DE102016113969A1 - Strahlungsemittierender Halbleiterchip, Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterchips, strahlungsemittierendes Bauelement und Verfahren zur Herstellung eines strahlungsemittierenden Bauelements - Google Patents

Strahlungsemittierender Halbleiterchip, Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterchips, strahlungsemittierendes Bauelement und Verfahren zur Herstellung eines strahlungsemittierenden Bauelements Download PDF

Info

Publication number
DE102016113969A1
DE102016113969A1 DE102016113969.6A DE102016113969A DE102016113969A1 DE 102016113969 A1 DE102016113969 A1 DE 102016113969A1 DE 102016113969 A DE102016113969 A DE 102016113969A DE 102016113969 A1 DE102016113969 A1 DE 102016113969A1
Authority
DE
Germany
Prior art keywords
radiation
semiconductor chip
layer
reflective layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102016113969.6A
Other languages
English (en)
Inventor
Ivar Tångring
Korbinian Perzlmaier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to DE102016113969.6A priority Critical patent/DE102016113969A1/de
Priority to DE112017003749.2T priority patent/DE112017003749A5/de
Priority to PCT/EP2017/068791 priority patent/WO2018019846A1/de
Priority to US16/316,987 priority patent/US20210280756A1/en
Publication of DE102016113969A1 publication Critical patent/DE102016113969A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Abstract

Es wird ein strahlungsemittierender Halbleiterchip (10) mit den folgenden Merkmalen angegeben: – einer Halbleiterschichtenfolge (2) mit einer aktiven Schicht (4), die dazu geeignet ist, elektromagnetische Strahlung zu erzeugen, und – einem Substrat (11), auf dem die Halbleiterschichtenfolge (2) angeordnet ist und das transparent für die in der aktiven Schicht (4) erzeugte elektromagnetische Strahlung ist, – eine reflektierende Schicht (9), die auf einer Hauptfläche des Substrats (11) angeordnet ist, die von der Halbleiterschichtenfolge (2) abgewandt ist, wobei die reflektierende Schicht (9) aus einem Harz gebildet ist, in das reflektierende Partikeln eingebettet sind. Weiterhin werden ein Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterchips (10), ein strahlungsemittierendes Bauelement und ein Verfahren zur Herstellung eines strahlungsemittierenden Bauelements angegeben.

Description

  • Es werden ein strahlungsemittierender Halbleiterchip, ein Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterchips, ein strahlungsemittierendes Bauelement und ein Verfahren zur Herstellung eines strahlungsemittierenden Bauelements angegeben.
  • Aufgabe der vorliegenden Anmeldung ist es, einen strahlungsemittierenden Halbleiterchip mit erhöhter Strahlungsauskopplung anzugeben. Insbesondere soll die Auskopplung des Halbleiterchips erhöht sein, wenn er rückseitig zumindest teilweise auf einen Leiterrahmen aufgebracht ist. Weiterhin soll ein Verfahren zur Herstellung einer Vielzahl derartiger Halbleiterchips, ein Bauelement mit einem derartigen Halbleiterchip und ein Verfahren zur Herstellung eines Bauelements mit einem solchen Halbleiterchip angegeben werden.
  • Diese Aufgaben werden durch einen strahlungsemittierenden Halbleiterchip mit den Merkmalen des Patentanspruchs 1, durch ein Verfahren mit den Schritten des Patentanspruchs 12, durch ein strahlungsemittierendes Bauelement mit den Merkmalen des Patentanspruchs 17 und durch ein Verfahren mit den Schritten des Patentanspruchs 19 gelöst.
  • Vorteilhafte Ausführungsformen und Weiterbildungen des strahlungsemittierenden Halbleiterchips, des strahlungsemittierenden Bauelements und der beiden Verfahren sind in den jeweils abhängigen Ansprüchen angegeben.
  • Gemäß einer Ausführungsform umfasst der strahlungsemittierende Halbleiterchip eine Halbleiterschichtenfolge mit einer aktiven Schicht, die dazu geeignet ist, elektromagnetische Strahlung zu erzeugen. Beispielsweise erzeugt die aktive Schicht blaues und/oder ultraviolettes Licht.
  • Bevorzugt ist die Halbleiterschichtenfolge epitaktisch gewachsen. Ebenfalls bevorzugt basiert die Halbleiterschichtenfolge auf ein Nitrid-Verbindungshalbleitermaterial oder besteht aus einem solchen. Nitrid-Verbindungshalbleitermaterialien sind Verbindungshalbleitermaterialien, die Stickstoff enthalten, wie die bereits genannten Materialien aus dem System InxAlyGa1-x-yN mit 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 und x + y ≤ 1.
  • Gemäß einer weiteren Ausführungsform des strahlungsemittierenden Halbleiterchips ist die Halbleiterschichtenfolge auf einem Substrat angeordnet, das transparent für die in der aktiven Schicht erzeugte elektromagnetische Strahlung ist. Der Begriff "transparent" bedeutet hierbei, dass das als transparent bezeichnete Element mindestens 85 %, bevorzugt mindestens 90 % und besonders bevorzugt mindestens 95 % oder mindestens 99% der jeweiligen elektromagnetischen Strahlung transmittiert.
  • Beispielsweise handelt es sich bei dem Substrat um ein Aufwachssubstrat für die Halbleiterschichtenfolge.
  • Beispielsweise basiert die Halbleiterschichtenfolge auf einem Nitrid-Verbindungshalbleitermaterial und das Substrat umfasst Saphir oder besteht aus Saphir. Saphir ist hierbei als Aufwachssubstrat für eine Halbleiterschichtenfolge geeignet, die auf einem Nitrid-Verbindungshalbleitermaterial basiert. Besonders bevorzugt ist die Halbleiterschichtenfolge auf dem Substrat epitaktisch aufgewachsen. Weiterhin ist ein Saphirsubstrat mit Vorteil in der Regel transparent für sichtbare elektromagnetische Strahlung und insbesondere für blaues Licht.
  • Gemäß einer weiteren Ausführungsform des strahlungsemittierenden Halbleiterchips ist auf einer Hauptfläche des Substrats, die von der Halbleiterschichtenfolge abgewandt ist, eine reflektierende Schicht angeordnet. Die reflektierende Schicht ist hierbei bevorzugt Teil des Halbleiterchips und beispielsweise an diesem stoffschlüssig fixiert.
  • Besonders bevorzugt ist die reflektierende Schicht diffus reflektierend für das Licht, das in der aktiven Schicht erzeugt wird, ausgebildet. Beispielsweise ist die reflektierende Schicht in direktem Kontakt mit der Hauptfläche des Substrats angeordnet. Die reflektierende Schicht lenkt Strahlung der aktiven Schicht mit Vorteil zu einer Strahlungsaustrittsfläche des Halbleiterchips, die der Hauptfläche des Substrats gegenüberliegt und erhöht so die Lichtausbeute aus dem Halbleiterchip. Bevorzugt verläuft die Strahlungsaustrittsfläche des Halbleiterchips parallel zur Hauptfläche des Substrats.
  • Besonders bevorzugt sind die Seitenflächen des Halbleiterchips frei von der reflektierenden Schicht. Auf diese Art und Weise ist eine Abstrahlung der in der aktiven Schicht erzeugten Strahlung über die Seitenflächen des Halbleiterchips möglich.
  • Gemäß einer besonders bevorzugten Ausführungsform des Halbleiterchips ist die reflektierende Schicht aus einem Harz gebildet, in das reflektierende Partikel eingebettet sind.
  • Das Harz weist bevorzugt einen Brechungsindex auf, der nicht größer als 1,45 ist.
  • Gemäß einer Ausführungsform des Halbleiterchips weisen die reflektierenden Partikel einen Volumenanteil zwischen einschließlich 50 Vol% und einschließlich 75 Vol% in der reflektierenden Schicht auf. Besonders bevorzugt weisen die reflektierenden Partikel einen Volumenanteil zwischen einschließlich 60 Vol% und einschließlich 75 Vol% in der reflektierenden Schicht auf. Hierbei ist das restliche Volumen der reflektierenden Schicht besonders bevorzugt durch das Harz gebildet. Eine derartige reflektierende Schicht ist mit Vorteil besonders hoch gefüllt mit reflektierenden Partikeln. Dies weist den Vorteil auf, dass neben einer hohen Reflexionswirkung der reflektierenden Schicht auch die Wärmeleitfähigkeit der reflektierenden Schicht gegenüber einer ungefüllten Harzschicht erhöht ist. Auf diese Art und Weise kann Wärme, die im Betrieb des Halbleiterchips entsteht, besser an ein darunterliegendes Material abgegeben werden.
  • Besonders bevorzugt weisen die reflektierenden Partikel einen Brechungsindex von mindestens 2,2 auf.
  • Gemäß einer weiteren Ausführungsform des Halbleiterchips weisen die reflektierenden Partikel einen Durchmesser zwischen einschließlich 100 Nanometer und einschließlich 500 Nanometer auf.
  • Gemäß einer besonders bevorzugten Ausführungsform des Halbleiterchips handelt es sich bei dem Harz um Silikon und bei den reflektierenden Partikeln um Titanoxidpartikel. Besonders bevorzugt ist die reflektierende Schicht also aus Silikon gebildet, in das Titanoxidpartikel eingebettet sind.
  • Die reflektierende Schicht weist weiterhin besonders bevorzugt eine Dicke zwischen einschließlich 5 Mikrometer und einschließlich 15 Mikrometer auf.
  • Besonders bevorzugt weist die reflektierende Schicht eine Wärmeleitfähigkeit zwischen einschließlich 1 W/mK und einschließlich 2 W/mK auf. Dies ist gegenüber der Wärmeleitfähigkeit einer Harzschicht aus Silikon ohne Partikelfüllung, die etwa eine Wärmeleitfähigkeit kleiner als 0,2 W/mK aufweist, deutlich erhöht. Eine Wärmeleitfähigkeit zwischen einschließlich 1 W/mK und einschließlich 2 W/mK kann beispielsweise in der Regel mit einer reflektierenden Schicht erzielt werden, bei der die reflektierenden Partikel einen Volumenanteil zwischen 50 Vol% und 75 Vol% aufweisen.
  • Gemäß einer weiteren Ausführungsform des strahlungsemittierenden Halbleiterchips ist zwischen der Hauptfläche des Substrats und der reflektierenden Schicht eine weitere transparente Harzschicht angeordnet. Bei der transparenten Harzschicht kann es sich beispielsweise um eine Silikonschicht handeln. Die transparente Harzschicht kann aus dem gleichen Harz gebildet sein, das auch für die reflektierende Schicht verwendet wird. Besonders bevorzugt weist die transparente Harzschicht einen Brechungsindex auf, der nicht größer ist als 1,45.
  • Besonders bevorzugt ist die transparente Harzschicht in direktem Kontakt auf die Hauptfläche des Substrats aufgebracht und auf die transparente Harzschicht wiederum in direktem Kontakt die reflektierende Schicht. Die transparente Harzschicht hat den Effekt, dass Strahlung, die von der aktiven Schicht ausgesandt wird und auf die reflektierende Schicht trifft, einen mittleren Brechungsindex des Harzes der reflektierenden Schicht und der Partikel der reflektierenden Schicht sieht und daher die reflektierende Schicht durchdringt anstatt reflektiert zu werden, wie gewünscht.
  • Bevorzugt ist die transparente Harzschicht möglichst dünn ausgebildet. Eine bevorzugte Untergrenze für die Dicke der transparenten Harzschicht liegt hierbei bei der Hälfte der Wellenlängen der von der aktiven Schicht ausgesandten Strahlung. Gemäß einer Ausführungsform des Halbleiterchips weist die transparente Harzschicht eine Dicke zwischen einschließlich 150 Nanometer und einschließlich 1 Mikrometer auf. Beispielsweise weist die transparente Harzschicht eine Dicke zwischen einschließlich 500 Nanometer und einschließlich 1 Mikrometer auf.
  • Der Brechungsindex der transparenten Harzschicht liegt besonders bevorzugt zwischen einschließlich 1,33 und einschließlich 1,4.
  • Bei einer sehr vorteilhaften Ausführungsform des Halbleiterchips ist in direktem Kontakt auf die Hauptfläche des Substrats eine transparente Harzschicht aus Silikon mit einer Dicke von etwa 1 Mikrometer aufgebracht. Auf der transparenten Harzschicht befindet sich wiederum in direktem Kontakt die reflektierende Schicht mit einer Dicke von etwa 10 Mikrometer. Die reflektierende Schicht ist hierbei aus einem Silikon gebildet, in das Titandioxidpartikel mit einem Volumenanteil von zirka 75 % eingebettet sind.
  • Gemäß einer weiteren Ausführungsform weist der strahlungsemittierende Halbleiterchip weiterhin einen Braggspiegel auf. Der Braggspiegel ist besonders bevorzugt zwischen der Hauptfläche des Substrats und der reflektierenden Schicht oder zwischen der Hauptfläche des Substrats und der transparenten Harzschicht angeordnet.
  • Eine bevorzugte Ausführungsform des Halbleiterchips weist hierbei in direktem Kontakt auf der Hauptfläche des Substrates einen Braggspiegel auf, auf dem in direktem Kontakt die reflektierende Schicht angeordnet ist. Alternativ hierzu ist es ebenfalls möglich, dass die Hauptfläche des Substrates in direktem Kontakt mit dem Braggspiegel angeordnet ist, wobei die transparente Harzschicht auf den Braggspiegel ebenfalls in direktem Kontakt aufgebracht ist. Besonders bevorzugt ist hierbei auf die transparente Harzschicht wiederum in direktem Kontakt die reflektierende Schicht aufgebracht.
  • Gemäß einer Ausführungsform des Halbleiterchips ist auf einer Hauptfläche der Halbleiterschichtenfolge, die von dem Substrat abgewandt ist, eine Konversionsschicht aufgebracht, die dazu geeignet ist, Strahlung der aktiven Schicht aus einem ersten Wellenlängenbereich in elektromagnetische Strahlung eines zweiten Wellenlängenbereichs umzuwandeln. Der erste Wellenlängenbereich ist hierbei verschieden von dem zweiten Wellenlängenbereich. Beispielsweise wandelt die Konversionsschicht blaue Strahlung der aktiven Schicht teilweise in gelbe und/oder rote und/oder grüne Strahlung um, so dass der Halbleiterchip im Betrieb weißes Licht aussendet.
  • Bei einem Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterchips wird zunächst ein Substratwafer bereitgestellt, auf dem eine Halbleiterschichtenfolge angeordnet ist. Die Halbleiterschichtenfolge weist eine aktive Schicht auf, die dazu geeignet ist, elektromagnetische Strahlung zu erzeugen. Auf einer Hauptfläche der Halbleiterschichtenfolge, die von dem Substratwafer abgewandt ist, sind elektrische Kontakte angeordnet, über die die aktive Schicht mit Strom versorgt werden kann.
  • Gegebenenfalls wird der Substratwafer vor oder nach der Aufbringung der Halbleiterschichtenfolge auf eine geeignete Dicke gedünnt. Die Dicke des Substratwafers liegt bevorzugt zwischen einschließlich 150 Mikrometer und einschließlich 1 Millimeter.
  • Der Substratwafer ist bevorzugt transparent für die Strahlung der aktiven Schicht. Der Substratwafer kann weiterhin die gleichen Eigenschaften und Merkmale aufweisen, wie das Substrat. Der Substratwafer weist gegenüber dem Substrat lediglich eine größere Fläche auf, da dieser zum Schluss des Verfahrens getrennt wird, so dass aus dem Substratwafer eine Vielzahl an Substraten entsteht. Beispielsweise ist der Substratwafer als Aufwachssubstrat für die Halbleiterschichtenfolge verwendet worden. Bevorzugt handelt es sich bei dem Substratwafer um einen Saphirsubstratwafer.
  • In einem nächsten Schritt werden in den Substratwafer Bruchkeime entlang von Trennlinien eingebracht. Bevorzugt sind zwischen zwei direkt benachbarten Trennlinien jeweils genau zwei elektrische Kontakte angeordnet. Die Trennlinien sind hierbei zunächst gedachte virtuelle Linien, entlang derer die späteren Halbleiterchips vereinzelt werden. Zum Einbringen der Bruchkeime kann beispielsweise ein Laser verwendet werden. Beispielsweise handelt es sich bei dem Verfahren zum Einbringen der Bruchkeime in den Substratwafer um ein Stealth Dicing Verfahren.
  • In einem nächsten Schritt wird eine reflektierende Schicht auf eine Hauptfläche des Substratwafers aufgebracht, besonders bevorzugt vollflächig. Schließlich erfolgt ein mechanisches Brechen des Substratwafers entlang der Trennlinien, sodass eine Vielzahl an strahlungsemittierenden Halbleiterchips entsteht. Bevorzugt erfolgt das Brechen entlang der Trennlinien nach dem Aufbringen der reflektierenden Schicht. Hierbei ist die reflektierende Schicht bevorzugt ausgehärtet, so dass kein Material der reflektierenden Schicht auf die Seitenflächen der fertigen Halbleiterchips gelangen kann. Besonders bevorzugt stellt das Brechen den letzten Verfahrensschritt des vorliegenden Verfahrens dar.
  • Gemäß einer Ausführungsform des Verfahrens wird nach dem Einbringen der Bruchkeime und vor dem Aufbringen der reflektierenden Schicht eine transparente Harzschicht auf der Hauptfläche des Substratwafers angeordnet, bevorzugt vollflächig.
  • Gemäß einer weiteren Ausführungsform des Verfahrens werden die reflektierende Schicht und/oder die transparente Harzschicht durch Sprühbeschichten aufgebracht. Mittels Sprühbeschichten können insbesondere Schichten mit sehr einheitlicher Dicke erzeugt werden. Besonders bevorzugt weicht die Dicke der reflektierenden Schicht und/oder die Dicke der transparenten Harzschicht nicht mehr als 5 % von einem Mittelwert ab.
  • Bei einem Sprühbeschichtungsverfahren wird zunächst flüssiges Harz, das bei der Herstellung der reflektierenden Schicht mit den reflektierenden Partikeln versehen ist, durch Sprühen auf die zu beschichtende Oberfläche aufgebracht und anschließend ausgehärtet.
  • Gemäß einer weiteren Ausführungsform des Verfahrens trennt das mechanische Brechen auch die reflektierende Schicht sowie alle weiteren Schichten, die sich auf dem Substratwafer befinden. Hierbei findet bevorzugt vor dem Brechen keine Vorbehandlung der reflektierenden Schicht, wie beispielsweise Ritzen oder Abtragen entlang der Trennlinien statt. Bevorzugt entsteht bei dem mechanischen Brechen eine scharfe Kante der reflektierenden Schicht oder auch der weiteren Schichten, die sich auf dem Substratwafer befinden.
  • Weiterhin ist es auch möglich, dass zumindest die reflektierende Schicht vor dem Brechen entlang der Trennlinien angeritzt, abgetragen oder entfernt wird. Das Anritzen, Abtragen oder Entfernen kann beispielsweise mittels einer Laserbehandlung, etwa mit einem Pikosekundenlaser oder einem wasserstrahlgeführten Laser, mit einem Sägeblatt oder mit einer Klinge erfolgen.
  • Beispielsweise ist der strahlungsemittierende Halbleiterchip dazu geeignet, in einem strahlungsemittierenden Bauelement verwendet zu werden. Beispielsweise ist der strahlungsemittierende Halbleiterchip in die Ausnehmung eines Bauelementgehäuses eingebracht. Die Ausnehmung ist mit Vorteil mit einem Verguss versehen.
  • Eine Bodenfläche der Ausnehmung des Bauelementgehäuses wird besonders bevorzugt teilweise durch die Oberfläche eines in einen Gehäusekörper eingebetteten Leiterrahmens gebildet. Die Oberfläche des Leiterrahmens besteht besonders bevorzugt aus Silber. Bevorzugt ist der Halbleiterchip mit einer Rückseite, die einer Strahlungsaustrittsfläche gegenüberliegt, auf der Oberfläche des Leiterrahmens aufgebracht. Der hier beschriebene Halbleiterchip weist den Vorteil auf, dass die Reflexion von Strahlung, die zur Rückseite des Halbleiterchips ausgesandt wird, nicht nur durch die Oberfläche des Leiterrahmens zur Strahlungsaustrittsfläche des Halbleierchips reflektiert wird, sondern auch zumindest durch die reflektierende Schicht.
  • Zur Herstellung eines strahlungsemittierenden Bauelements kann beispielsweise ein hier beschriebener Halbleiterchip in die Ausnehmung eines Bauelementgehäuses geklebt werden. Besonders bevorzugt sind hierbei die Seitenflächen des Halbleiterchips frei von Klebstoff. Dies weist den Vorteil auf, dass der Brechungsindex des verwendeten Klebstoffs im Wesentlichen frei gewählt werden kann.
  • Alternativ ist es auch möglich, dass der Klebstoff einen hohen Brechungsindex aufweist, bevorzugt von mindestens 1,5. Die bietet den Vorteil, dass es nicht zwingend erforderlich ist, die Seitenflächen des Halbleiterchips frei von Klebstoff zu halten.
  • Besonders bevorzugt sind in das Vergussmaterial Leuchtstoffpartikel eingebracht, die auf einer Strahlungsaustrittsfläche des Halbleiterchips und auf einer Bodenfläche der Ausnehmung durch Sedimentation eine Konversionsschicht ausbilden.
  • Besonders bevorzugt sind die Leuchtstoffpartikel dazu geeignet, elektromagnetische Strahlung des Halbleiterchips aus einem ersten Wellenlängenbereich zumindest teilweise in einen zweiten Wellenlängenbereich zu konvertieren. Beispielsweise sendet der Halbleiterchip blaues Licht aus, das von den Leuchtstoffpartikeln zumindest teilweise in gelbes Licht umgewandelt wird.
  • Für die Leuchtstoffpartikel ist beispielsweise eines der folgenden Materialien geeignet: mit seltenen Erden dotierte Granate, mit seltenen Erden dotierte Erdalkalisulfide, mit seltenen Erden dotierte Thiogallate, mit seltenen Erden dotierte Aluminate, mit seltenen Erden dotierte Silikate, mit seltenen Erden dotierte Orthosilikate, mit seltenen Erden dotierte Chlorosilikate, mit seltenen Erden dotierte Erdalkalisiliziumnitride, mit seltenen Erden dotierte Oxynitride, mit seltenen Erden dotierte Aluminiumoxinitride, mit seltenen Erden dotierte Siliziumnitride, mit seltenen Erden dotierte Sialone.
  • Eine Idee der vorliegenden Anmeldung ist es, auf die rückseitige Hauptfläche eines transparenten Substrats eines Halbleiterchips eine sehr dünne hoch reflektierende Schicht aufzubringen. Die reflektierende Schicht ist besonders bevorzugt aus einem Harz wie Silikon gebildet, in das reflektierende Partikel, beispielsweise Titanoxidpartikel, mit einem hohen Füllgrad eingebracht sind. Eine solche reflektierende Schicht weist beispielsweise gegenüber einem Braggspiegel den Vorteil auf, eine hohe Wärmeleitfähigkeit zu haben und gleichzeitig eine sehr hohe Reflektivität für sichtbares, insbesondere blaues Licht, der aktiven Schicht. So kann eine partikelgefüllte Harzschicht eine Reflektivität größer als 97 % für blaues Licht aufweisen. Dieser Wert liegt über dem Wert konventioneller Metallspiegel.
  • Die eine partikelgefüllte Harzschicht als reflektierende Schicht kann weiterhin mit Vorteil durch Sprühbeschichten aufgebracht werden. Diese Aufbringungsmethode erlaubt in der Regel eine sehr gute Kontrolle der Dicke der aufgebrachten Schicht. Weiterhin kann die reflektierende Schicht aufgrund ihrer geringen Dicke bei einem mechanischen Brechen eines Chipwaferverbunds in eine Vielzahl einzelner Halbleiterchips unter Bildung einer scharfen Kante durchtrennt werden.
  • Merkmale und Ausgestaltungen, die vorliegend nur mit dem Halbleiterchip beschrieben sind, können ebenfalls bei dem Verfahren zur Herstellung des Halbleiterchips, dem Bauelement und dem Verfahren zur Herstellung des Bauelements ausgebildet sein und umgekehrt.
  • Weitere vorteilhafte Ausführungsformen und Weiterbildungen der Erfindung ergeben sich aus den im Folgenden in Verbindung mit den Figuren beschriebenen Ausführungsbeispielen.
  • Anhand der schematischen Schnittdarstellungen der 1 bis 8 wird ein Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterchips gemäß einem ersten Ausführungsbeispiel beschrieben. 8 zeigt hierbei eine Vielzahl fertiger Halbleiterchips gemäß einem ersten Ausführungsbeispiel.
  • Anhand der schematischen Schnittdarstellungen der 9 bis 12 wird ein Verfahren zur Herstellung eines strahlungsemittierenden Bauelements gemäß einem Ausführungsbeispiel näher beschrieben. Die schematische Schnittdarstellung der 12 zeigt hierbei ein fertiges strahlungsemittierendes Bauelement gemäß einem Ausführungsbeispiel.
  • Anhand der schematischen Schnittdarstellung der 13 wird die Funktionsweise eines strahlungsemittierenden Bauelementes, wie es beispielsweise in 12 dargestellt ist, näher beschrieben.
  • Gleiche, gleichartige oder gleich wirkende Elemente sind in den Figuren mit denselben Bezugszeichen versehen. Die Figuren und die Größenverhältnisse der in den Figuren dargestellten Elemente untereinander sind nicht als maßstäblich zu betrachten. Vielmehr können einzelne Elemente, insbesondere Schichtdicken, zur besseren Darstellbarkeit und/oder zum besseren Verständnis übertrieben groß dargestellt sein.
  • Bei dem Verfahren gemäß dem Ausführungsbeispiel der 1 bis 8 wird ein Substratwafer 1 bereitgestellt (1). Der Substratwafer 1 ist vorliegend aus Saphir gebildet. Dann wird, wie anhand von 2 schematisch dargestellt, eine epitaktische Halbleiterschichtenfolge 2 epitaktisch auf dem Substratwafer 1 aufgewachsen und auf einer Hauptfläche der Halbleiterschichtenfolge 2, die von dem Substrat 1 abgewandt ist, eine Vielzahl elektrischer Kontakte 3 aufgebracht.
  • Die Halbleiterschichtenfolge 2 umfasst hierbei eine aktive Schicht 4, die dazu geeignet ist, im Betrieb der fertigen Halbleiterchips blaues Licht zu erzeugen. Der Substratwafer 1 aus Saphir ist hierbei transparent für das blaue Licht der aktiven Schicht 4 ausgebildet. Die epitaktische Halbleiterschichtenfolge 2 basiert vorliegend bevorzugt auf einem Nitrid-Verbindungshalbleitermaterial.
  • In einem nächsten Schritt werden entlang von Trennlinien 5 Bruchkeime 6 mit Hilfe eines Lasers in den Substratwafer 1 eingebracht (3). Zwischen zwei direkt benachbarten Trennlinien 6 sind hierbei jeweils genau zwei elektrische Kontakte 3 angeordnet.
  • Nach dem Einbringen der Bruchkeime 6 wird nun bei dem Ausführungsbeispiel gemäß der 1 bis 8 ein Braggspiegel 7 vollflächig in direktem Kontakt auf eine Hauptfläche des Substratwafers 1 aufgebracht, die von der Halbleiterschichtenfolge 2 abgewandt ist (4).
  • In einem weiteren Schritt wird auf den Braggspiegel 7 in direktem Kontakt eine transparente Harzschicht 8 angeordnet, beispielsweise durch Sprühbeschichten (5). Die transparente Harzschicht 8 ist beispielsweise aus einem Silikon gebildet.
  • Schließlich wird in direktem Kontakt auf die transparente Harzschicht 8 eine reflektierende Schicht 9 vollflächig aufgebracht, bevorzugt ebenfalls durch Sprühbeschichten. Die reflektierende Schicht 9 ist hierbei aus einem Harz gebildet wie etwa Silikon, in das reflektierende Partikel eingebracht sind. Die reflektierenden Partikel sind hierbei bevorzugt aus Titanoxid gebildet (6).
  • Besonders bevorzugt wird die transparente Harzschicht 8 vor dem Aufbringen der reflektierenden Schicht 9 ausgehärtet. Ebenfalls wird die reflektierende Schicht 9 nach dem Aufbringen bevorzugt ausgehärtet.
  • Schließlich wird der Chipverbund durch mechanisches Brechen entlang der Trennlinien 5 in eine Vielzahl strahlungsemittierender Halbleiterchips 10 vereinzelt (7).
  • 8 zeigt schließlich die fertigen Halbleiterchips 10, wie sie bei dem Verfahren gemäß dem Ausführungsbeispiel der 1 bis 8 entstehen.
  • Jeder Halbleiterchip 10 weist hierbei ein Substrat 11 auf, auf das eine epitaktische Halbleiterschichtenfolge 2 mit einer aktiven Schicht 4 angeordnet ist. Die aktive Schicht 4 ist hierbei dazu geeignet, blaues Licht auszusenden. Auf einer Hauptfläche der Halbleiterschichtenfolge 2, die von dem Substrat 11 abgewandt ist, sind jeweils zwei elektrische Kontakte 3 angeordnet, die zur elektrischen Kontaktierung der aktiven Schicht 4 dienen.
  • Auf einer Hauptfläche des Substrats 1, die von der Halbleiterschichtenfolge 2 abgewandt ist, ist in direktem Kontakt ein Braggspiegel 7 aufgebracht. In direktem Kontakt auf den Braggspiegel 7 ist weiterhin eine transparente Harzschicht 8, vorliegend aus Silikon, angeordnet. Auf der transparenten Harzschicht 8 ist schließlich eine reflektierende Schicht 9 in direktem Kontakt angeordnet. Die reflektierende Schicht 9 ist aus einem Silikon gebildet, in das Titandioxidpartikel eingebracht sind.
  • Bei dem Verfahren gemäß dem Ausführungsbeispiel der 9 bis 12 wird auf der Bodenfläche einer Ausnehmung 12 eines Bauelementgehäuses 13 ein Halbleiterchip 10 angeordnet. Der Halbleiterchip weist im Unterschied zu dem Halbleiterchip gemäß 8 keinen Braggspiegel 7 auf, sondern nur eine transparente Harzschicht 8 und eine reflektierende Schicht 9 (9). Das Bauelementgehäuse 13 weist hierbei einen Leiterrahmen 14 auf, der in einen Gehäusekörper eingebettet ist. Der Gehäusekörper ist beispielsweise durch ein Epoxidharz gebildet. Der Leiterrahmen 14 ist beispielsweise aus Metall, etwa Silber, gebildet. Der Halbleiterchip 10 ist mit einer Hauptfläche der reflektierenden Schicht 9 auf einen Teil der Bodenfläche der Ausnehmung 12 montiert, der durch den Leiterrahmen 14 gebildet wird. Besonders bevorzugt wird der Halbleiterchip 10 durch Kleben an der Bodenfläche der Ausnehmung 12 befestigt.
  • Der Klebstoff weist entweder einen vergleichsweise niedrigen Brechungsindex oder einen vergleichsweise hohen Brechungsindex auf. Wird ein vergleichsweise niedriger Brechungsindex verwendet, so sind die Seiten des Halbleiterchips 10 hierbei besonders bevorzugt frei von einem Klebstoff. Dies ist bei der Verwendung eines Klebstoffs mit einem höheren Brechungsindex nicht notwendig.
  • In einem weiteren Schritt, der schematisch in 10 dargestellt ist, werden die vorderseitigen elektrischen Kontakte 3 des Halbleiterchips 10 jeweils mit einem Bonddraht 15 elektrisch leitend mit zwei verschiedenen Bereichen des Leiterrahmens 14 elektrisch leitend verbunden. Die beiden Bereiche des Leiterrahmens 14, die jeweils mit einem Bonddraht 15 versehen sind, sind hierbei durch einen Bereich des Gehäusekörpers elektrisch gegeneinander isoliert.
  • In einem nächsten Schritt, der schematisch in 11 dargestellt ist, wird die Ausnehmung 12 des Bauelementgehäuses 13, in der der Halbleiterchip 10 angeordnet ist, mit einem Verguss 16 versehen. Der Verguss 16 ist vorliegend aus einem Silikon gebildet, in das Leuchtstoffpartikel eingebracht sind.
  • In einem nächsten Schritt, der schematisch in 12 dargestellt ist, sedimentieren die Leuchtstoffpartikel und bilden eine dichte Konversionsschicht 17 auf einer Hauptfläche des Halbleiterchips 10 sowie auf den Teilen der Bodenfläche der Ausnehmung 12 aus, die frei zugänglich sind.
  • 13 zeigt schematisch den markierten Ausschnitt des strahlungsemittierenden Bauelements der 12. Anhand der 13 sollen einige Details des Halbleiterchips 10 näher erläutert werden.
  • Aufgrund des vergleichsweise hohen Brechungsindex des Saphirsubstrates 11 ist es möglich, dass Licht, das in der aktiven Schicht 4 erzeugt und zu einer rückseitigen Hauptfläche des Substrats 11 ausgesandt wird, innerhalb des Halbleiterchips 10 totalreflektiert wird. Je größer der Brechungsindexunterschied zwischen dem Substrat 11 und dem umgebenden Material ist, umso höher ist die Wahrscheinlichkeit von Totalreflexion an den Grenzflächen des Saphirsubstrats. Indem auf der rückseitigen Hauptfläche des Substrats 11 eine dünne transparente Harzschicht 8, beispielsweis aus einem klaren Silikon mit einem möglichst geringen Brechungsindex, aufgebracht ist, kann die Totalreflexion an der rückseitigen Hauptfläche des Substrats 11 maximiert werden, so dass Strahlung der aktiven Schicht 4, die zu der rückseitigen Hauptfläche des Substrats 11 ausgesandt wird, zu einer Strahlungsaustrittsfläche 18 des Halbleiterchips 10 umgelenkt wird. Die Dicke der transparenten Harzschicht 8 weist hierbei bevorzugt einen Wert zwischen einschließlich 0,5 Mikrometer und einschließlich 1 Mikrometer auf.
  • In direktem Kontakt auf die transparente Harzschicht 8 ist eine reflektierende Schicht 9 aus Silikon mit Titanoxidpartikeln aufgebracht. Die transparente Harzschicht 8 weist besonders bevorzugt eine Dicke von zirka 10 Mikrometer auf. Sollte Strahlung der aktiven Schicht 4 durch die transparente Harzschicht 8 hindurchdringen, so kann sie durch die diffus reflektierende Schicht 9 zurückreflektiert werden. Die Dicke der reflektierenden Schicht 9 ist hierbei ein Kompromiss zwischen thermischer Leitfähigkeit und Reflektivität.
  • Aufgrund der reflektierenden Schicht 9 wird der Anteil an Strahlung des Halbleiterchips 10 verringert, der auf den Leiterrahmen 14 auftrifft. Da der Leiterrahmen 14 in der Regel eine vergleichsweise niedrige Reflektivität aufweist, kann so der Verlust an Strahlung reduziert werden.
  • Weiterhin ist es möglich, dass zwischen dem Substrat 11 und der transparenten Harzschicht 9 ein Braggspiegel 7 angeordnet ist. Ist ein Braggspiegel 7 vorhanden, so definiert dieser in der Regel im Wesentlichen die interne Reflexion innerhalb des Halbleiterchips 10.
  • Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele auf diese beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist.
  • Bezugszeichenliste
  • 1
    Substratwafer
    2
    Halbleiterschichtenfolge
    3
    elektrische Kontakte
    4
    aktive Schicht
    5
    Trennlinie
    6
    Bruchkeim
    7
    Braggspiegel
    8
    transparente Harzschicht
    9
    reflektierende Schicht
    10
    Halbleiterchip
    11
    Substrat
    12
    Ausnehmung
    13
    Bauelementgehäuse
    14
    Leiterrahmen
    15
    Bonddraht
    16
    Verguss
    17
    Konversionsschicht
    18
    Strahlungsaustrittsfläche

Claims (20)

  1. Strahlungsemittierender Halbleiterchip (10) mit: – einer Halbleiterschichtenfolge (2) mit einer aktiven Schicht (4), die dazu geeignet ist, elektromagnetische Strahlung zu erzeugen, und – einem Substrat (11), auf dem die Halbleiterschichtenfolge (2) angeordnet ist und das transparent für die in der aktiven Schicht (4) erzeugte elektromagnetische Strahlung ist, – eine reflektierende Schicht (9), die auf einer Hauptfläche des Substrats (11) angeordnet ist, die von der Halbleiterschichtenfolge (2) abgewandt ist, wobei die reflektierende Schicht (9) aus einem Harz gebildet ist, in das reflektierende Partikeln eingebettet sind.
  2. Strahlungsemittierender Halbleiterchip (10) nach dem vorherigen Anspruch, bei dem Seitenflächen des Halbleiterchips (10) frei sind von der reflektierenden Schicht (9).
  3. Strahlungsemittierender Halbleiterchip (10) nach einem der obigen Ansprüche, bei dem die reflektierenden Partikel in der reflektierenden Schicht (9) einen Volumenanteil zwischen einschließlich 50 Vol% und einschließlich 75 Vol% aufweisen.
  4. Strahlungsemittierender Halbleiterchip (10) nach einem der obigen Ansprüche, bei dem die reflektierenden Partikel einen Brechungsindex von mindestens 2,2 aufweisen.
  5. Strahlungsemittierenden Halbleiterchip (10) nach einem der obigen Ansprüche, bei dem die reflektierenden Partikel aus Titanoxid gebildet sind und das Harz Silikon ist.
  6. Strahlungsemittierender Halbleiterchip (10) nach einem der obigen Ansprüche, bei dem die reflektierende Schicht (9) eine Dicke zwischen einschließlich 5 Mikrometer und einschließlich 15 Mikrometer aufweist.
  7. Strahlungsemittierender Halbleiterchip (10) nach einem der obigen Ansprüche, bei dem die reflektierende Schicht (9) eine Wärmeleitfähigkeit zwischen einschließlich 1 W/mK und einschließlich 2 W/mK aufweist.
  8. Strahlungsemittierender Halbleiterchip (10) nach einem der obigen Ansprüche, bei dem zwischen der Hauptfläche des Substrats (11) und der reflektierenden Schicht (9) eine weitere transparente Harzschicht (8) angeordnet ist.
  9. Strahlungsemittierender Halbleiterchip (10) nach dem vorherigen Anspruch, bei dem die transparente Harzschicht (8) eine Dicke zwischen einschließlich 150 Nanometer und einschließlich 1 Mikrometer aufweist.
  10. Strahlungsemittierender Halbleiterchip (10) nach einem der Ansprüche 8 bis 9, bei dem die transparente Harzschicht (8) in direktem Kontakt auf die Hauptfläche des Substrats (11) aufgebracht ist und die reflektierende Schicht (9) in direktem Kontakt auf die transparente Harzschicht (8).
  11. Strahlungsemittierender Halbleiterchip (10) nach einem der obigen Ansprüche, bei dem zwischen der Hauptfläche des Substrats (11) und der reflektierenden Schicht (9) oder zwischen der Hauptfläche des Substrats (11) und der transparenten Harzschicht (8) ein Braggspiegel (7) angeordnet ist.
  12. Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterchips (10) mit den folgenden Schritten: – Bereitstellen eines Substratwafers (1), auf dem eine Halbleiterschichtenfolge (2) mit einer aktiven Schicht (4), die dazu geeignet ist, elektromagnetische Strahlung zu erzeugen, angeordnet ist, wobei der Substratwafer (1) transparent für die Strahlung der aktiven Schicht (4) ist, – Einbringen von Bruchkeimen (6) im Substratwafer (1) entlang von Trennlinien (5), – vollflächiges Aufbringen einer reflektierenden Schicht (9) auf eine Hauptfläche des Substratwafers (1), und – mechanisches Brechen entlang der Trennlinien (5), so dass eine Vielzahl an strahlungsemittierenden Halbleiterchips (10) entsteht.
  13. Verfahren nach dem vorherigen Anspruch, bei dem nach dem Einbringen der Bruchkeime (6) und vor dem Aufbringen der reflektierenden Schicht (9) vollflächig eine transparente Harzschicht (8) auf der Hauptfläche des Substratwafers (1) angeordnet wird.
  14. Verfahren nach einem der Ansprüche 12 bis 13, bei dem die reflektierende Schicht (9) und/oder die transparente Harzschicht (8) durch Sprühbeschichten aufgebracht werden.
  15. Verfahren nach einem der Ansprüche 12 bis 14, bei dem während des Brechens eine scharfe Kante der reflektierenden Schicht (9) und/oder der transparenten Harzschicht (8) entsteht.
  16. Verfahren nach einem der Ansprüche 12 bis 14, bei dem zumindest die reflektierende Schicht (9) vor dem Brechen entlang der Trennlinien (5) angeritzt, abgetragen oder entfernt wird.
  17. Strahlungsemittierendes Bauelement mit einem strahlungsemittierenden Halbleiterchip (10) nach einem der Ansprüche 1 bis 11.
  18. Strahlungsemittierendes Bauelement nach dem vorherigen Anspruch, bei dem der Halbleiterchip (10) in die Ausnehmung (12) eines Bauelementgehäuses (13) eingebracht ist, die mit einem Verguss (16) versehen ist.
  19. Verfahren zur Herstellung eines strahlungsemittierenden Bauelements nach einem der Ansprüche 17 oder 18, mit den Schritten: – Kleben eines Halbleiterchips (10) nach einem der Ansprüche 1 bis 9 in die Ausnehmung (12) eines Bauelementgehäuses (13), – Vergießen des Halbleiterchips (10).
  20. Verfahren nach dem vorherigen Anspruch, bei dem in das Vergussmaterial Leuchtstoffpartikel eingebracht sind, die auf einer Strahlungsaustrittsfläche (18) des Halbleiterchips (10) und auf einer Bodenfläche der Ausnehmung (12) durch Sedimentation eine Konversionsschicht (17) ausbilden.
DE102016113969.6A 2016-07-28 2016-07-28 Strahlungsemittierender Halbleiterchip, Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterchips, strahlungsemittierendes Bauelement und Verfahren zur Herstellung eines strahlungsemittierenden Bauelements Withdrawn DE102016113969A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102016113969.6A DE102016113969A1 (de) 2016-07-28 2016-07-28 Strahlungsemittierender Halbleiterchip, Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterchips, strahlungsemittierendes Bauelement und Verfahren zur Herstellung eines strahlungsemittierenden Bauelements
DE112017003749.2T DE112017003749A5 (de) 2016-07-28 2017-07-25 Strahlungsemittierender Halbleiterchip, Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterchips, strahlungsemittierendes Bauelement und Verfahren zur Herstellung eines strahlungsemittierenden Bauelements
PCT/EP2017/068791 WO2018019846A1 (de) 2016-07-28 2017-07-25 Strahlungsemittierender halbleiterchip, verfahren zur herstellung einer vielzahl strahlungsemittierender halbleiterchips, strahlungsemittierendes bauelement und verfahren zur herstellung eines strahlungsemittierenden bauelements
US16/316,987 US20210280756A1 (en) 2016-07-28 2017-07-25 Radiation-Emitting Semiconductor Chip, Method for Producing a Plurality of Radiation-Emitting Semiconductor Chips, Radiation-Emitting Component and Method for Producing a Radiation-Emitting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016113969.6A DE102016113969A1 (de) 2016-07-28 2016-07-28 Strahlungsemittierender Halbleiterchip, Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterchips, strahlungsemittierendes Bauelement und Verfahren zur Herstellung eines strahlungsemittierenden Bauelements

Publications (1)

Publication Number Publication Date
DE102016113969A1 true DE102016113969A1 (de) 2018-02-01

Family

ID=59501422

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102016113969.6A Withdrawn DE102016113969A1 (de) 2016-07-28 2016-07-28 Strahlungsemittierender Halbleiterchip, Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterchips, strahlungsemittierendes Bauelement und Verfahren zur Herstellung eines strahlungsemittierenden Bauelements
DE112017003749.2T Withdrawn DE112017003749A5 (de) 2016-07-28 2017-07-25 Strahlungsemittierender Halbleiterchip, Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterchips, strahlungsemittierendes Bauelement und Verfahren zur Herstellung eines strahlungsemittierenden Bauelements

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE112017003749.2T Withdrawn DE112017003749A5 (de) 2016-07-28 2017-07-25 Strahlungsemittierender Halbleiterchip, Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterchips, strahlungsemittierendes Bauelement und Verfahren zur Herstellung eines strahlungsemittierenden Bauelements

Country Status (3)

Country Link
US (1) US20210280756A1 (de)
DE (2) DE102016113969A1 (de)
WO (1) WO2018019846A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020127033A1 (de) * 2018-12-19 2020-06-25 Osram Opto Semiconductors Gmbh Strahlungsemittierendes bauelement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022108133A1 (de) * 2022-04-05 2023-10-05 Ams-Osram International Gmbh Verfahren zur herstellung eines optoelektronischen bauelements und optoelektronisches bauelement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007391A (ja) * 1999-06-23 2001-01-12 Sanken Electric Co Ltd 半導体発光装置
WO2008073682A1 (en) * 2006-12-07 2008-06-19 3M Innovative Properties Company Light reflecting resin composition, light emitting apparatus and optical display apparatus
US20110291143A1 (en) * 2008-12-30 2011-12-01 Samsung Led Co., Ltd. Light-emitting-device package and a method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638667C2 (de) * 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mischfarbiges Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement
EP2822045B1 (de) * 2012-05-31 2018-04-11 Panasonic Intellectual Property Management Co., Ltd. Led-modul, beleuchtungsvorrichtung und lampe
WO2014109293A1 (ja) * 2013-01-10 2014-07-17 コニカミノルタ株式会社 Led装置およびその製造に用いられる塗布液
TWI633678B (zh) * 2014-01-27 2018-08-21 Glo公司 具有布拉格反射器之led裝置及單分led晶圓基板為具有該裝置之晶粒之方法
DE102014117591A1 (de) * 2014-12-01 2016-06-02 Osram Opto Semiconductors Gmbh Halbleiterchip, Verfahren zur Herstellung einer Vielzahl an Halbleiterchips und Verfahren zur Herstellung eines elektronischen oder optoelektronischen Bauelements und elektronisches oder optoelektronisches Bauelement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007391A (ja) * 1999-06-23 2001-01-12 Sanken Electric Co Ltd 半導体発光装置
WO2008073682A1 (en) * 2006-12-07 2008-06-19 3M Innovative Properties Company Light reflecting resin composition, light emitting apparatus and optical display apparatus
US20110291143A1 (en) * 2008-12-30 2011-12-01 Samsung Led Co., Ltd. Light-emitting-device package and a method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020127033A1 (de) * 2018-12-19 2020-06-25 Osram Opto Semiconductors Gmbh Strahlungsemittierendes bauelement

Also Published As

Publication number Publication date
WO2018019846A1 (de) 2018-02-01
US20210280756A1 (en) 2021-09-09
DE112017003749A5 (de) 2019-04-18

Similar Documents

Publication Publication Date Title
DE102010053362B4 (de) Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterchips, strahlungsemittierender Halbleiterchip und strahlungsemittierendes Bauelement
DE102010027253B4 (de) Optoelektronisches Halbleiterbauteil
DE112015002479B4 (de) Halbleiterbauelement und Beleuchtungsvorrichtung
DE102013100711B4 (de) Verfahren zur Herstellung einer Vielzahl optoelektronischer Bauelemente
EP2901479B1 (de) Optoelektronisches bauelement
DE112014004933T5 (de) Wellenlängenumwandlungselement, Verfahren zur Herstellung und Licht emittierender Halbleiterbauteil, welcher dasselbe aufweist
EP2149160A1 (de) Optoelektronisches bauelement und verfahren zur herstellung einer mehrzahl optoelektronischer bauelemente
DE102012102847A1 (de) Licht emittierendes Halbleiterbauelement und Verfahren zur Herstellung eines Licht emittierenden Halbleiterbauelements
DE102018111637A1 (de) Optoelektronischer halbleiterchip, verfahren zur herstellung eines optoelektronischen bauelements und optoelektronisches bauelement
DE102013112549A1 (de) Verfahren zur Herstellung von optoelektronischen Halbleiterbauelementen und optoelektronisches Halbleiterbauelement
WO2015036231A1 (de) Optoelektronisches halbleiterbauteil und verfahren zur herstellung eines optoelektronischen halbleiterbauteils
WO2014173590A1 (de) Verfahren zur herstellung eines optoelektronischen halbleiterchips und optoelektronischer halbleiterchip
DE102013212247B4 (de) Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
DE102018109542B4 (de) Licht emittierendes bauelement und verfahren zur herstellung eines licht emittierenden bauelements
DE102010022561A1 (de) Wellenlängenkonversionselement, optoelektronisches Bauelement mit einem Wellenlängenkonversionselement und Verfahren zur Herstellung eines Wellenlängenkonversionselements
DE102011111980A1 (de) Verfahren zur Herstellung einer Leuchtdiode und Leuchtdiode
DE102016113969A1 (de) Strahlungsemittierender Halbleiterchip, Verfahren zur Herstellung einer Vielzahl strahlungsemittierender Halbleiterchips, strahlungsemittierendes Bauelement und Verfahren zur Herstellung eines strahlungsemittierenden Bauelements
DE102011012298A1 (de) Verbundsubstrat, Halbleiterchip mit Verbundsubstrat und Verfahren zur Herstellung von Verbundsubstraten und Halbleiterchips
DE102015109413A1 (de) Verfahren zur Herstellung von optoelektronischen Konversions-Halbleiterchips und Verbund von Konversions-Halbleiterchips
DE102017113388A1 (de) Verfahren zur Herstellung eines optoelektronischen Bauelements und optoelektronisches Bauelement
DE102017120385B4 (de) Licht emittierendes Bauelement und Verfahren zur Herstellung eines Licht emittierenden Bauelements
DE102017124155A1 (de) Licht emittierendes Bauelement und Verfahren zur Herstellung eines Licht emittierenden Bauelements
DE102017130574A1 (de) Verfahren zur Herstellung eines Konversionselements und Konversionselement
DE102018125138A1 (de) Strahlungsemittierendes bauteil und verfahren zur herstellung eines strahlungsemittierenden bauteils
WO2020007710A1 (de) Strahlungsemittierendes bauteil und verfahren zur herstellung eines strahlungsemittierenden bauteils

Legal Events

Date Code Title Description
R163 Identified publications notified
R118 Application deemed withdrawn due to claim for domestic priority