmotors mittels Zündkerze und im Falle eines Diesel-Verbrennungsmotors durch Selbstentzündung) und zum Antrieb des Hubkolbens 6 verbrannt werden und schließlich das nach der Verbrennung verbleibende Abgas aus dem Brennraum 3 in den Abgastrakt ausgeschoben werden. Durch kontinuierliche Wiederholung dieses Ablaufs ergibt sich ein kontinuierlicher Betrieb des Verbrennungsmotors 1 unter Abgabe einer zur Verbrennungsenergie proportionalen Arbeit.
  • Je nach Motorkonzept ist ein Arbeitsspiel des Zylinders 2 in zwei über eine Kurbelwellenumdrehung (360°) verteilte Takte (Zweitaktmotor) oder in vier über zwei Kurbelwellenumdrehungen (720°) verteilte Takte (Viertaktmotor) gegliedert.
  • Als Antrieb für Kraftfahrzeuge hat sich bis heute der Viertaktmotor durchgesetzt. In einem Ansaugtakt wird, bei Abwärtsbewegung des Hubkolbens 6, Kraftstoff-Luft-Gemisch 21 (bei Saugrohreinspritzung mittels Einspritzventil 5a, in 1 als Alternative gestrichelt dargestellt) oder auch nur Frischluft (bei Kraftstoff-Direkteinspritzung mittels Einspritzventil 5) aus dem Ansaugtrakt 20 in den Brennraum 3 eingebracht. Im folgenden Verdichtungstakt wird, bei Aufwärtsbewegung des Hubkolbens 6, das Kraftstoff-Luft-Gemisch oder die Frischluft im Brennraum 3 verdichtet sowie ggf. separat Kraftstoff mittels eines Einspritzventils 5 eingespritzt. Im folgenden Arbeitstakt wird das Kraftstoff-Luft-Gemisch, zum Beispiel beim Benzin-Verbrennungsmotor mittels einer Zündkerze 4, gezündet, verbrannt und bei Abwärtsbewegung des Hubkolbens 6 unter Abgabe von Arbeit entspannt. Schließlich wird in einem Ausschiebetakt, bei erneuter Aufwärtsbewegung des Hubkolbens 6, das verbleibende Abgas 31 aus dem Brennraum 3 in den Abgastrakt 30 ausgeschoben.
  • Die Abgrenzung des Brennraumes 3 zum Ansaugtrakt 20 oder Abgastrakt 30 des Verbrennungsmotors 1 erfolgt in der Regel und insbesondere bei dem hier zugrungegelegten Beispiel über Einlassventile 22 und Auslassventile 32. Die Ansteuerung dieser Ventile erfolgt nach heutigem Stand der Technik über mindestens eine Nockenwelle. Das gezeigte Beispiel verfügt über eine Einlassnockenwelle 23 zur Betätigung der Einlassventile 22 und über eine Auslassnockenwelle 33 zur Betätigung der Auslassventile 32. Zwischen den Ventilen und der jeweiligen Nockenwelle sind zumeist noch weitere, hier nicht dargestellte, mechanische Bauteile zur Kraftübertragung vorhanden, die auch einen Ventilspielausgleich beinhalten können (z.B. Tassenstößel, Kipphebel, Schlepphebel, Stößelstange, Hydrostößel etc.).
  • Der Antrieb der Einlassnockenwelle 23 und der Auslassnockenwelle 33 erfolgt über den Verbrennungsmotor 1 selbst. Hierzu werden die Einlassnockenwelle 23 und die Auslassnockenwelle 33 jeweils über geeignete Einlassnockenwellen-Steueradapter 24 und Auslassnockenwellen-Steueradapter 34, wie zum Beispiel Zahnräder, Kettenräder oder Riemenräder mithilfe eines Steuergetriebes 40, das zum Beispiel ein Zahnradgetriebe, eine Steuerkette oder einen Steuerzahnriemen aufweist, in vorgegebener Lage zueinander und zur Kurbelwelle 9 über einen entsprechenden Kurbelwellen-Steueradapter 10, der entsprechend als Zahnrad, Kettenrad oder Riemenrad ausgebildet ist, mit der Kurbelwelle 9 gekoppelt. Durch diese Verbindung ist die Drehlage der Einlassnockenwelle 23 und der Auslassnockenwelle 33 in Relation zur Drehlage der Kurbelwelle 9 prinzipiell definiert. In 1 ist beispielhaft die Kopplung zwischen Einlassnockenwelle 23 und der Auslassnockenwelle 33 und der Kurbelwelle 9 mittels Riemenscheiben und Steuerzahnriemen dargestellt.
  • Der über ein Arbeitsspiel zurückgelegte Drehwinkel der Kurbelwelle wird im Weiteren als Arbeitsphase oder einfach nur Phase bezeichnet. Ein innerhalb einer Arbeitsphase zurückgelegter Drehwinkel der Kurbelwelle wird dem entsprechend als Phasenwinkel bezeichnet. Der jeweils aktuelle Kurbelwellen-Phasenwinkel der Kurbelwelle 9 kann mittels eines mit der Kurbelwelle 9 oder dem Kurbelwellen-Steueradapter 10 verbundenen Lagegebers 43 und einem zugeordneten Kurbelwellen-Lagesensor 41 laufend erfasst werden. Dabei kann der Lagegeber 43 zum Beispiel als Zähnerad mit einer Mehrzahl von äquidistant über den Umfang verteilt angeordneten Zähnen ausgeführt sein, wobei die Anzahl der einzelnen Zähne die Auflösung des Kurbelwellen-Phasenwinkelsignals bestimmt.
  • Ebenso können ggf. zusätzlich die aktuellen Phasenwinkel der Einlassnockenwelle 23 und der Auslassnockenwelle 33 mittels entsprechender Lagegeber 43 und zugeordneter Nockenwellenlagesensoren 42 laufend erfasst werden.
  • Da sich der jeweilige Hubzapfen 8 und mit ihm der Hubkolben 6, die Einlassnockenwelle 23 und mit ihr das jeweilige Einlassventil 22 sowie die Auslassnockenwelle 33 und mit ihr das jeweilige Auslassventil 32 durch die vorgegebene mechanische Kopplung in vorgegebener Relation zueinander und in Abhängigkeit von der Kurbelwellendrehung bewegen, durchlaufen diese Funktionskomponenten synchron zur Kurbelwelle die jeweilige Arbeitsphase. Die jeweiligen Drehlagen und Hubpositionen von Hubkolben 6, Einlassventilen 22 und Auslassventilen 32 können so, unter Berücksichtigung der jeweiligen Übersetzungsverhältnisse, auf den durch den Kurbelwellen-Lagesensor 41 vorgegebenen Kurbelwellen-Phasenwinkel der Kurbelwelle 9 bezogen werden. Bei einem idealen Verbrennungsmotor ist somit jedem bestimmten Kurbelwellen-Phasenwinkel ein bestimmter Hubzapfenwinkel, ein bestimmter Kolbenhub, ein bestimmter Einlassnockenwellenwinkel und somit ein bestimmter Einlassventilhub sowie ein bestimmter Auslassnockenwellenwinkel und somit ein bestimmter Auslassnockenwellenhub zuordenbar. Das heißt alle genannten Komponenten befinden sich bzw. bewegen sich in Phase mit der sich drehenden Kurbelwelle 9.
  • Symbolisch ist auch eine elektronische, programmierbare Motor-Steuerungseinheit 50 (CPU) zur Steuerung der Motorfunktionen dargestellt, das mit Signal-Eingängen 51 zur Entgegennahme der vielfältigen Sensorsignale und mit Signal- und Leistungs-Ausgängen 52 zur Ansteuerung entsprechender Stelleinheiten und Aktuatoren sowie mit einer elektronischen Recheneinheit 53 und einer zugeordneten elektronischen Speichereinheit 54 ausgestattet ist.
  • Durch den sogenannten Ladungswechsel des Verbrennungsmotors, also das Ansaugen von Frischluft 21 bzw. Kraftstoff-Luftgemisch aus dem auch als Ansaugtrakt bezeichneten Einlasstrakt 20 in den Brennraum 3 und das nach der Verbrennung stattfindende Ausschieben der Abgases 31 in den auch als Abgastrakt bezeichneten Auslasstrakt 30, der in Abhängigkeit von der Hubbewegung des Hubkolbens 6 und dem Öffnen und Schließen der Einlassventile 22 und der Auslassventile 32 erfolgt, werden Druckschwingungen in der Ansaugluft bzw. dem Luft-Kraftstoffgemisch im Einlasstrakt und des Abgases im Auslasstrakt erzeugt, die ebenfalls in Phase mit der Drehung der Kurbelwelle 9 verlaufen und somit in Bezug zum Kurbelwellen-Phasenwinkel gesetzt werden können.
  • Zur Optimierung des Betriebes eines Verbrennungsmotors gehört es längst zum Stand der Technik im Betrieb ständig bestimmte Ist-Betriebsparameter sensorisch zu erfassen und bei Abweichungen vom Sollbetrieb mittels des elektronischen Motorsteuergerätes die Einfluss nehmenden Steuerparameter anzupassen bzw. zu korrigieren. Im Fokus standen hierbei bisher Kraftstoffeinspritzmengen, Einspritz- sowie Zündzeitpunkte, Ventilsteuerzeiten, Ladedruck, zugeführte Luftmasse, Abgaszusammensetzung (Lambda-Werte), Abgastemperatur, etc..
  • Weltweit immer strenger werdende gesetzliche Anforderungen an Abgaszusammensetzung und Abgasmenge von Verbrennungsmotoren haben in jüngster Vergangenheit zu einer Entwicklungstendenz des sogenannten „Downsizing“ geführt, wobei die Hubräume verkleinert werden und die Leistung mittels alternativer Maßnahmen zur besseren Befüllung der Brennräume mit Luft-Kraftstoff-Gemisch und daraus resultierender erhöhter Verbrennungsenergie gesteigert wird. Dies kann zum Beispiel durch Turboaufladung oder elektrische Kompressoraufladung erzielt werden.
  • Eine weitere Möglichkeit, einen ähnlichen Effekt zu erzielen, besteht in der optimierten Auslegung des Einlasstraktes oder der Verwendung eines sogenannten variablen Einlasstraktes. Die Auslebung kann sogenannte Resonatoren betreffen, die Resonanzschwingungen in bestimmten Drehzahlbereichen erzeugen, die Variabilität des Einlasstraktes kann unterschiedliche konstruktive Maßnahmen beinhalten, wie zum Beispiel ein Schaltsaugrohr oder variables Saugrohr oder auch sogenannte Drallklappen im Einlasstrakt des Verbrennungsmotors.
  • Der Effekt eines Resonators sowie eines Schaltsaugrohrs bzw. variablen Saugrohrs basiert auf dem Prinzip der oben bereits erwähnten, durch den Ladungswechsel induzierten Gasschwingungen der Luftsäule im Einlasstrakt. So entsteht beispielsweise im Ansaugtakt eine Unterdruckwelle, die am Ende des Saugrohrs reflektiert wird und als Überdruckwelle wieder zurückläuft. Dadurch kann ein Zurückfluten der schon im Brennraum angesaugten Luft bzw. des Luft-Kraftstoff-Gemisches in den Einlasstrakt verhindert werden oder gar durch die zurücklaufende Überdruckwelle ein Aufladungseffekt erzielt werden, sofern die zurücklaufende Überdruckwelle auf ein geöffnetes Einlassventil trifft. Man spricht in diesem Zusammenhang von einem Resonanzeffekt, bei dem zwischen den Steuerzeiten der Einlassventile den Ansaugtakten und den Gasschwingungen ein bestimmter Rhythmus entsteht, welcher zu einer verbesserten Zylinderfüllung und so zu höherer Leistung führt. Dieser Effekt lässt sich durch die Anordnung entsprechend ausgelegter Resonatoren im Einlasstrakt erzielen.
  • Da diese Schwingungsvorgänge der Luftsäule immer in Schallgeschwindigkeit ablaufen, die Öffnungszeiten der Einlassventile jedoch von der aktuellen Drehzahl des Verbrennungsmotors, also der Drehzahl der Kurbelwelle, abhängen, tritt dieser Effekt nur im Bereich bestimmter Drehzahlen auf, weshalb eine Auslegung der Resonatoren oder Saugrohrlängen angestrebt wird, die eine erhöhte Leistung, insbesondere ein höheres Drehmoment, bei bestimmten mittleren Drehzahlen erbringt.
  • Um den Effekt bei unterschiedlichen Drehzahlen des Verbrennungsmotors oder über ein breiteres Drehzahlband nutzen zu können, kann zum Beispiel die Länge des Saugrohrs in Abhängigkeit von der Drehzahl verändert werden. Aus dem Stand der Technik bekannt sind hier sogenannte Schaltsaugrohre, bei denen zwischen zwei oder auch mehreren Saugrohrlängen umgeschaltet werden kann. Aber auch Saugrohre mit stufenlos variierbarer Saugrohrlänge sind bekannt. Eine solche Anordnung ist in den 2a und 2b vereinfacht schematisch dargestellt. Die 2a und 2b zeigen jeweils denselben Verbrennungsmotor gemäß 1 der im Bereich des Einlasstraktes 20 um ein variabel verstellbares Saugrohr 60 und einen Luftfilter 62 ergänzt ist. Die Saugrohrverstellung 61 ist dabei mittels eines Pfeiles symbolisiert. 2a zeigt eine Einstellung des Saugrohres mit verkürzter Saugrohrlänge, zum Beispiel für hohe Drehzahlen des Verbrennungsmotors. 2b zeigt die gleiche Anordnung wie 2a jedoch mit einer Einstellung des Saugrohres mit maximaler Saugrohrlänge, zum Beispiel für niedrige Drehzahlen. Die Länge des Saugrohres kann hierbei durch axiales Verschieben des Saugrohrbogens mittels einer Stelleinrichtung (hier nicht dargestellt) verändert und so an den jeweiligen Betriebspunkt, zum Beispiel in Abhängigkeit von der Drehzahl, des Verbrennungsmotors angepasst werden.
  • Weitere Möglichkeiten der Einflussnahme auf das Füllungsverhalten der Brennräume und auf die Gemischaufbereitung bestehen in der Anordnung von sogenannten Drallklappen, die insbesondere bei Verbrennungsmotoren mit zwei Einlassventilen pro Zylinder zum Einsatz kommen, um bei geschlossenen Drallklappen eine bessere Verwirbelung, also Durchmischung des Luft-Kraftstoff-gemisches bei niedrigen Drehzahlen zu gewährleisten und bei geöffneten Drallklappen eine bessere Füllung der Brennräume zu gewährleisten. Durch die Betätigung der Drallklappen verändert sich der freie Ansaugquerschnitt des Saugrohrs.
  • Die oben genannten Maßnahmen im Einlasstrakt, insbesondere die Anordnung und Auslegung von Resonatoren, von variablen Saugrohrlängen und der mittels Drallklappen variablen Saugrohrquerschnitte werden im Folgenden unter dem Begriff der „Trimmung des Einlasstraktes“ zusammengefasst betrachtet.
  • Wie bereits für die vorgenannten Betriebsparameter des Verbrennungsmotors beschrieben, ist es auch hier essentiell, dass der tatsächliche Ist-Wert der eingestellten Trimmung des Einlasstraktes mit dem vorgegebenen Sollwert abgeglichen wird und gegebenenfalls korrigierend eingegriffen werden kann. Dazu muss die aktuelle Trimmung des Einlasstraktes zuverlässig erfasst werden. Dies kann zum Beispiel bei variabler Trimmung bisher nur indirekt über die Erfassung des Stellwegs eines Aktuators erfolgen. Dabei bleiben Unsicherheiten, da ggf. vorhandene Toleranzen oder Abweichungen im Stellsystem nicht erfasst werden.
  • Aber auch bei Verbrennungsmotoren mit an sich konstanten Trimmung des Einlasstraktes, ist eine Bestimmung der aktuellen Trimmung des Einlasstraktes im laufenden Betrieb wünschenswert zum Beispiel zur frühzeitigen Erkennung von Verschleißerscheinungen oder zur sogenannten On Bord Diagnose (OBD) sowie zur Plausibilisierung weiterer Betriebsparameter oder zur Erkennung von mechanischen Fremd-Eingriffen in die Mechanik des Verbrennungsmotors, zum Beispiel wenn im Rahmen von Tuning-Maßnahmen der Einlasstrakt verändert wird.
  • Die Aufgabe besteht deshalb darin, möglichst ohne zusätzliche Sensoranordnung und vorrichtungstechnischen Aufwand, eine möglichst exakte Bestimmung der aktuellen Trimmung des Einlasstraktes im aktuell laufenden Betrieb zu ermöglichen, um entsprechende Anpassungen der Betriebsparameter zur Korrektur der Trimmung des Einlasstraktes oder auch zur Optimierung des laufenden Betriebs vornehmen zu können.
  • Diese Aufgabe wird gelöst durch eine Ausführung des erfindungsgemäßen Verfahrens zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb gemäß Hauptanspruch. Fortbildungen und Ausführungsvarianten des erfindungsgemäßen Verfahrens sind Gegenstand der abhängigen Ansprüche.
  • Der im Folgenden angegebenen Lösung der Aufgabe liegt die Erkenntnis zugrunde, dass zwischen der Trimmung des Einlasstraktes und den Druckschwingungen im Einlasstrakt ein eindeutiger Zusammenhang besteht. Aber auch die Druckschwingungen im Auslasstrakt stehen in eindeutigem Zusammenhang mit der Trimmung des Einlasstraktes, zum Beispiel über das veränderte Ladungswechselverhalten und ggf. vorhandene zeitliche Überschneidungen der Öffnungszeiten der Einlassventile und Auslassventile. So können zur Lösung der Aufgabe sowohl die Druckschwingungen im Einlasstrakt als auch die Druckschwingungen im Auslasstrakt herangezogen werden.
  • Gemäß einer Ausführung des erfindungsgemäßen Verfahrens werden die einem Zylinder des Verbrennungsmotors zuordenbaren dynamische Druckschwingungen im Einlasstrakt oder im Auslasstrakt des betreffenden Verbrennungsmotors, an einem definierten Betriebspunkt, im Normalbetrieb gemessen und daraus ein entsprechendes Druckschwingungssignal erzeugt. Gleichzeitig, das heißt in zeitlichem Zusammenhang, wird, sozusagen als Referenz- oder Bezugs-Signal für das Druckschwingungssignal, ein Kurbelwellen-Phasenwinkelsignal des Verbrennungsmotors ermittelt.
  • Ein möglicher Betriebspunkt wäre zum Beispiel der Leerlaufbetrieb bei vorgegebener Drehzahl. Dabei ist in vorteilhafter Weise darauf zu Achten, dass andere Einflüsse auf das Druckschwingungssignal möglichst ausgeschlossen oder zumindest minimiert werden. Der Normalbetrieb kennzeichnet den bestimmungsmäßigen Betrieb des Verbrennungsmotors, beispielsweise in einem Kraftfahrzeug, wobei der Verbrennungsmotor ein Exemplar einer Serie von baugleichen Verbrennungsmotoren ist. Weitere gebräuchliche Bezeichnungen für einen Solchen Verbrennungsmotor wären Serien-Verbrennungsmotor oder Feld-Verbrennungsmotor.
  • Bei den gemessenen Druckschwingungen im Einlasstrakt oder im Auslasstrakt handelt es sich um Druckschwingungen in der Ansaugluft bzw. dem angesaugten Luft-Kraftstoffgemisch im Einlasstrakt bzw. um Druckschwingungen im Abgas im Auslasstrakt.
  • Aus dem Druckschwingungssignal wird nun mit Hilfe Diskreter-Fourier-Transformation zumindest ein Istwert zumindest eines Charakteristikums zumindest einer ausgesuchten Signalfrequenz der gemessenen Druckschwingungen in Bezug auf das Kurbelwellen-Phasenwinkelsignal ermittelt.
  • In weiterer Folge des Verfahrens wird dann auf Basis des zumindest einen ermittelten Istwertes des jeweiligen Charakteristikums unter Heranziehung von Referenzwerten des jeweils entsprechenden Charakteristikums der jeweils gleichen Signalfrequenz für unterschiedliche Trimmungen des Einlasstraktes, die aktuelle Trimmung des Einlasstraktes des Verbrennungsmotors ermittelt.
  • Zur Analyse des im Einlasstrakt oder im Auslasstrakt des Verbrennungsmotors aufgenommenen Druckschwingungssignals, wird dieses einer Diskreten Fourier-Transformation (DFT) unterzogen. Dazu kann ein als Fast Fourier-Transformation (FFT) bekannter Algorithmus zur effizienten Berechnung der DFT herangezogen werden. Mittels DFT wird nun das Druckschwingungssignal in einzelne Signalfrequenzen zerlegt, die im Weiteren separat vereinfacht bezüglich ihrer Amplitude und der Phasenlage analysiert werden können. Im vorliegenden Fall hat sich gezeigt, dass sowohl die Phasenlage als auch die Amplitude ausgesuchter Signalfrequenzen des Druckschwingungssignals in Abhängigkeit stehen zur Trimmung des Einlasstraktes des jeweiligen Verbrennungsmotors. Vorteilhaft werden dazu nur diejenigen Signalfrequenzen herangezogen, die der Ansaugfrequenz, als Grundfrequenz oder der sogenannten 1. Harmonischen, des Verbrennungsmotors oder einem Vielfachen der Ansaugfrequenz, also der 2. bis n. Harmonischen, entsprechen, wobei die Ansaugfrequenz wiederum in eindeutigem Zusammenhang mit der Drehzahl und somit also mit dem Verbrennungszyklus oder Phasenzyklus des Verbrennungsmotors steht. Für zumindest eine ausgesuchte Signalfrequenz wird dann, unter Heranziehung des parallel erfassten Kurbelwellen-Phasenwinkelsignals, zumindest ein Istwert der Phasenlage, der Amplitude oder für beide als Charakteristikum dieser ausgesuchten Signalfrequenzen in Bezug auf den Kurbelwellen-Phasenwinkel ermittelt.
  • Um nun aus dem so ermittelten Istwert des Charakteristikums der ausgesuchten Signalfrequenz des Druckschwingungssignals die aktuelle Trimmung des Einlasstraktes zu ermitteln wird der Wert des ermittelten Charakteristikums mit sogenannten Referenzwerten des jeweils entsprechenden Charakteristikums der jeweils gleichen Signalfrequenz für unterschiedliche Trimmungen des Einlasstraktes des Verbrennungsmotors verglichen. Diesen Referenzwerten des jeweiligen Charakteristikums sind die entsprechenden Trimmungen des Einlasstraktes eindeutig zugeordnet. So kann über den mit dem ermittelten Istwert übereinstimmenden Referenzwert auf die zugeordnete Trimmung des Einlasstraktes geschlossen werden.
  • Die Vorteile des erfindungsgemäßen Verfahrens liegen darin, dass alleine auf Basis eines jeweiligen Drucksignals, das mittels ohnehin im System vorhandener Sensoren ermittelt und mittels einer ohnehin vorhandenen elektronischen Recheneinheit für die Motorsteuerung analysiert bzw. verarbeitet werden kann und somit ohne zusätzlichen vorrichtungstechnischen Aufwand die aktuelle Trimmung des Einlasstraktes des Verbrennungsmotors ermittelt werden kann. Im Bedarfsfall können dann auf dieser Grundlage die Steuerungsparameter des Verbrennungsmotors, und insbesondere die Trimmungseinstellung des Einlasstraktes, korrigierend so verändert werden, dass ein Sollwert erreicht wird oder ein optimaler Betrieb im jeweiligen Betriebspunkt gewährleistet ist.
  • Zur Erläuterung der Funktionsweise eines der Erfindung zugrundeliegenden Verbrennungsmotors sowie der Zusammenhänge zwischen der Trimmung des Einlasstraktes und den Charakteristika, Phasenlage sowie Amplitude, des im Einlasstrakt bzw. Auslasstrakt gemessenen Druckschwingungssignals bei bestimmten ausgesuchten Signalfrequenzen, sowie zur Beschreibung besonders vorteilhafter Ausführungsbeispiele, Einzelheiten oder Fortbildungen des Erfindungsgegenstandes, gemäß der Unteransprüche, wird im Folgenden auf die Figuren Bezug genommen, obgleich der Gegenstand der Erfindung nicht auf diese Beispiele begrenzt sein soll. Es zeigen:
    • 1 eine vereinfachte Darstellung eines hier verkürzt als Verbrennungsmotor bezeichneten Hubkolben-Verbrennungsmotor mit den wichtigsten Funktionskomponenten;
    • 2a und 2b zwei weiter vereinfachte Darstellungen des Verbrennungsmotors gemäß 1, zur Erläuterung der Trimmung des Einlasstraktes anhand der Saugrohrlänge, wobei in 2a die Saugrohrlänge in verkürzter Einstellung und in 2b die Saugrohrlänge in maximaler Einstellung dargestellt ist;
    • 3 ein Diagramm zur Darstellung eines Beispiels der Abhängigkeit zwischen der Phasenlage des Druckschwingungssignals und der Saugrohrlänge bei verschiedenen Signalfrequenzen;
    • 4 ein Diagramm zur Darstellung eines Beispiels der Abhängigkeit zwischen der Amplitude des Druckschwingungssignals und der Saugrohrlänge bei verschiedenen Signalfrequenzen;
    • 5 ein Diagramm zur Darstellung von Referenz-Phasenlagen einer Signalfrequenz in Abhängigkeit von der Trimmung des Einlasstraktes und die Ermittlung eines konkreten Wertes der Trimmung des Einlasstraktes ausgehend von einem aktuell ermittelten Wert der Phasenlage eines Druckschwingungssignals;
    • 6 ein Blockdiagramm zur schematischen Darstellung einer Ausführung des erfindungsgemäßen Verfahrens.
  • Funktions- und Benennungsgleiche Gegenstände sind in den Figuren durchgehend mit gleichen Bezugszeichen gekennzeichnet.
  • Auf die 1 und 2 wurde bereits bei der vorausgehenden Beschreibung des Funktionsprinzips eines Verbrennungsmotors und zur Erläuterung der Trimmung des Einlasstraktes ausführlich eingegangen.
  • Bei der Durchführung des erfindungsgemäßen Verfahrens wird, wie oben bereits erwähnt, vorausgesetzt, dass der Zusammenhang bzw. die Abhängigkeit der genannten Größen voneinander eindeutig bekannt ist. Die Zusammenhänge werden im Weiteren für das im Einlasstrakt gemessene Druckschwingungssignal erläutert, gelten jedoch in ähnlicher Weise auch für das Druckschwingungssignal im Auslasstrakt.
  • 3 zeigt diesen Zusammenhang beispielhaft anhand des Charakteristikums Phasenlage des Druckschwingungssignals im Einlasstrakt in Abhängigkeit von der Trimmung des Einlasstraktes, hier Beispielhaft anhand einer variablen Saugrohrlänge in %, bei verschiedenen Signalfrequenzen. Es zeigt sich dabei, dass sich bei unterschiedlichen Signalfrequenzen durchaus unterschiedliche Verläufe der Werte der Phasenlage mit ansteigender Saugrohrlänge ergeben. Durch Interpolation zwischen den einzelnen Messpunkten ergibt sich jeweils eine stetig verlaufende Kurve, wobei die Kurve 101 bei Ansaugfrequenz einen ansteigenden Verlauf bei zunehmender Saugrohrlänge aufweist, Kurve 102 bei der doppelten Ansaugfrequenz einen zunächst abfallenden dann nahezu gleichbleibenden Verlauf aufweist und Kurve 103 bei der dreifachen Ansaugfrequenz einen abfallenden Verlauf bei zunehmender Saugrohrlänge aufweist. Dabei schneiden sich die genannten Kurven 101, 102 und 103 etwa im Bereich von 45% der Saugrohrlänge.
  • 4 zeigt den Zusammenhang anhand des Charakteristikums Amplitude des Druckschwingungssignals im Einlasstrakt ebenfalls beispielhaft in Abhängigkeit von der variablen Saugrohrlänge in % als Parameter der Trimmung des Einlasstraktes, bei wiederum verschiedenen Signalfrequenzen. Durch Interpolation zwischen den einzelnen Messpunkten ergibt sich auch hier jeweils eine stetig verlaufende Kurve, wobei die Kurve 201 bei Ansaugfrequenz einen ansteigenden Verlauf bei zunehmender Saugrohrlänge aufweist, Kurve 202 bei der doppelten Ansaugfrequenz einen gegenüber Kurve 201 abgeschwächt ansteigenden Verlauf aufweist und Kurve 203 bei der dreifachen Ansaugfrequenz einen nahezu gleichbleibenden Verlauf bei zunehmender Saugrohrlänge aufweist.
  • Bei beiden Charakteristika, Phasenlage und Amplitude zeigt sich für dieses Beispiel, dass die Genauigkeit und Aussagekraft des erfindungsgemäßen Verfahrens ggf. von der Auswahl einer vorteilhaften Signalfrequenz zur Ermittlung der Trimmung des Einlasstraktes abhängt.
  • In einer Ausgestaltung des erfindungsgemäßen Verfahrens sind die Referenz-Werte des jeweiligen Charakteristikums in Abhängigkeit von der Trimmung des Einlasstraktes in zumindest einem jeweiligen Referenzwert-Kennfeld bereitgestellt. In einem solchen Referenzwert-Kennfeld sind beispielsweise Referenzwerte für die Phasenlage in Abhängigkeit von Werten für die Trimmung des Einlasstraktes für unterschiedliche Signalfrequenzen, wie in 3 dargestellt oder Referenzwerte für die Amplitude in Abhängigkeit von Werten für die Trimmung des Einlasstraktes für unterschiedliche Signalfrequenzen, wie in 4 dargestellt, zusammengefasst. Dabei können jeweils mehrere solche Kennfelder für unterschiedliche Betriebspunkte des Verbrennungsmotors bereitgestellt sein. So kann ein entsprechendes umfangreicheres Kennfeld beispielsweise entsprechende Referenzwertkurven für unterschiedliche Betriebspunkte des Verbrennungsmotors und unterschiedliche Signalfrequenzen enthalten. Die Ermittlung der aktuellen Trimmung des Einlasstraktes des Verbrennungsmotors kann dann, wie in 5 am Beispiel der Phasenlage dargestellt, auf einfache Weise derart erfolgen, dass ausgehend von dem ermittelten Istwert eines Charakteristikums des Druckschwingungssignals, hier ein Wert von ca. 52,5 der Phasenlage, für eine ausgesuchte Signalfrequenz, hier die erste Harmonische 101, also Ansaugfrequenz, im Normalbetrieb des Verbrennungsmotors, der zugehörige Punkt 105 auf der Referenzkurve der ersten Harmonischen 101 ermittelt und ausgehend wiederum von diesem, die zugeordnete Trimmung des Einlasstraktes, hier ca. 50% der maximalen Saugrohrlänge, ermittelt wird, wie anhand der gestrichelten Linie in 5 bildlich dargestellt. So kann die aktuelle Trimmung des Einlasstraktes auf besonders einfache Weise und mit geringem Rechenaufwand im Betrieb ermittelt werden.
  • Wahlweise ist stattdessen oder ergänzend dazu zumindest eine jeweilige, die entsprechende Referenzkurve charakterisierende, algebraische Modell-Funktion zur rechnerischen Ermittlung des jeweiligen Referenzwertes des jeweils entsprechenden Charakteristikums bereitgestellt, die den Zusammenhang zwischen dem Charakteristikum und der Trimmung des Einlasstraktes abbildet. Unter Vorgabe des ermittelten Istwertes des jeweiligen Charakteristikums wird dann die Trimmung des Einlasstraktes aktuell berechnet. Der Vorteil dieser Alternative liegt darin, dass insgesamt weniger Speicherkapazität zur Verfügung gestellt werden muss.
  • Vorteilhaft erfolgt die Durchführung des erfindungsgemäßen Verfahrens, also die Ermittlung des Istwertes des jeweiligen Charakteristikums der ausgesuchten Signalfrequenz sowie die Ermittlung der aktuellen Trimmung des Einlasstraktes des Verbrennungsmotors mit Hilfe einer dem Verbrennungsmotor zugeordneten elektronischen Recheneinheit, die vorzugsweise Bestandteil einer Motor-Steuerungseinheit ist. Dabei sind das jeweilige Referenzwert-Kennfeld und/oder die jeweilige algebraische Modell-Funktion in zumindest einem, der elektronischen Recheneinheit zugeordneten elektronischen Speicherbereich, der vorzugsweise ebenfalls Bestandteil der Motor-Steuerungseinheit ist, gespeichert. Dies ist mit Hilfe des Blockdiagramms in 6 vereinfacht dargestellt. Eine die elektronische Recheneinheit 53 beinhaltende Motor-Steuerungseinheit 50 wird hier symbolisch durch den gestrichelt Rahmen dargestellt, der die einzelnen Schritte/Blöcke einer Ausführung des erfindungsgemäßen Verfahrens sowie den elektronischen Speicherbereich 54 beinhaltet.
  • Besonders vorteilhaft kann zur Durchführung des erfindungsgemäßen Verfahrens eine dem Verbrennungsmotor zugeordneten elektronischen Recheneinheit 53, die beispielsweise Bestandteil der zentralen Motor-Steuereinheit 50, auch als Central Processing Unit oder CPU bezeichnet, mitbenutzt werden, die zur Steuerung des Verbrennungsmotors 1 vorgesehen ist. Dabei können die Referenzwert-Kennfelder oder die algebraischen Modell-Funktionen in zumindest einem elektronischen Speicherbereich 54 der CPU 50 gespeichert sein.
  • Auf diese Weise lässt sich das erfindungsgemäße Verfahren automatisch, sehr schnell und wiederkehrend im Betrieb des Verbrennungsmotors durchführen und eine Anpassung bzw. Korrektur weiterer Steuergrößen oder Steuerroutinen zur Steuerung des Verbrennungsmotors in Abhängigkeit von der ermittelten Trimmung des Einlasstraktes kann unmittelbar durch die Motor-Steuerungseinheit vorgenommen werden.
  • Dies hat zum einen den Vorteil, dass keine separate elektronische Recheneinheit erforderlich ist und so auch keine zusätzlichen, ggf. störungsanfälligen Schnittstellen zwischen mehreren Recheneinheiten bestehen. Zum anderen kann das erfindungsgemäße Verfahren so zum integralen Bestandteil der Steuerungsroutinen des Verbrennungsmotors werden, wodurch eine schnelle Anpassung der Steuergrößen oder Steuerroutinen für den Verbrennungsmotor auf die aktuelle Trimmung des Einlasstraktes erfolgen kann.
  • Wie zuvor bereits angedeutet, wird davon ausgegangen, dass die Referenzwerte des jeweiligen Charakteristikums für unterschiedliche Trimmungen des Einlasstraktes zur Durchführung des Verfahrens zur Verfügung stehen.
  • Dazu werden in Erweiterung des erfindungsgemäßen Verfahrens die Referenzwerte des jeweiligen Charakteristikums für zumindest eine ausgesuchte Signalfrequenz vorausgehend an einem Referenz-Verbrennungsmotor in Abhängigkeit von unterschiedlichen Trimmungen des Einlasstraktes ermittelt. Dies ist symbolisch in dem Blockdiagramm in 6 durch die mit B10 und B11 bezeichneten Blöcke dargestellt, wobei Block B10 die Vermessung eines Referenz-Verbrennungsmotors (Vmssg_Refmot) kennzeichnet und Block B11 die Zusammenstellung der gemessenen Refernzwerte des jeweiligen Charakteristikums bei ausgesuchten Signalfrequenzen zu Referenzwert-Kennfeldern (RWK_DSC_SF_1...X) symbolisiert. Der Referenz-Verbrennungsmotor ist dabei ein zu der entsprechenden Verbrennungsmotorserie baugleicher Verbrennungsmotor, bei dem insbesondere sichergestellt ist, dass keine das Verhalten beeinflussende baulichen Toleranzabweichungen vorhanden sind. Dadurch soll gewährleistet werden, dass der Zusammenhang zwischen dem jeweiligen Charakteristikum des Druckschwingungssignals und der Trimmung des Einlasstraktes möglichst genau und ohne Einfluss weiterer Störfaktoren ermittelt werden kann.
  • Die Ermittlung entsprechender Referenzwerte kann mit Hilfe des Referenz-Verbrennungsmotors in unterschiedlichen Betriebspunkten und unter Vorgabe bzw. Variation weiterer Betriebsparameter wie der Temperatur des angesaugten Mediums, der Kühlmitteltemperatur oder der Motordrehzahl erfolgen. Die so entstehenden Referenzwert-Kennfelder, siehe beispielsweise 3 und 4, können dann vorteilhaft bei allen baugleichen Verbrennungsmotoren der Serie zur Verfügung gestellt, insbesondere in einem elektronischen Speicherbereich 54 einer dem Verbrennungsmotor zuordenbaren elektronischen Motor-Steuerungseinheit 50 abgelegt werden.
  • In Fortführung der vorgenannten vorausgehenden Ermittlung der Referenzwerte des jeweiligen Charakteristikums der ausgesuchten Signalfrequenzen kann aus den ermittelten Referenzwerten der ausgesuchten Signalfrequenz und den zugeordneten Trimmungen des Einlasstraktes eine jeweilige algebraische Modell-Funktion hergeleitet werden, die zumindest den Zusammenhang zwischen dem jeweiligen Charakteristikum der ausgesuchten Signalfrequenz und der Trimmung des Einlasstraktes abbildet. Dies ist im Blockdiagramm der 6 durch den mit B12 gekennzeichneten Block symbolisiert. Hierbei können optional auch die oben genannten weiteren Parameter mit einbezogen werden. So entsteht eine algebraische Modell-Funktion (Rf(DSC_SF_1...X) mit der unter Vorgabe der Phasenlage und ggf. unter Einbeziehung der oben genannten Variablen der Wert der jeweiligen Trimmung des Einlasstraktes aktuell berechnet werden kann.
  • Die Modell-Funktion kann dann vorteilhaft bei allen baugleichen Verbrennungsmotoren der Serie zur Verfügung gestellt, insbesondere in einem elektronischen Speicherbereich 54 einer dem Verbrennungsmotor zuordenbaren elektronischen Motor-Steuerungseinheit 50 abgelegt werden. Die Vorteile liegen darin, dass die Modell-Funktion weniger Speicherplatz benötigt als umfangreiche Referenzwert-Kennfelder.
  • In einem Durchführungsbeispiel kann die vorausgehende Ermittlung der Referenzwerte des jeweiligen Charakteristikums der ausgesuchten Signalfrequenz durch die Vermessung eines Referenz-Verbrennungsmotors (Vmssg_Refmot) an zumindest einem definierten Betriebspunkt, unter Vorgabe bestimmter Referenz-Trimmungen des Einlasstraktes erfolgen. Dies ist im Blockdiagramm in 7 durch den mit B10 gekennzeichneten Block symbolisiert. Dabei werden zur Bestimmung der Referenzwerte des jeweiligen Charakteristikums der ausgesuchten Signalfrequenz die einem Zylinder des Referenz-Verbrennungsmotors zuordenbaren dynamischen Druckschwingungen im Einlasstrakt oder im Auslasstrakt, im Betrieb gemessen und ein entsprechendes Druckschwingungssignal wird erzeugt.
  • Gleichzeitig, also in zeitlichem Zusammenhang zur Messung der dynamischen Druckschwingungen wird ein Kurbelwellen-Phasenwinkelsignal ermittelt. In weiterer Folge werden Referenzwerte des jeweiligen Charakteristikums der ausgesuchten Signalfrequenz der gemessenen Druckschwingungen in Bezug auf das Kurbelwellen-Phasenwinkelsignal mit Hilfe Diskreter-Fourier-Transformation aus dem Druckschwingungssignal ermittelt.
  • Die ermittelten Referenzwerte werden dann in Abhängigkeit der zugeordneten Trimmung des Einlasstraktes in Referenzwert-Kennfeldern (RWK_DSC_SF_1...X) gespeichert. Dies ermöglicht die zuverlässige Ermittlung der Abhängigkeit zwischen dem jeweiligen Charakteristikum des Druckschwingungssignals der ausgesuchten Signalfrequenz und der Trimmung des Einlasstraktes.
  • In allen vorgenannten Ausführungen und Weiterbildungen des erfindungsgemäßen Verfahrens kann als das zumindest eine Charakteristikum der gemessenen Druckschwingungen eine Phasenlage oder eine Amplitude oder auch eine Phasenlage und eine Amplitude zumindest einer ausgesuchten Signalfrequenz herangezogen werden. Phasenlage und Amplitude sind die wesentlichen, grundlegenden Charakteristika die mittels Diskreter Fourier-Transformation bezogen auf einzelne ausgesuchte Signalfrequenzen ermittelt werden können. Im einfachsten Fall wird an einem bestimmten Betriebspunkt des Verbrennungsmotors genau ein Istwert, zum Beispiel der Phasenlage bei einer ausgesuchten Signalfrequenz, zum Beispiel der 2. Harmonischen, ermittelt und durch Zuordnung dieses Wertes zu dem entsprechenden Referenzwert der Phasenlage in dem gespeicherten Referenzwert-Kennfeld, bei der gleichen Signalfrequenz, der zugeordnete Wert für die Trimmung des Einlasstraktes ermittelt.
  • Es können jedoch auch mehrere Istwerte zum Beispiel für die Phasenlage und die Amplitude sowie bei unterschiedlichen Signalfrequenzen ermittelt und zur Ermittlung der Trimmung des Einlasstraktes miteinander verknüpft werden, zum Beispiel durch Mittelwertbildung. Auf diese Weise kann in vorteilhafter Weise die Genauigkeit des ermittelten Wertes für die Trimmung des Einlasstraktes gesteigert werden.
  • Gemäß einer weiteren Ausführung des erfindungsgemäßen Verfahrens ist vorgesehen, dass die Trimmung des Einlasstraktes mittels zumindest eines variablen Saugrohrs oder mittels zumindest einer verstellbaren Drallklappe oder mittels zumindest eines Resonatorbauteils einstellbar ist. Es kann jedoch auch eine Kombination aus mehreren der vorgenannten Komponenten vorgesehen werden mittels derer die Trimmung des Einlasstraktes verstellbar oder einstellbar ist. Hierzu kann zum Beispiel eine mittels eines Aktuators angetriebene Stelleinheit vorgesehen werden, mittels dieser beispielsweise die Länge eines oder mehrerer Saugrohre oder die Stellung einer oder mehrerer Drallklappen in Abhängigkeit vom jeweiligen Betriebspunkt des Verbrennungsmotors variiert werden kann. Dies hat den Vorteil, dass die Trimmung des Einlasstraktes im laufenden Betrieb auf den jeweiligen Betriebspunkt hin optimiert eingestellt und gegebenenfalls geregelt werden kann.
  • Als vorteilhaft hat es sich erwiesen als ausgesuchte Signalfrequenzen die Ansaugfrequenz oder eine vielfache der Ansaugfrequenz zu wählen, also die 1. Harmonische, die 2. Harmonische, die 3. Harmonische etc.. Bei diesen Signalfrequenzen tritt die Abhängigkeit des jeweiligen Charakteristikums des Druckschwingungssignals von der Trimmung des Einlasstraktes besonders deutlich hervor.
  • Um in Weiterbildung des Verfahrens die Genauigkeit der Ermittlung des Wertes der Trimmung des Einlasstraktes in vorteilhafter Weise weiter zu steigern, können zusätzliche Betriebsparameter des Verbrennungsmotors bei der Ermittlung der Trimmung des Einlasstraktes herangezogen werden. Dazu kann zumindest einer der weiteren Betriebsparameter
    • - Temperatur des angesaugten Mediums im Ansaugtrakt,
    • - Temperatur eines zur Kühlung des Verbrennungsmotors verwendeten Kühlmittels und
    • - Motordrehzahl des Verbrennungsmotors,
    bei der Ermittlung der Trimmung des Einlasstraktes herangezogen werden.
  • Die Temperatur des angesaugten Mediums, also im Wesentlichen der Ansaugluft, beeinflusst direkt die Schallgeschwindigkeit im Medium und somit die Druckausbreitung im Einlasstrakt. Diese Temperatur kann im Ansaugtrakt gemessen werden und ist somit bekannt. Auch die Temperatur des Kühlmittels kann die Schallgeschwindigkeit im Angesaugten Medium durch Wärmeübertragung im Einlasstrakt und im Zylinder beeinflussen. Auch diese Temperatur wird in der Regel überwacht und dazu gemessen, steht also ohnedies bereit und kann bei der Ermittlung der aktuellen Trimmung des Einlasstraktes herangezogen werden.
  • Die Motordrehzahl ist eine der den Betriebspunkt des Verbrennungsmotors charakterisierenden Größen und beeinflusst die verfügbare Zeit für die Druckausbreitung im Einlasstrakt. Auch die Motordrehzahl wird ständig überwacht und steht somit bei der Ermittlung der Trimmung des Einlasstraktes zur Verfügung.
  • Die vorgenannten zusätzlichen Parameter stehen also ohnedies zur Verfügung oder können auf einfache Weise ermittelt werden. Der jeweilige Einfluss der genannten Parameter auf das jeweilige Charakteristikum der ausgesuchten Signalfrequenz des Druckschwingungssignals wird dabei als bekannt vorausgesetzt und wurde beispielsweise, wie vorausgehend bereits angemerkt, bei der Vermessung eines Referenz-Verbrennungsmotors ermittelt und in den Referenzwert-Kennfeldern mit abgespeichert. Auch die Einbeziehung mittels entsprechender Korrekturfaktoren oder Korrekturfunktionen bei der Berechnung der aktuellen Werte der Trimmung des Einlasstraktes mittels einer algebraischen Modell-Funktion stellt eine Möglichkeit dar, diese zusätzlichen, weiteren Betriebsparameter bei der Durchführung des erfindungsgemäßen Verfahrens ergänzend zu berücksichtigen.
  • Weiterhin vorteilhaft können zur Durchführung des erfindungsgemäßen Verfahrens die dynamischen Druckschwingungen im Einlasstrakt mithilfe eines serienmäßigen Drucksensors, zum Beispiel direkt im Saugrohr, gemessen werden. Dies hat den Vorteil, dass kein zusätzlicher Drucksensor benötigt wird, was einen Kostenvorteil darstellt.
  • In einem weiteren Ausgestaltungsbeispiel kann zur Durchführung des erfindungsgemäßen Verfahrens das Kurbelwellenpositions-Feedbacksignal mit einem Zähnerad und einem Hall-Sensor ermittelt werden, wobei es sich hierbei um eine gebräuchliche, ggf. ohnehin im Verbrennungsmotor vorhandene Sensoranordnung zur Erfassung der Kurbelwellenumdrehungen, also der Drehzahl des Verbrennungsmotors, handelt. Das Zähnerad ist dabei beispielsweise am äußeren Umfang einer Schwungscheibe oder des Kurbelwellen-Steueradapters 10 (siehe auch 1) angeordnet. Dies hat den Vorteil, dass keine zusätzliche Sensor-Anordnung benötigt wird, was einen Kostenvorteil darstellt.
  • In 6 ist eine Ausführung des erfindungsgemäßen Verfahrens zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb nochmals in Form eines vereinfachten Blockdiagrammes mit den wesentlichen Schritten dargestellt.
  • Die im Blockdiagramm gestrichelt eingezeichnete Umrahmung der entsprechenden Blöcke B1 bis B6 und 54, stellt symbolisch die Grenze einer programmierbaren elektronischen Motor-Steuerungseinheit 50 beispielsweise eines als CPU bezeichneten Motor-Steuergerätes des betreffenden Verbrennungsmotors dar, auf dem das Verfahren ausgeführt wird. Diese elektronischen Motor-Steuerungseinheit 50 beinhaltet unter anderem die elektronische Recheneinheit 53 und den elektronischen Speicherbereich 54 zur Ausführung des erfindungsgemäßen Verfahrens.
  • Zu Beginne werden dem jeweiligen Zylinder zuordenbare dynamische Druckschwingungen der Ansaugluft im Einlasstrakt und/oder des Abgases im Auslasstrakt des betreffenden Verbrennungsmotors im Betrieb gemessen und daraus ein entsprechendes Druckschwingungssignal (DS_S) erzeugt und es wird gleichzeitig, das heißt in zeitlicher Abhängigkeit, ein Kurbelwellen-Phasenwinkelsignal (KwPw_S) ermittelt, was durch die parallel angeordneten, mit B1 und B2 gekennzeichneten Blöcke dargestellt ist.
  • Aus dem Druckschwingungssignal (DS_S) wird dann mit Hilfe Diskreter-Fourier-Transformation (DFT), die durch den mit B3 gekennzeichneten Block symbolisiert ist, ein Istwert (IW_DSC_SF_1...X) zumindest eines Charakteristikums zumindest einer ausgesuchten Signalfrequenz der gemessenen Druckschwingungen in Bezug auf das Kurbelwellen-Phasenwinkelsignal (KwPw_S) ermittelt, was durch den mit B4 gekennzeichneten Block dargestellt ist.
  • Auf Basis des zumindest einen ermittelten Istwertes (IW_DSC_SF_1...X) des jeweiligen Charakteristikums wird dann im Block B5 eine Einlasstrakt-Trimmungs-Ermittlung (ET_Trm_EM) durchgeführt. Dies erfolgt unter Heranziehung von Referenzwerten (RW_DSC_SF_1...X) des jeweils entsprechenden Charakteristikums der jeweils gleichen Signalfrequenz für unterschiedliche Trimmungen des Einlasstraktes, die in dem mit 54 gekennzeichneten Speicherbereich bereitgestellt sind bzw. mit Hilfe der im Speicherbereich 54 hinterlegten algebraischen Modell-Funktionen aktuell ermittelt werden. Der so ermittelte aktuelle Wert der Trimmung des Einlasstraktes (Trm_ET_akt) des Verbrennungsmotors wird dann im Block B6 bereitgestellt.
  • Weiterhin zeigt 6, in den Blöcken B10, B11 und B12, die dem oben beschriebenen Verfahren vorausgehenden Schritte. In Block B10 erfolgt die Vermessung eines Referenz-Verbrennungsmotors (Vmssg_Refmot) zur Bestimmung von Referenzwerten des jeweiligen Charakteristikums der jeweils ausgesuchten Signalfrequenz der gemessenen Druckschwingungen in Bezug auf das Kurbelwellen-Phasenwinkelsignal aus dem Druckschwingungssignal mit Hilfe Diskreter-Fourier-Transformation. Die ermittelten Referenzwerte werden dann in Block B11 in Abhängigkeit der zugeordneten Werte der Trimmung des Einlasstraktes in Referenzwert-Kennfeldern (RWK_DSC_SF_1...X) zusammengestellt und in dem elektronischen Speicherbereich 54 der mit CPU gekennzeichneten Motor-Steuerungseinheit 50 gespeichert.
  • Der mit B12 gekennzeichnete Block beinhaltet die Herleitung von algebraischen Modell-Funktionen (Rf (DSC_SF_1...X)), die als Referenzwertfunktionen beispielsweise den Verlauf der jeweiligen Referenzwertlinien des jeweiligen Charakteristikums des Druckschwingungssignals für eine jeweilige Signalfrequenz in Abhängigkeit von der Trimmung des Einlasstraktes abbilden, auf Basis der zuvor ermittelten Referenzwert-Kennfelder (RWK_DSC_SF_1...X). Diese algebraischen Modellfunktionen (Rf(DSC_SF_1...X)) können dann ebenfalls, alternativ oder ergänzend, in dem mit 54 gekennzeichneten elektronischen Speicherbereich 54 des mit CPU gekennzeichneten Motor-Steuerungseinheit 50 gespeichert werden, wo sie zur Durchführung des zuvor erläuterten erfindungsgemäßen Verfahrens zur Verfügung stehen.
  • Nochmal in Kürze zusammengefasst handelt es sich beim Kern des erfindungsgemäßen Verfahrens zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors um ein Verfahren bei dem dynamische Druckschwingungen im Einlasstrakt oder Auslasstrakt des betreffenden Verbrennungsmotors im Normalbetrieb gemessen werden und daraus ein entsprechendes Druckschwingungssignal erzeugt wird. Gleichzeitig wird ein Kurbelwellen-Phasenwinkelsignal ermittelt und mit dem Druckschwingungssignal in Relation gesetzt. Aus dem Druckschwingungssignal wird ein Istwert zumindest eines Charakteristikums zumindest einer ausgesuchten Signalfrequenz der gemessenen Druckschwingungen in Bezug auf das Kurbelwellen-Phasenwinkelsignal ermittelt und auf Basis des ermittelten Istwertes wird unter Heranziehung von Referenzwerten des entsprechenden Charakteristikums der jeweils gleichen Signalfrequenz für unterschiedliche Trimmungen des Einlasstraktes, die aktuelle Trimmung des Einlasstraktes, bzw. ein Wert für die aktuelle Trimmung des Einlasstraktes, ermittelt.

Claims (13)

  1. Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb, - wobei einem Zylinder des Verbrennungsmotors zuordenbare dynamische Druckschwingungen im Einlasstrakt oder im Auslasstrakt des betreffenden Verbrennungsmotors, an einem definierten Betriebspunkt, im Normalbetrieb gemessen werden und daraus ein entsprechendes Druckschwingungssignal erzeugt wird und wobei gleichzeitig ein Kurbelwellen-Phasenwinkelsignal des Verbrennungsmotors ermittelt wird und - wobei aus dem Druckschwingungssignal mit Hilfe Diskreter-Fourier-Transformation zumindest ein Istwert zumindest eines Charakteristikums zumindest einer ausgesuchten Signalfrequenz der gemessenen Druckschwingungen in Bezug auf das Kurbelwellen-Phasenwinkelsignal ermittelt wird, dadurch gekennzeichnet, dass - auf Basis des zumindest einen ermittelten Istwertes des jeweiligen Charakteristikums unter Heranziehung von Referenzwerten des jeweils entsprechenden Charakteristikums der jeweils gleichen Signalfrequenz für unterschiedliche Trimmungen des Einlasstraktes, die aktuelle Trimmung des Einlasstraktes des Verbrennungsmotors ermittelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Referenz-Werte des jeweiligen Charakteristikums in Abhängigkeit von der Trimmung des Einlasstraktes in zumindest einem jeweiligen Referenzwert-Kennfeld bereitgestellt sind oder zumindest eine jeweilige algebraische Modell-Funktion zur rechnerischen Ermittlung des jeweiligen Referenzwertes des jeweils entsprechenden Charakteristikums bereitgestellt ist, die den Zusammenhang zwischen dem Charakteristikum und der Trimmung des Einlasstraktes abbildet.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Ermittlung des Istwertes des jeweiligen Charakteristikums der ausgesuchten Signalfrequenz sowie die Ermittlung der aktuellen Trimmung des Einlasstraktes des Verbrennungsmotors mit Hilfe einer dem Verbrennungsmotor zugeordneten elektronischen Recheneinheit erfolgt, wobei das jeweilige Referenzwert-Kennfeld oder die jeweilige algebraische Modell-Funktion in zumindest einem, der elektronischen Recheneinheit zugeordneten Speicherbereich gespeichert sind.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Referenzwerte des jeweiligen Charakteristikums für zumindest eine ausgesuchte Signalfrequenz vorausgehend an einem Referenz-Verbrennungsmotor in Abhängigkeit von unterschiedlichen Trimmungen des Einlasstraktes ermittelt wurde.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass aus den Referenzwerten des jeweiligen Charakteristikums der ausgesuchten Signalfrequenz und den zugeordneten Trimmungen des Einlasstraktes jeweils eine Modell-Funktion hergeleitet ist, die den Zusammenhang zwischen dem Charakteristikum der ausgesuchten Signalfrequenz und der Trimmung des Einlasstraktes abbildet.
  6. Verfahren nach Anspruch 5, wobei die vorausgehende Ermittlung der Referenzwerte des jeweiligen Charakteristikums der jeweils ausgesuchten Signalfrequenz gekennzeichnet ist durch die Vermessung eines Referenz-Verbrennungsmotors an zumindest einem definierten Betriebspunkt unter Vorgabe bestimmter Referenz-Trimmungen des Einlasstraktes, wobei zur Bestimmung der Referenzwerte des jeweiligen Charakteristikums der jeweils ausgesuchten Signalfrequenz - die einem Zylinder des Referenz-Verbrennungsmotors zuordenbaren dynamischen Druckschwingungen im Einlasstrakt oder im Auslasstrakt, im Betrieb gemessen und ein entsprechendes Druckschwingungssignal erzeugt wird und - wobei gleichzeitig ein Kurbelwellen-Phasenwinkelsignal ermittelt wird und - die Referenzwerte des jeweiligen Charakteristikums der jeweils ausgesuchten Signalfrequenz der gemessenen Druckschwingungen in Bezug auf das Kurbelwellen-Phasenwinkelsignal aus dem Druckschwingungssignal mit Hilfe Diskreter-Fourier-Transformation ermittelt wird und - die ermittelten Referenzwerte in Abhängigkeit von der zugeordneten Trimmung des Einlasstraktes in Referenzwert-Kennfeldern gespeichert werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als das zumindest eine Charakteristikum der gemessenen Druckschwingungen eine Phasenlage oder eine Amplitude oder eine Phasenlage und eine Amplitude zumindest einer ausgesuchten Signalfrequenz herangezogen werden.
  8. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Trimmung des Einlasstraktes mittels zumindest eines variablen Saugrohrs oder mittels zumindest einer verstellbaren Drallklappe oder mittels zumindest eines Resonatorbauteils oder mittels einer Kombination aus mehreren der vorgenannten Komponenten verstellbar oder einstellbar ist.
  9. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die ausgesuchten Signalfrequenzen die Ansaugfrequenz oder eine vielfache der Ansaugfrequenz ist.
  10. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zusätzlich zumindest einer der weiteren Betriebsparameter - Temperatur des angesaugten Mediums im Ansaugtrakt, - Temperatur eines zur Kühlung des Verbrennungsmotors verwendeten Kühlmittels, - Motordrehzahl des Verbrennungsmotors, bei der Ermittlung der aktuellen Trimmung des Einlasstraktes des Verbrennungsmotors (1) herangezogen wird.
  11. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die dynamischen Druckschwingungen im Einlasstrakt mit Hilfe eines serienmäßigen Drucksensors (44) gemessen werden.
  12. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Kurbelwellenpositions-Feedbacksignal mit einem Zähnerad und einem Hall-Sensor ermittelt wird.
  13. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die elektronische Recheneinheit (53) Bestandteil einer Motor-Steuerungseinheit (50) zur Steuerung des Verbrennungsmotors (1) ist und eine Anpassung weiterer Steuergrößen oder Steuerroutinen zur Steuerung des Verbrennungsmotors (1) in Abhängigkeit von der ermittelten aktuellen Trimmung des Einlasstraktes durch die Motor-Steuerungseinheit (50) vorgenommen wird.
DE102017209386.2A 2017-06-02 2017-06-02 Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb Active DE102017209386B4 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102017209386.2A DE102017209386B4 (de) 2017-06-02 2017-06-02 Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb
JP2019565371A JP6896110B2 (ja) 2017-06-02 2018-05-30 内燃機関の吸込み路の実際のトリミングを動作時に特定する方法
CN201880036507.9A CN110770427B (zh) 2017-06-02 2018-05-30 用于获取内燃发动机的进气管长度的当前修整量的方法
PCT/EP2018/064237 WO2018220045A1 (de) 2017-06-02 2018-05-30 Verfahren zur ermittlung der aktuellen trimmung des einlasstraktes eines verbrennungsmotors im betrieb
KR1020197038999A KR102237017B1 (ko) 2017-06-02 2018-05-30 작동 동안 내연기관의 흡입관의 트리밍을 결정하기 위한 방법
US16/696,489 US11359563B2 (en) 2017-06-02 2019-11-26 Method for determining the current trimming of the intake tract of an internal combustion engine during operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017209386.2A DE102017209386B4 (de) 2017-06-02 2017-06-02 Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb

Publications (2)

Publication Number Publication Date
DE102017209386A1 true DE102017209386A1 (de) 2018-12-06
DE102017209386B4 DE102017209386B4 (de) 2024-05-08

Family

ID=62563113

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017209386.2A Active DE102017209386B4 (de) 2017-06-02 2017-06-02 Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb

Country Status (6)

Country Link
US (1) US11359563B2 (de)
JP (1) JP6896110B2 (de)
KR (1) KR102237017B1 (de)
CN (1) CN110770427B (de)
DE (1) DE102017209386B4 (de)
WO (1) WO2018220045A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017215849A1 (de) 2017-09-08 2019-03-14 Continental Automotive Gmbh Verfahren zur Überprüfung der Funktion eines Drucksensors im Luft-Ansaugtrakt oder Abgas-Auslasstrakt eines Verbrennungsmotors im Betrieb und Motor-Steuerungseinheit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017209112B4 (de) * 2017-05-31 2019-08-22 Continental Automotive Gmbh Verfahren zur Ermittlung des aktuellen Verdichtungsverhältnisses eines Verbrennungsmotors im Betrieb
JP6970309B2 (ja) * 2018-09-26 2021-11-24 日立Astemo株式会社 内燃機関制御装置
US11035307B2 (en) * 2018-11-13 2021-06-15 Ford Global Technologies, Llc Systems and methods for reducing vehicle valve degradation
DE102020210878A1 (de) * 2020-08-28 2022-03-03 Volkswagen Aktiengesellschaft Verfahren zur Dynamikdiagnose eines Sensors im Frischluft- oder Abgastrakt von Brennkraftmaschinen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10302806A1 (de) * 2003-01-24 2004-08-12 Siemens Ag Verfahren zur Berechnung von Druckschwankungen in einem Kraftstoffversorgungssystem einer mit Kraftstoff-Direkteinspritzung arbeitenden Brennkraftmaschine und zur Steuerung derer Einspritzventile
DE102005031393A1 (de) * 2004-08-05 2006-02-23 General Motors Corp. (N.D.Ges.D. Staates Delaware), Detroit Variabler Einlasskrümmer mit einem Steuerventil zur Resonanzabstimmung in drei Betriebsarten
DE102005007057A1 (de) * 2005-02-15 2006-08-24 Fev Motorentechnik Gmbh Verfahren zur Regelung
DE102010034133A1 (de) * 2010-08-12 2012-02-16 Volkswagen Ag Verfahren zum Detektieren eines Kraftstoffes in einem Kraftstoffzuführungssystem einer Brennkraftmaschine
DE102015209665A1 (de) * 2014-06-25 2015-12-31 Continental Automotive Gmbh Verfahren zur Identifizierung von Ventilsteuerzeiten eines Verbrennungsmotors
DE102015226138B3 (de) * 2015-12-21 2016-12-29 Continental Automotive Gmbh Verfahren zur Ermittlung der Zusammensetzung des zum Betrieb eines Verbrennungsmotors verwendeten Kraftstoffes

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617897A (en) * 1984-01-23 1986-10-21 Mazda Motor Corporation Intake system for internal combustion engines
JPS60184924A (ja) * 1984-03-02 1985-09-20 Mazda Motor Corp エンジンの吸気装置
JPS6176718A (ja) * 1984-09-22 1986-04-19 Nissan Motor Co Ltd 内燃機関の吸気装置
DE3506114A1 (de) * 1985-02-22 1986-09-04 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur steuerung oder regelung einer brennkraftmaschine
JPS63111227A (ja) * 1986-10-30 1988-05-16 Mazda Motor Corp エンジンの吸気装置
JP2543537B2 (ja) * 1986-10-30 1996-10-16 マツダ株式会社 V型多気筒エンジンの吸気装置
EP0288039B1 (de) * 1987-04-21 1992-03-04 Mazda Motor Corporation Einlassanlage für eine Mehrzylinderbrennkraftmaschine
JP2694678B2 (ja) * 1992-05-26 1997-12-24 本田技研工業株式会社 吸気管固有振動数変更用ソレノイドバルブの故障検知装置
JPH09236514A (ja) * 1996-02-29 1997-09-09 Mitsubishi Heavy Ind Ltd エンジンの運転状態診断装置
DE19727669B4 (de) * 1997-06-30 2006-02-09 Robert Bosch Gmbh Verfahren zur Überwachung der Funktion einer Saugrohrklappe zur Saugrohrumschaltung einer Brennkraftmaschine
US6546789B1 (en) * 1997-06-30 2003-04-15 Robert Bosch Gmbh Method and arrangement for monitoring the operation of an intake-manifold flap for switching over the intake manifold of an internal combustion engine
US6293235B1 (en) * 1998-08-21 2001-09-25 Design & Manufacturing Solutions, Inc. Compressed air assisted fuel injection system with variable effective reflection length
DE10346734B3 (de) * 2003-10-08 2005-04-21 Bayerische Motoren Werke Ag Verfahren zur Fehlerdiagnose bei einer in der Saugrohrgeometrie variierbaren Sauganlage einer Brennkraftmaschine
WO2005124133A1 (en) * 2004-06-17 2005-12-29 Man B & W Diesel A/S Vibration reduction by combustion parameter control of large diesel engines
DE102004044339A1 (de) 2004-09-09 2006-03-16 Robert Bosch Gmbh Verfahren zur Korrektur eines gemessenen Zylinderdruckes einer Brennkraftmaschine
JP4220454B2 (ja) * 2004-10-14 2009-02-04 本田技研工業株式会社 エンジンの仕事量を算出する装置
DE602004005467T2 (de) * 2004-11-05 2007-11-29 Ford Global Technologies, LLC, Dearborn Verfahren zur Versagenserkennung eines variablen Einlassystems
EP1770258B1 (de) * 2005-10-03 2008-08-13 Ford Global Technologies, LLC Verfahren für ein variables Ansaugsystem und Brennkraftmaschine mit einem variablen Ansaugsystem
DE102006035096B4 (de) * 2006-07-28 2014-07-03 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
US7387018B2 (en) * 2006-11-17 2008-06-17 Gm Global Technology Operations, Inc. Discrete variable valve lift diagnostic systems and methods
DE102006061438A1 (de) * 2006-12-23 2008-06-26 Dr.Ing.H.C. F. Porsche Ag Verfahren und Steuergerät zur Überprüfung einer Saugrohrlängenverstellung bei einem Verbrennungsmotor
JP2008202448A (ja) * 2007-02-19 2008-09-04 Yamaha Marine Co Ltd 船舶推進機の制御装置
DE102007013252A1 (de) * 2007-03-20 2008-09-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung des Saugrohrdruckes einer Brennkraftmaschine
DE102007013250B4 (de) * 2007-03-20 2018-12-13 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine mit mindestens einem Zylinder
DE102008008209A1 (de) * 2008-02-07 2009-08-13 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose einer Saugrohrumschaltung bei einer Brennkraftmaschine
DE102008001099A1 (de) * 2008-04-09 2009-10-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Fehlerdiagnose in einem Motorsystem mit variabler Ventilansteuerung
US7921709B2 (en) * 2009-01-13 2011-04-12 Ford Global Technologies, Llc Variable displacement engine diagnostics
JP2011064178A (ja) 2009-09-18 2011-03-31 Denso Corp 内燃機関の吸気制御装置
DE102014227048A1 (de) * 2014-12-30 2016-06-30 Robert Bosch Gmbh Verfahren zum Ermitteln einer charakteristischen Größe einer Brennkraftmaschine
DE102015222408B3 (de) * 2015-11-13 2017-03-16 Continental Automotive Gmbh Verfahren zur kombinierten Identifizierung einer Kolbenhub-Phasendifferenz, einer Einlassventilhub-Phasendifferenz und einer Auslassventilhub-Phasendifferenz eines Verbrennungsmotors
DE102015226461B4 (de) * 2015-12-22 2018-10-04 Continental Automotive Gmbh Verfahren zur Ermittlung des Einspritzbeginn-Zeitpunktes und der Einspritzmenge des Kraftstoffes im Normalbetrieb eines Verbrennungsmotors
US10066587B2 (en) * 2016-02-09 2018-09-04 Ford Global Technologies, Llc Methods and systems for a variable volume engine intake system
DE102016219584B4 (de) * 2016-10-10 2018-05-30 Continental Automotive Gmbh Verfahren zur kombinierten Identifizierung von Phasendifferenzen des Einlassventilhubs und des Auslassventilhubs eines Verbrennungsmotors mittels Linien gleicher Phasenlagen und Amplituden
DE102016219582B3 (de) * 2016-10-10 2017-06-08 Continental Automotive Gmbh Verfahren zur kombinierten Identifizierung einer Einlassventilhub-Phasendifferenz und einer Auslassventilhub-Phasendifferenz eines Verbrennungsmotors mit Hilfe von Linien gleicher Amplitude
DE102016222533B4 (de) * 2016-11-16 2018-07-26 Continental Automotive Gmbh Verfahren zur Überwachung von im Ventiltrieb eines Verbrennungsmotors auftretenden Abweichungen und elektronisches Motorsteuergerät zur Ausführung des Verfahrens
DE102017209112B4 (de) * 2017-05-31 2019-08-22 Continental Automotive Gmbh Verfahren zur Ermittlung des aktuellen Verdichtungsverhältnisses eines Verbrennungsmotors im Betrieb
DE102017215849B4 (de) * 2017-09-08 2019-07-18 Continental Automotive Gmbh Verfahren zur Überprüfung der Funktion eines Drucksensors im Luft-Ansaugtrakt oder Abgas-Auslasstrakt eines Verbrennungsmotors im Betrieb und Motor-Steuerungseinheit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10302806A1 (de) * 2003-01-24 2004-08-12 Siemens Ag Verfahren zur Berechnung von Druckschwankungen in einem Kraftstoffversorgungssystem einer mit Kraftstoff-Direkteinspritzung arbeitenden Brennkraftmaschine und zur Steuerung derer Einspritzventile
DE102005031393A1 (de) * 2004-08-05 2006-02-23 General Motors Corp. (N.D.Ges.D. Staates Delaware), Detroit Variabler Einlasskrümmer mit einem Steuerventil zur Resonanzabstimmung in drei Betriebsarten
DE102005007057A1 (de) * 2005-02-15 2006-08-24 Fev Motorentechnik Gmbh Verfahren zur Regelung
DE102010034133A1 (de) * 2010-08-12 2012-02-16 Volkswagen Ag Verfahren zum Detektieren eines Kraftstoffes in einem Kraftstoffzuführungssystem einer Brennkraftmaschine
DE102015209665A1 (de) * 2014-06-25 2015-12-31 Continental Automotive Gmbh Verfahren zur Identifizierung von Ventilsteuerzeiten eines Verbrennungsmotors
DE102015226138B3 (de) * 2015-12-21 2016-12-29 Continental Automotive Gmbh Verfahren zur Ermittlung der Zusammensetzung des zum Betrieb eines Verbrennungsmotors verwendeten Kraftstoffes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017215849A1 (de) 2017-09-08 2019-03-14 Continental Automotive Gmbh Verfahren zur Überprüfung der Funktion eines Drucksensors im Luft-Ansaugtrakt oder Abgas-Auslasstrakt eines Verbrennungsmotors im Betrieb und Motor-Steuerungseinheit
DE102017215849B4 (de) 2017-09-08 2019-07-18 Continental Automotive Gmbh Verfahren zur Überprüfung der Funktion eines Drucksensors im Luft-Ansaugtrakt oder Abgas-Auslasstrakt eines Verbrennungsmotors im Betrieb und Motor-Steuerungseinheit
US11293368B2 (en) 2017-09-08 2022-04-05 Vitesco Technologies GmbH Method for checking the function of a pressure sensor in the air intake tract or exhaust gas outlet tract of an internal combustion engine in operation and engine control unit

Also Published As

Publication number Publication date
KR20200015627A (ko) 2020-02-12
KR102237017B1 (ko) 2021-04-07
DE102017209386B4 (de) 2024-05-08
CN110770427A (zh) 2020-02-07
US20200300185A1 (en) 2020-09-24
JP2020521909A (ja) 2020-07-27
JP6896110B2 (ja) 2021-06-30
WO2018220045A1 (de) 2018-12-06
CN110770427B (zh) 2022-07-29
US11359563B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
DE102015222408B3 (de) Verfahren zur kombinierten Identifizierung einer Kolbenhub-Phasendifferenz, einer Einlassventilhub-Phasendifferenz und einer Auslassventilhub-Phasendifferenz eines Verbrennungsmotors
DE102016219582B3 (de) Verfahren zur kombinierten Identifizierung einer Einlassventilhub-Phasendifferenz und einer Auslassventilhub-Phasendifferenz eines Verbrennungsmotors mit Hilfe von Linien gleicher Amplitude
EP3523529B1 (de) Verfahren zur kombinierten identifizierung von phasendifferenzen des einlassventilhubs und des auslassventilhubs eines verbrennungsmotors mittels linien gleicher phasenlagen und amplituden
EP3394414B1 (de) Verfahren zur ermittlung des einspritzbeginn-zeitpunktes und der einspritzmenge des kraftstoffes im normalbetrieb eines verbrennungsmotors
EP3542042B1 (de) Verfahren zur überwachung von im ventiltrieb eines verbrennungsmotors auftretenden abweichungen und elektronisches motorsteuergerät zur ausführung des verfahrens
DE102017209386B4 (de) Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb
EP3394412B1 (de) Verfahren zur ermittlung der zusammensetzung des zum betrieb eines verbrennungsmotors verwendeten kraftstoffes
DE102015209665A1 (de) Verfahren zur Identifizierung von Ventilsteuerzeiten eines Verbrennungsmotors
EP3394413B1 (de) Verfahren zur ermittlung der zusammensetzung des zum betrieb eines verbrennungsmotors verwendeten kraftstoffes
DE112014001479T5 (de) Fehlzündungs-Detektionssystem
DE102016224709A1 (de) Steuereinrichtung und Steuerverfahren für einen Verbrennungsmotor
DE102021212583A1 (de) Steuerung und steuerverfahren für verbrennungsmotor
DE102017209112B4 (de) Verfahren zur Ermittlung des aktuellen Verdichtungsverhältnisses eines Verbrennungsmotors im Betrieb
WO2019048416A1 (de) Verfahren zur überprüfung der funktion eines drucksensors im luft-ansaugtrakt oder abgas-auslasstrakt eines verbrennungsmotors im betrieb und motor-steuerungseinheit
DE112021000244T5 (de) Brennkraftmaschinen-steuerungsvorrichtung
DE102020201953A1 (de) Verfahren zur Adaption einer erfassten Nockenwellenstellung, Motorsteuergerät zur Durchführung des Verfahrens, Verbrennungsmotor und Fahrzeug
DE102011105545B4 (de) Verfahren zur Bestimmung einer Brennraumfüllung einer Brennkraftmaschine eines Fahrzeuges und Steuervorrichtung für die Brennkraftmaschine
DE102009001817A1 (de) Verfahren und Vorrichtung zur Diagnose eines variablen Ventiltriebs einer Brennkraftmaschine
DE102015216258A1 (de) Verfahren und Vorrichtung zum Durchführen einer Diagnose eines VCR-Stellers in einem Verbrennungsmotor

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

R016 Response to examination communication
R081 Change of applicant/patentee

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

R016 Response to examination communication
R018 Grant decision by examination section/examining division