DE102016103677A1 - Verfahren zur Steuerung einer Leuchteinrichtung und Leuchteinrichtung - Google Patents

Verfahren zur Steuerung einer Leuchteinrichtung und Leuchteinrichtung Download PDF

Info

Publication number
DE102016103677A1
DE102016103677A1 DE102016103677.3A DE102016103677A DE102016103677A1 DE 102016103677 A1 DE102016103677 A1 DE 102016103677A1 DE 102016103677 A DE102016103677 A DE 102016103677A DE 102016103677 A1 DE102016103677 A1 DE 102016103677A1
Authority
DE
Germany
Prior art keywords
color
lighting device
color perception
perception
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102016103677.3A
Other languages
English (en)
Inventor
Tran Quoc Khanh
Quang Vinh Trinh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Darmstadt
Original Assignee
Technische Universitaet Darmstadt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Darmstadt filed Critical Technische Universitaet Darmstadt
Priority to DE102016103677.3A priority Critical patent/DE102016103677A1/de
Priority to PCT/EP2017/054583 priority patent/WO2017148906A1/de
Publication of DE102016103677A1 publication Critical patent/DE102016103677A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]

Abstract

Bei einem Verfahren zur Steuerung einer Leuchteinrichtung (6) mit mindestens zwei Leuchtmitteln (1, 2, 3, 4, 5) mit unterschiedlichen Emissionscharakteristiken werden in einem Erfassungsschritt mindestens drei verschiedene Farbkenngrößen für nicht deckungsgleiche Wellenlängenbereiche mit einer Farbsensoreinrichtung erfasst, in einem Umrechnungsschritt die mit der Farbsensoreinrichtung erfassten Farbkenngrößen in an die menschliche Farbwahrnehmung angepasste Farbwahrnehmungskenngrößen umgewandelt, in einem Steuersignalerzeugungsschritt in Abhängigkeit von einem vorgegebenen Lichtspektrum, das mit der Leuchteinrichtung (6) emittiert werden soll, und der ermittelten Farbwahrnehmungskenngrößen Steuersignale für die mindestens zwei Leuchtmittel (1, 2, 3, 4, 5) erzeugt und an eine Betriebseinrichtung übermittelt, mit der der Betriebsstrom für jedes Leuchtmittel (1, 2, 3, 4, 5) bereitgestellt wird. In dem Erfassungsschritt werden die drei verschiedenen Farbkenngrößen mit einem RGB-Sensor (11) erfasst. In dem Umrechnungsschritt werden drei Farbwahrnehmungskenngrößen durch eine Matrixmultiplikation einer Parametermatrix der Dimension 3 × m mit den in dem Erfassungsschritt erfassten Farbkenngrößen und gegebenenfalls aus den Farbkenngrößen abgeleiteten weiteren Kenngrößen berechnet.

Description

  • Die Erfindung betrifft ein Verfahren zur Steuerung einer Leuchteinrichtung mit mindestens zwei Leuchtmitteln mit unterschiedlichen Emissionscharakteristiken.
  • Es sind viele verschiedene Leuchtmittel bekannt, die auf unterschiedliche Arten und Weisen Licht erzeugen und emittieren können. Bei Glühlampen wird ein elektrischer Leiter durch einen elektrischen Stromfluss aufgeheizt und zum Glühen bzw. Leuchten angeregt. Das Emissionsspektrum einer Glühfadenlampe kann einerseits durch eine geeignete Materialwahl und Dimensionierung des stromdurchflossenen Glühfadens vorgegeben werden und andererseits durch eine Ausgestaltung oder Beschichtung einer den Glühfaden umgebenden Umhüllung beeinflusst werden.
  • Mit einer Leuchtdiode, einem lichtemittierenden Halbleiter-Bauelement, kann ein elektrischer Strom sehr effizient in eine Lichtemission umgewandelt werden. Durch eine Auswahl der für die Leuchtdiode verwendeten Halbleitermaterialien und deren Dotierung können die spektralen Eigenschaften des mit der betreffenden Leuchtdiode erzeugten Lichts beeinflusst werden. Das von dem Halbleitermaterial emittierte Licht weist üblicherweise einen sehr schmalen und nahezu monochromatischen Wellenlängenbereich auf. Durch eine Kombination des lichtemittierenden Halbleitermaterials mit lumineszierenden Materialien kann ein von dem Halbleitermaterial abgestrahltes kurzwelliges und damit hochenergetisches Licht in langwelligeres Licht umgewandelt werden und ein breitbandiges Emissionsspektrum erzeugt werden.
  • Es sind verschiedene Arten von Leuchtdioden bekannt, die sich hinsichtlich der jeweiligen Emissionscharakteristiken, aber auch hinsichtlich anderer optischer Eigenschaften wie beispielsweise der Lichtausbeute oder dem Öffnungswinkel der Lichtemission sowie hinsichtlich der Effizienz, des Betriebsstroms und einer Temperaturabhängigkeit unterscheiden. Hinzu kommen weitere unterschiedliche Eigenschaften wie beispielsweise die Alterung der Leuchtdiode in Abhängigkeit von der Betriebsdauer, den Betriebsbedingungen und dem jeweiligen Halbleitermaterial.
  • Es ist bekannt, dass mehrere verschiedene Leuchtdioden mit unterschiedlichen Emissionscharakteristiken in einer Leuchteinrichtung zusammengefasst werden können, um durch eine Überlagerung der verschiedenen Emissionscharakteristiken eine von der Leuchteinrichtung emittierte spektrale Leistungsverteilung mit möglichst vorteilhaften Eigenschaften zu erzeugen. Um eine spektrale Leistungsverteilung erzeugen zu können, die möglichst ähnlich zu dem natürlichen Tageslicht ist, müssen üblicherweise rote, blaue, grüne und auch breitbandig emittierende weiße Leuchtdioden miteinander kombiniert werden. Durch eine getrennte Ansteuerung können die Lichtstärke der einzelnen Leuchtdioden und damit einhergehend das durch Überlagerung von allen Leuchtdioden emittierte Lichtspektrum vorgegeben werden.
  • Das menschliche Auge weist einen hochentwickelten Farbensinn auf und kann verschiedene Lichtspektren voneinander sowie die Farbwahrnehmung von Produkten voneinander unterscheiden, die mit verschiedenen Lichtspektren bzw. mit verschiedenen spektralen Leistungsverteilungen beleuchtet werden. Es ist bekannt, dass für unterschiedliche Anwendungen verschiedene Lichtspektren jeweils besonders vorteilhaft sind. So können beispielsweise in einem Lebensmittelladen Leuchteinrichtungen mit verschiedenen Lichtspektren dazu verwendet werden, eine Käsetheke in vorteilhaften Gelbtönen, eine Wursttheke in vorteilhaften Rottönen und eine Obst- und Gemüsetheke in Grüntönen zu beleuchten. Auch für die Beleuchtung in Museen oder bei der Erstellung von Filmaufnahmen ist das jeweilige Lichtspektrum der verwendeten Leuchteinrichtung von großer Bedeutung.
  • Die Emissionscharakteristika einer Leuchtdiode werden maßgeblich durch die jeweilige Konstruktion, durch das Material und die Herstellung bedingt und sind für baugleiche Leuchtdioden näherungsweise gleich. Mehrere Leuchteinrichtungen, welche eine übereinstimmende Kombination von Leuchtdioden sowie eine gleiche Steuerungseinrichtung aufweisen, emittieren während des Betriebs demzufolge ein näherungsweise übereinstimmendes Lichtspektrum. Um ein Lichtspektrum mit einer vorgegebenen Farbtemperatur zu erzeugen werden in der Steuerungseinrichtung der Leuchteinrichtung die einzelnen Leuchtdioden derart angesteuert bzw. üblicherweise mit einem pulsweitenmodulierten Betriebsstrom versorgt, dass die Überlagerung der verschiedenen Lichtspektren der einzelnen Leuchtdioden den gewünschten Farbtemperatureindruck erzeugen.
  • Aus der Praxis ist es bekannt, für die Ansteuerung der einzelnen Leuchtdioden auf mathematische Modellierungen der Lichtspektren der einzelnen Typen von Leuchtdioden zurückzugreifen. Die meisten Modellierungen beruhen auf physikalischen Überlegungen und Näherungen, wobei das Lichtspektrum aus mehreren Komponenten zusammengesetzt und die jeweiligen Komponentenparameter an ein mit dem betreffenden Leuchtiodentyp gemessenes Lichtspektrum angepasst werden. Mit derartigen Modellierungen können die Lichtspektren eines Leuchtdiodentyps bei vorgegebenen Betriebsbedingungen relativ gut und für viele Anwendungsfälle ausreichend genau modelliert werden.
  • Es hat sich jedoch gezeigt, dass die von den einzelnen Leuchtdioden emittierten Lichtspektren nicht nur von der jeweiligen Materialzusammensetzung und Konstruktion des Halbleiters, sondern auch von weiteren Parametern und insbesondere von der Betriebstemperatur der Leuchtdiode abhängen. Dabei kann sich beispielsweise eine Peak-Wellenlänge einer Leuchtdiode um mehrere Nanometer und gegebenenfalls um etwa 10 Nanometer oder mehr verändern, wenn die Temperatur um 40 °C steigt. In gleicher Weise ändert sich die Peak-Wellenlänge auch bei einem Stromfluss zwischen 100 Milliampere und 700 Milliampere, wobei diese Stromwerte innerhalb eines üblicherweise für eine Ansteuerung der Leuchtdioden verwendeten Bereichs liegen. Zudem ändert sich in beiden Fällen auch die Lichtstärke der Leuchtdiode. Dies führt dazu, dass sich während des Betriebs der Leuchteinrichtung wegen einer sich ändernden Betriebstemperatur der Leuchtdioden das durch Überlagerung der einzelnen Leuchtdioden erzeugte Lichtspektrum der Leuchteinrichtung und insbesondere deren Farbtemperatur ändern. Eine Korrektur wird dadurch erschwert, dass bei einem zur Kompensation des Temperatureffekts veränderten Stromfluss durch eine Leuchtdiode ebenfalls das Lichtspektrum der Leuchtdiode verändert wird.
  • Neben temperaturbedingten Veränderungen der Leistungsverteilung des Lichtspektrums einer Leuchteinrichtung mit mehreren Leuchtmittel können sich auch weitere Effekte auf die von der Leuchteinrichtung emittierte Farbtemperatur auswirken. So ist es bekannt, dass die einzelnen Leuchtmittel mit zunehmender Betriebsdauer Alterungserscheinungen zeigen und sich bei gleicher Ansteuerung sowohl die Gesamtintensität als auch die Leistungsverteilung des emittierten Lichtspektrums verändern. Bei einer Leuchteinrichtung mit mehreren verschiedenen Leuchtmitteln und insbesondere mit mehreren verschiedenen Leuchtdioden treten die Alterungserscheinungen der verschiedenen Leuchtmittel unterschiedlich schnell und unterschiedlich stark auf, so dass sich das von der Leuchteinrichtung insgesamt emittierte Lichtspektrum mit der Zeit erheblich verändert.
  • Es wurden bereits Überlegungen angestellt, mit einem Farbsensor das von der Leuchteinrichtung emittierte Licht zu erfassen und in Abhängigkeit von den gemessenen Farbsensorwerten die Ansteuerung der einzelnen Leuchtmittel so vorzugeben, dass möglichst keine oder nur eine geringe Veränderung des Lichtspektrums in Abhängigkeit von der Temperatur und der Betriebsdauer erfolgt. Es hat sich jedoch gezeigt, dass eine derartige Regelung des von der Leuchteinrichtung emittierten Lichtspektrums mit erheblichen Problemen und Unzulänglichkeiten verbunden ist. Eine vollständige spektrale Analyse des emittierten Lichtspektrums würde ein Spektrometer erfordern und verbietet sich deshalb für eine wirtschaftlich sinnvolle Ansteuerung einzelner Leuchteinrichtungen.
  • Es sind auch deutlich kostengünstigere Farbsensoren erhältlich, die Licht in einem vorgegebenen Wellenlängenbereich erfassen und die erfasste Lichtintensität messen und auswerten können. In vielen Fällen wird dabei eine Photodiode verwendet, die einfallendes Licht in einem durch das verwendete Halbleitermaterial und durch gegebenenfalls zusätzliche Filter vorgegebenen Wellenlängenbereich erfassen und in elektrische Signale umwandeln kann. Die spektrale Empfindlichkeit einer Photodiode unterscheidet sich jedoch üblicherweise sowohl von den jeweiligen Leistungsspektren der einzelnen Leuchtmittel, bzw. Leuchdioden der Leuchteinrichtung als auch von der spektralen Empfindlichkeit der menschlichen Farbwahrnehmung, bzw. der für die Farbwahrnehmung bei Menschen verantwortlichen Zapfen. Dies bedeutet, dass bei einer Veränderung des Leistungsspektrums der Leuchteinrichtung eine Photodiode keine entsprechende Veränderung messen kann, und eine Korrektur der Lichtemission der Leuchteinrichtung nicht ohne weiteres auch eine entsprechende Veränderung bei der Farbwahrnehmung durch einen Menschen erzeugt.
  • Es ist derzeit kaum möglich, eine Leuchteinrichtung mit mehreren unterschiedlichen Leuchtdioden so zu betreiben, dass die Farbtemperatur des von der Leuchteinrichtung emittierten Lichtspektrums während des Betriebs möglichst konstant bleibt.
  • Es wird deshalb als eine Aufgabe der vorliegenden Erfindung angesehen, eine Leuchteinrichtung so auszugestalten und zu betreiben, dass das mit der Leuchteinrichtung emittierte Lichtspektrum während des Betriebs der Leuchteinrichtung auch bei sich verändernden Temperaturen möglichst konstant bleibt und eine möglichst konstante Farbwahrnehmung ermöglicht.
  • Diese Aufgabe wird erfindungsgemäß gelöst mit einem Verfahren zur Steuerung einer Leuchteinrichtung, die mindestens zwei Leuchtmittel mit unterschiedlichen Emissionscharakteristiken aufweist, wobei in einem Erfassungsschritt mindestens drei verschiedene Farbkenngrößen für nicht deckungsgleiche Wellenlängenbereiche mit einer Farbsensoreinrichtung erfasst werden, wobei in einem Umrechnungsschritt die mit der Farbsensoreinrichtung erfassten Farbkenngrößen in an die menschliche Farbwahrnehmung angepasste Farbwahrnehmungskenngrößen umgewandelt werden, wobei in einem Steuersignalerzeugungsschritt in Abhängigkeit von einem vorgegebenen Lichtspektrum, das mit der Leuchteinrichtung emittiert werden soll, und der ermittelten Farbwahrnehmungskenngrößen Steuersignale für die mindestens zwei Leuchtmittel erzeugt und an eine Betriebseinrichtung übermittelt werden, mit der der Betriebsstrom für jedes Leuchtmittel bereitgestellt wird. Durch die Umrechnung von Farbkenngrößen, deren Eigenschaften und Werte maßgeblich von der jeweils verwendeten Farbsensoreinrichtung vorgegeben werden, in Farbwahrnehmungskenngrößen, die an die menschliche Farbwahrnehmung angepasst sind, erfolgt eine Anpassung der gemessenen Sensorwerte an die menschliche Farbwahrnehmung, bevor anschließend ausgehend von den angepassten Farbwahrnehmungskenngrößen neue Steuersignale für die einzelnen Leuchtmittel ermittelt und für eine nachfolgende Betriebszeit vorgegeben werden. Eine Korrektur und insbesondere eine Regelung der Lichtemission der einzelnen Leuchtmittel auf der Grundlage der Farbkenngrößen der Farbsensoreinrichtungen kann erfahrungsgemäß nur unbefriedigende Ergebnisse erzielen, da betragsmäßig gleichgroße Abweichungen einzelner Farbkenngrößen völlig unterschiedliche Auswirkungen auf die menschliche Farbwahrnehmung haben können. Durch die Umwandlung in Farbwahrnehmungskenngrößen kann eine Korrektur und Regelung der Leuchteinrichtung auf der Grundlage der Farbwahrnehmungskenngrößen in einfacher Weise so erfolgen, dass über eine Betriebsdauer hinweg keine Veränderung des emittierten Leistungsspektrums der Leuchteinrichtung mehr wahrnehmbar ist.
  • Die Farbwahrnehmungskenngrößen bilden einen mehrdimensionalen Farbwahrnehmungsraum, der möglichst gut an die menschliche Farbwahrnehmung angepasst ist. Beispielsweise könnten die Farbwahrnehmungsgrößen die Parameter des standardisierten CIE-Normvalenzsystem oder CIE-Normfarbsystem sein.
  • Dabei ist vorzugsweise vorgesehen, dass die Farbwahrnehmungskenngrößen in einem Farbraumsystem definiert sind, bei dem eine Änderung einer menschlichen Farbwahrnehmung unterhalb eines vorgebbaren Wahrnehmungsschwellenwerts ist, sofern eine Änderung der Farbwahrnehmungskenngrößen innerhalb eines mit einem vorgegebenen Farbwahrnehmungskenngrößenabstand begrenzten Bereichs erfolgt. Bei der Wahl eines derartigen geeigneten Farbraumsystems zur Beschreibung der mit einer Sensoreinrichtung gemessenen Kenngrößen kann durch die Vorgabe eines Farbwahrnehmungskenngrößenabstands in einem derartigen Farbraumsystem mit vergleichsweise einfachen mathematischen Methoden erreicht werden, dass eine unvermeidbare Veränderung des spektralen Leistungsspektrums unterhalb eines für Menschen definierten Wahrnehmungsschwellenwerts bleibt. Der Wahrnehmungsschwellenwert kann bei anspruchsvollen Anforderungsprofilen für eine derartige Leuchteinrichtung unterhalb der tatsächlichen Wahrnehmungsgrenze für Farbveränderungen liegen, so dass ein Mensch über die Betriebsdauer der Leuchteinrichtung hinweg keine Veränderung der emittierten Lichtfarbe feststellen kann. Der Farbwahrnehmungskenngrößenabstand kann auch so vorgegeben werden, dass ein Mensch geringfügige Farbänderungen wahrnehmen könnte, diese Farbänderungen jedoch unterhalb eines tolerierbaren Wahrnehmungsschwellenwerts liegen.
  • Gemäß einer besonders vorteilhaften Ausgestaltung des Erfindungsgedankens ist vorgesehen, dass die Farbwahrnehmungskenngrößen in einem Farbraumsystem definiert sind, bei dem ausgehend von einem ersten Farbort konvexe Bereichsgrenzen, vorzugsweise Ellipsen oder Kreise, um den betreffenden Farbort vorgegeben werden können, die gleichgroße Farbwahrnehmungsunterschiede eines Menschen beschreiben. Für die Korrektur oder Regelung der Leuchteinrichtung können bei einem derartigen Farbraumsystem beispielsweise jeweils Grenzwerte und Korrekturparameter in Abhängigkeit von einer MacAdam-Ellipse vorgegeben werden. Ausgehend von einem ersten Farbreferenzwert werden alle innerhalb einer für das CIE-Normfarbsystem experimentell bestimmten MacAdam-Ellipse befindlichen Farbwerte in der menschlichen Wahrnehmung nicht unterschieden. Ein Korrektur- bzw. Regelungsverfahren auf der Grundlage der Farbwahrnehmungskenngrößen kann deshalb mit vergleichsweise einfachen Korrektur- und Regelungsalgorithmen die Leuchteinrichtung so ansteuern und betreiben, dass keine Veränderung der Farbwahrnehmung erfolgt. Dabei ist es grundsätzlich auch möglich, für weniger anspruchsvolle Anforderungen und Verwendungszwecke die Korrektur oder Regelung der Leuchteinrichtung auf eine Farbtreue von beispielsweise zwei oder drei MacAdam-Ellipsen zu beschränken. Allerdings weisen die durch Experimente mit einer subjektiven Farbwahrnehmung von Testpersonen bestimmten MacAdam-Ellipsen nicht nur von Farbort zu Farbort unterschiedlich lange Halbachsen, sondern auch eine unterschiedliche Ellipsenorientierung in dem üblicherweise für deren Darstellung verwendeten CIExy-Farbraumsystem auf.
  • Wird beispielsweise ein CIE-LUV-Farbraumsystem für die Farbwahrnehmungskenngrößen verwendet, bei dem der Farbort durch die Helligkeit L und die normierten Farbwerte u‘ und v‘ in der Farbartebene definiert ist, kann für jeden Farbort ein durch einen vorgegebenen Farbwahrnehmungskenngrößenabstand kreisförmig begrenzter Bereich angegeben werden, innerhalb dessen Veränderungen der von der Leuchteinrichtung emittierten Lichtfarbe nicht wahrgenommen werden können. Der Farbwahrnehmungskenngrößenabstand kann demzufolge als maßgeblicher Parameter für die erforderlichen Korrektur- bzw. Regelungsverfahren herangezogen werden und ermöglicht eine rasche und zuverlässige Regelung der von der Leuchteinrichtung emittierten spektralen Leistungsverteilung, wobei besonders einfache und robuste mathematische Verfahren für die Durchführung von Korrekturen und Regelungen der spektralen Leistungsverteilung der Leuchteinrichtung, bzw. für die Ansteuerung der Energieversorgung der einzelnen Leuchtmittel verwendet werden können.
  • Die Umwandlung der von der jeweiligen Farbsensoreinrichtung vorgegebenen Farbkenngrößen in davon unabhängige Farbwahrnehmungskenngrößen hat zudem den Vorteil, dass die Korrekturverfahren oder kontinuierlichen Regelungsverfahren sowie die einzelnen Parameter bei der Ermittlung neuer Steuersignale für die Hardware-unabhängigen Farbwahrnehmungskenngrößen programmiert werden können und dasselbe Korrektur- oder Regelungsverfahren in Kombination mit völlig unterschiedlichen Farbsensoreinrichtungen verwendet werden kann.
  • Eine Korrektur, bzw. die Erzeugung neuer Steuersignale für die einzelnen Leuchtmittel kann beispielsweise bei Bedarf durch Betätigung eines Schalters oder eines Softwarebefehls durchgeführt werden. Eine Regelung kann in vorgegebenen Zeitabständen eine Anpassung der Steuersignale vornehmen, wobei je nach Anforderungsprofil innerhalb von wenigen Sekunden oder aber erst nach Stunden oder Tagen eine geregelte Anpassung erfolgt.
  • Im Hinblick auf die kostengünstig und handelsüblich erhältlichen Farbsensoreinrichtungen ist vorgesehen, dass in dem Erfassungsschritt drei verschiedene Farbkenngrößen für einen blauen Wellenlängenbereich, für einen grünen Wellenlängenbereich und für einen roten Wellenlängenbereich erfasst werden. Es hat sich gezeigt, dass bereits mit drei Farbkenngrößen aus diesen Wellenlängenbereichen eine effektive und ausreichend präzise Regelung der Leuchteinrichtung möglich ist.
  • Vorzugsweise ist vorgesehen, dass in dem Erfassungsschritt die drei verschiedenen Farbkenngrößen mit einem RGB-Sensor erfasst werden. RGB-Sensoren können auf Grundlage von Halbleitertechnik sehr klein und mit hoher Sensitivität ausgestaltet sein. Geeignete RGB-Sensoren sind handelsüblich und kostengünstig erhältlich. Die Kennlinien derartiger RGB-Sensoren sind präzise vermessen und die Eigenschaften der RGB-Sensoren in Abhängigkeit von den Umgebungs- und Messbedingungen oftmals gut bekannt.
  • Um die Aussagekraft der mit der Farbsensoreinrichtung erfassten Farbkenngrößen zu verbessern und eine noch präzisere Ansteuerung der einzelnen Leuchtmittel zu ermöglichen ist vorgesehen, dass durch geeignete Filtereinrichtungen die Wellenlängenbereiche, in denen die Farbkenngrößen erfasst werden, zusätzlich voneinander abgegrenzt werden. Auf diese Weise können sehr kostengünstige Farbsensoreinrichtungen mit ebenfalls kostengünstigen Filtereinrichtungen kombiniert werden, um mit hoher Sensitivität einfallendes Licht innerhalb eines schmalen Wellenlängenbereichs erfassen zu können und als Farbkenngrößen ausgeben zu können. So können beispielsweise RGB-Sensoren mit Farbfilterfolien oder Filterlinsen kombiniert werden.
  • Um bei der Umrechnung der Farbkenngrößen in Farbwahrnehmungskenngrößen auch nichtlineare Transformationen möglichst einfach und schnell durchführen zu können ist vorgesehen, dass in dem Umrechnungsschritt drei Farbwahrnehmungskenngrößen durch eine Matrixmultiplikation einer Parametermatrix der Dimension 3 × m mit den in dem Erfassungsschritt erfassten Farbkenngrößen und mit weiteren aus den Farbkenngrößen abgeleiteten Kenngrößen berechnet werden. Die aus den Farbkenngrößen abgeleiteten Kenngrößen können beispielsweise als Produkte beliebiger Potenzen der einzelnen Farbkenngrößen berechnet werden.
  • Erfindungsgemäß ist vorgesehen, dass die Anzahl m der für die Matrixmultiplikation verwendeten Farbkenngrößen und abgeleiteten Kenngrößen größer als 10, vorzugsweise 20 oder größer ist. Es hat sich gezeigt, dass bereits mit 10 erfassten Farbkenngrößen und daraus abgeleiteten Kenngrößen nichtlineare Eigenschaften ausreichend berücksichtigt werden können. Eine Umrechnung auf Grundlage von 20 oder mehr erfassten Farbkenngrößen und daraus abgeleiteten Kenngrößen, wobei die abgeleiteten Kenngrößen die einzelnen Farbkenngrößen bis in die dritte Ordnung potenziert enthalten können, sind für nahezu alle derzeit bekannten Anforderungen an Farbtreue und Farbkonstanz bei dem Betrieb von Leuchteinrichtungen völlig ausreichend. Nachfolgend werden beispielhaft verschiedene Möglichkeiten aufgezeigt, wie ausgehend von den mit R, G und B bezeichneten Farbkenngrößen zusätzlich jeweils abgeleitete Kenngrößen berechnet werden, um verschiedene Parametermatrizen mit unterschiedlichen Dimensionen zu erzeugen, wobei in der Tabelle mit „Größe“ die Dimension einer Matrixtransformation bezeichnet wird und die einzelnen Terme R, G und B die mit den R-G-B-Sensoren erfassten Farbkenngrößen bezeichnen:
    Ordnung Größe Inhalt
    1 3 × 3 [R G B]
    2 3 × 5 [R G B RGB 1]
    3 3 × 7 [R G B RG RB GB 1]
    4 3 × 8 [R G B RG RB GB RGB 1]
    5 3 × 10 [R G B RG RB GB R2 G2 B2 1]
    6 3 × 11 [R G B RG RB GB R2 G2 B2 RGB 1]
    8 3 × 14 [R G B RG RB GB R2 G2 B2 RGB R3 B3 G3 1]
    9 3 × 16 [R G B RG RB GB R2 G2 B2 RGB ... ... R2G G2B B2R R3 B3 G3]
    10 3 × 17 [R G B RG RB GB R2 G2 B2 RGB ... ... R2G G2B B2R R3 B3 G3 1]
    11 3 × 19 [R G B RG RB GB R2 G2 B2 RGB ... ... R2G G2B B2R R2B G2R B2G R3 B3 G3]
    12 3 × 20 [R G B RG RB GB R2 G2 B2 RGB ... ... R2G G2B B2R R2B G2R B2G R3 B3 G3 1]
    13 3 × 22 [R G B RG RB GB R2 G2 B2 RGB ... ... R2G G2B B2R R2B G2R B2G R3 B3 G3 ... ... R2GB RG2B RGB2]
  • Die abgeleiteten Kenngrößen sind jeweils Produkte der einzelnen Farbkenngrößen R, G und B in unterschiedlicher Potenz, beispielsweise für die Parametermatrix der Ordnung 3 und einer Größe, bzw. Dimension 3 × 7 die vier weiteren Kenngrößen RG, RB, GB und 1.
  • Es ist erfindungsgemäß vorgesehen, dass in einem vorausgehenden Parametrisierungsschritt die Matrixelemente der Parametermatrix durch spektrale Vergleichsmessungen der Leuchteinrichtung ermittelt und in einer Speichereinrichtung der Leuchteinrichtung abgespeichert werden. Die einzelnen Matrixelemente können mit einer großen Anzahl aufwendig durchgeführter Referenzmessungen und Vergleichsmessungen bestimmt werden. Da in der Leuchteinrichtung die vorab ermittelten Matrixelemente abgespeichert sind und lediglich eine Matrixmultiplikation für die Umwandlung der Farbkenngrößen in die Farbwahrnehmungskenngrößen erforderlich ist, kann mit geringen Anforderungen an die hierfür erforderliche Hardware in der Leuchteinrichtung in sehr kurzer Zeit diese Umwandlung berechnet werden.
  • Gemäß einer besonders vorteilhaften Ausgestaltung des Erfindungsgedankens ist vorgesehen, dass mit einem Regelalgorithmus ausgehend von Differenzen zwischen den ermittelten Farbwahrnehmungskenngrößen und den im Hinblick auf eine vorgegebene bzw. angestrebte spektrale Leistungsverteilung der Leuchteinrichtung vorgegebenen Farbwahrnehmungskenngrößen Farbwahrnehmungskorrekturwerte für die Erzeugung neuer Steuersignale ermittelt werden. Zu diesem Zweck kann ein linearer Regelalgorithmus verwendet werden. In vorteilhafter Weise können auch mehrere für vorgegebene Arbeitspunkte ausgelegte lineare Regelalgorithmen verwendet werden, die gegebenenfalls in Abhängigkeit von dem jeweiligen Arbeitspunkt in geeigneter Weise ausgewählt oder miteinander überlagert werden, um die neuen Steuersignale zu ermitteln. Dabei können die Regelalgorithmen beispielsweise eine PI-Regelung oder eine PID-Regelung enthalten. Bei einer PI-Regelung werden Regelglieder mit proportionalem Verhalten (P-Glied) und mit integralem Verhalten (I-Glied) kombiniert. Bei einer PID-Regelung werden zusätzlich Regelglieder mit einem differentialen Verhalten (D-Glied) berücksichtigt. Die ermittelten Farbwahrnehmungskenngrößen stellen dabei die Regelgrößen und die vorgegebenen Fahrwahrnehmungskenngrößen die Führungsgrößen für den Regelalgorithmus dar, der als Stellgrößen in einem Regelungsschritt die Farbwahrnehmungskorrekturwerte ermittelt.
  • Die mit der Regelung ermittelten Farbwahrnehmungskorrekturwerte sind zunächst in dem betreffenden Farbraumsystem definiert, das für die Darstellung der Farbwahrnehmungskenngrößen verwendet wird. Für die Umsetzung in neue Steuersignale für die einzelnen Leuchtmittel ist deshalb eine Umrechnung der nicht auf einzelne Leuchtmittel bezogenen Farbwahrnehmungskorrekturwerte in neue Steuersignale für die einzelnen Leuchtmittel erforderlich. Erfindungsgemäß ist deshalb vorgesehen, dass mit Hilfe von geeigneten Modellen aus den Farbwahrnehmungskorrekturwerten Leuchtmittelkorrekturwerte für die Steuersignale der einzelnen Leuchtmittel ermittelt werden. Dabei muss bei der Ausgestaltung des Regelalgorithmus berücksichtigt werden, dass sich die Anzahl von Leuchtmitteln mit unterschiedlicher Emissionscharakteristik in der Leuchteinrichtung von der Anzahl der Farbwahrnehmungskenngrößen, bzw. der sich ergebenden Farbwahrnehmungskorrekturwerte unterscheiden kann.
  • Da die Temperatur auch einen großen Einfluss auf die von den einzelnen Leuchtmitteln emittierten Leistungsspektren haben kann und dieser Einfluss insbesondere bei Leuchtdioden innerhalb kurzer Zeiträume größere Auswirkungen auf das Emissionsspektrum der einzelnen Leuchtdioden als andere Einflüsse haben kann, ist erfindungsgemäß vorgesehen, mit einem Temperatursensor die Betriebstemperatur der Leuchteinrichtung oder einzelner Leuchtmittel zu erfassen und die Betriebstemperatur für die Erzeugung neuer Steuersignale zu berücksichtigen. Ausgehend von der gemessenen Betriebstemperatur können Korrekturterme für die einzelnen Leuchtmittel ermittelt und bei der Erzeugung der neuen Steuersignale hinzugefügt werden. Es ist ebenfalls möglich und für die Verwendung der Leuchteinrichtung bei stark schwankenden Temperaturbedingungen zweckmäßig, für verschiedene Temperaturbereiche jeweils gesonderte Parametermatrizen mit voneinander abweichenden Matrixelementen zu ermitteln, um den Einfluss der Betriebstemperatur bei der Umwandlung der Farbkenngrößen in die Farbwahrnehmungskenngrößen berücksichtigen zu können.
  • Es hat sich gezeigt, dass während des Betriebs der Leuchteinrichtung oftmals keine exakt einheitliche Betriebstemperatur vorherrscht, sondern die einzelnen Leuchtmittel bei geringfügig abweichenden Betriebstemperaturen betrieben werden. Zudem können sich Temperaturveränderungen in der Leuchteinrichtung unterschiedlich auf einzelne Leuchtmittel in der Leuchteinrichtung auswirken. Erfahrungsgemäß kann deshalb die tatsächliche spektrale Leistungsverteilung der einzelnen Leuchtmittel von einer spektralen Leistungsverteilung abweichen, die von den einzelnen Leuchtmitteln für eine gemessene mittlere Betriebstemperatur erwartet wird.
  • Es sind verschiedene Möglichkeiten denkbar, wie innerhalb des Steuersignalerzeugungsschritts eine Regelung der Steuersignale vorgenommen werden kann, um die insgesamt emittierte spektrale Leistungsverteilung derart zu korrigieren bzw. zu beeinflussen, dass eine möglichst konstante Farbwahrnehmung des emittierten Lichts erreicht werden kann.
  • Eine erfindungsgemäß mögliche Berücksichtigung aller einzelner Farbkenngrößen oder daraus ermittelten Farbwahrnehmungskenngrößen für jede Gruppe von Leuchtmitteln mit einer übereinstimmenden Emissionscharakteristik erfordert eine genaue Temperaturmessung für alle Leuchtmittel, die einer Gruppe mit einer übereinstimmenden Emissionscharakteristik zugeordnet sind. Jeder einzelnen Gruppe können dabei ein oder mehrere Leuchtmittel, beispielsweise 5, 15 oder 50 Leuchtmittel mit einer jeweils übereinstimmenden Emissionscharakteristik zugeordnet sein. Da bei einer größeren Anzahl von Leuchtmitteln in einer Leuchteinrichtung die verschiedenen Leuchtmittel oftmals möglichst gleichmäßig über die Leuchteinrichtung verteilt sind und nicht gruppenweise voneinander getrennt angeordnet sind, um eine möglichst homogene Beleuchtung zu erzielen, lässt sich in der Regel die tatsächliche Temperatur der einzelnen Leuchtmittel einer Gruppe nicht genau bestimmen. Zur Erfüllung besonders hoher Ansprüche an die Farbwahrnehmung der Leuchteinrichtung kann es bei Verwendung einer ausreichend großen Anzahl von Temperatursensoren oder bei einer geeigneten Gruppierung und Anordnung der einzelnen Leuchtmittel zweckmäßig sein, dass für jede Gruppe von Leuchtmitteln mit übereinstimmender Emissionscharakteristik für jede Farbwahrnehmungskenngröße fortlaufend jeweils gesonderte Farbwahrnehmungskorrekturwerte für die Steuersignale ermittelt werden, die mit Hilfe eines Regelalgorithmus ausgehend von einer Differenz zwischen gemessenen Farbwahrnehmungskenngrößen und vorgegebener Farbwahrnehmungskenngrößen ermittelt werden.
  • Die einzelnen Parameter für den Regelalgorithmus, insbesondere für eine PI-Regelung oder eine PID-Regelung, können durch experimentelle Messungen oder durch theoretische Simulationen vorab ermittelt und in Lookup-Tabellen hinterlegt werden. Dabei können im Hinblick auf eine möglichst hohe Präzision der jeweiligen Regelungen für verschiedene Temperaturwerte jeweils Lookup-Tabellen erstellt und hinterlegt werden. Die Lookup-Tabellen können in vorteilhafter Weise für alle verschiedene Leuchtmittel mit unterschiedlichen Emissionscharakteristiken sowie für alle Farbwahrnehmungskenngrößen jeweils gesonderte Parameterwerte aufweisen.
  • Bereits bei einer geringen Anzahl von Leuchtmitteln bzw. Gruppen von Leuchtmitteln mit unterschiedlicher Emissionscharakteristik ist der Aufwand für die Erstellung und Hinterlegung der Lookup-Tabellen aller erforderlichen Parameter für die Regelung erheblich, sofern alle Farbwahrnehmungskenngrößen in die Regelung mit einbezogen werden. Zudem sollten alle Lookup-Tabellen jeweils für verschiedene Temperaturwerte hinterlegt werden, wobei innerhalb eines für den Betrieb der Leuchteinrichtung vorgegebenen Temperaturbereichs gesonderte Lookup-Tabellen in Schritten von 5° C oder alle 2° C zweckmäßig sind.
  • Es hat sich gezeigt, dass bei Verwendung eines geeigneten Farbraumsystems zur Darstellung der einzelnen Farbwahrnehmungskenngrößen einige Farbwahrnehmungskenngrößen eine geringere Bedeutung für die Farbwahrnehmung der von der Leuchteinrichtung emittierten spektralen Leistungsverteilung als andere Farbwahrnehmungskenngrößen aufweisen. So kann beispielsweise bei der Verwendung eines geeigneten CIE-Farbraumsystems für die Darstellung der Farbwahrnehmungskenngrößen unterschieden werden zwischen einer Farbwahrnehmungskenngröße Y, welche die Helligkeit repräsentiert, und zwei weiteren Farbwahrnehmungskenngrößen, welche einen Farbort definieren. Für eine vergleichsweise einfach durchführbare Regelung ist vorgesehen, dass für jede Gruppe von Leuchtmitteln mit übereinstimmender Emissionscharakteristik für eine ausgewählte Farbwahrnehmungskenngröße fortlaufend jeweils Farbwahrnehmungskorrekturwerte für die Steuersignale ermittelt werden, die mit Hilfe eines Regelalgorithmus ausgehend von einer Differenz zwischen der gemessenen ausgewählten Farbwahrnehmungskenngröße und der vorgegebenen ausgewählten Farbwahrnehmungskenngröße ermittelt werden. Der für diese Regelung erforderliche Aufwand für die Ermittlung der Lookup-Tabellen und für die Durchführung des Regelalgorithmus ist deutlich geringer als bei einer Ermittlung von Farbwahrnehmungskorrekturwerten für alle Farbwahrnehmungskenngrößen. Es hat sich gezeigt, dass in vielen Fällen mit der Auswahl derjenigen Farbwahrnehmungskenngröße, welche der Helligkeit zugeordnet ist, bereits gute Erfolge und eine weitgehende Farbwahrnehmungskonstanz für die Leuchteinrichtung erzielt werden können.
  • Gemäß einer besonders vorteilhaften Ausgestaltung des Erfindungsgedankens ist vorgesehen, dass für jede Ermittlung der Farbwahrnehmungskorrekturwerte jeweils diejenige Farbwahrnehmungskenngröße als ausgewählte Farbwahrnehmungskenngröße vorgegeben wird, deren auf die menschliche Farbwahrnehmung bezogene Abweichung von der vorgegebenen Farbwahrnehmungskenngröße maximal ist. Auf diese Weise können die jeweiligen Vorteile der beiden vorangehend beschriebenen Regelungsmethoden verknüpft werden. Da lediglich eine ausgewählte Farbwahrnehmungskenngröße für die Regelung und für die Ermittlung der Farbwahrnehmungskorrekturwerte verwendet wird, ist der hierfür anfallende Aufwand gering. Im Vergleich zu der vorangehend beschriebenen Regelung, bei der die ausgewählte Farbwahrnehmungskenngröße unveränderbar vorgegeben ist, kann durch einen geeigneten Wechsel der ausgewählten Farbwahrnehmungskenngröße während des Betriebs der Leuchteinrichtung eine deutlich raschere und präzisere Regelung und eine entsprechende Vorgabe neuer Steuersignale erfolgen.
  • Es ist erfindungsgemäß ebenfalls vorgesehen, dass für eine Regelung der Steuersignale der einzelnen Leuchtmittel oder der Gruppen von Leuchtmitteln eine Kaskadenregelung für die einzelnen Leuchtmittel bzw. der Gruppen von Leuchtmitteln durchgeführt wird. Dabei können über alle Leuchtmittel gemittelte Farbwahrnehmungskenngrößen ermittelt werden, die mit den vorgegebenen Farbwahrnehmungskenngrößen verglichen werden. In einer geeigneten Kaskadenregelung werden die einzelnen Regelkreise so angeordnet, dass bei erwartungsgemäßen Abweichungen der gemessenen spektralen Leistungsverteilung der Leuchteinrichtung möglichst rasch und zuverlässig eine spektrale Leistungsverteilung eingestellt werden kann, die zumindest näherungsweise der vorgegebenen spektralen Leistungsverteilung entspricht, wobei die Abweichung unterhalb eines vorab definierten Schwellenwerts liegt.
  • Erfindungsgemäß ist vorgesehen, dass in dem Steuersignalerzeugungsschritt für jedes Leuchtmittel in Abhängigkeit von einer Abweichung der spektralen Leistungsverteilung des Leuchtmittels von einem für die Leuchteinrichtung vorgegebenen Lichtspektrum der Leuchteinrichtung ein Gewichtungsfaktor ermittelt wird, der bei einer Korrektur oder Regelung der Steuersignale für das betreffende Leuchtmittel berücksichtigt wird. Auf diese Weise kann der jeweilige Einfluss des betreffenden Leuchtmittels an dem von der Leuchteinrichtung emittierten Lichtspektrum angemessen berücksichtigt werden. Über den für jedes Leuchtmittel individuell ermittelten Gewichtsfaktor kann beispielsweise auch berücksichtigt werden, ob das betreffende Leuchtmittel Licht in einen großen Wellenlängenbereich emittiert oder eher Licht in einem eng begrenzten Wellenlängenbereich emittiert. Zudem kann auch in einfacher Weise berücksichtigt werden, wie stark sich eine Veränderung bei der Ansteuerung des betreffenden Leuchtmittels auf die Farbwahrnehmung eines Menschen von dem durch Überlagerung mit weiteren Leuchtmitteln entstehenden Gesamtspektrum der Leuchteinrichtung auswirkt.
  • Eine einfache und gleichzeitig zuverlässig und ausreichend schnell konvergierende Regelung der Steuersignale der einzelnen Leuchtmittel kann durch eine Kaskadenregelung für die einzelnen Leuchtmittel erfolgen. Verschiedene Methoden und Ausgestaltungen einer Kaskadenregelung sind einem Fachmann auf dem Gebiet der Regelungstechnik bekannt. Die Reihenfolge bzw. Gewichtung der einzelnen Regelglieder können in Abhängigkeit von den jeweils im Einzelfall verwendeten Leuchtmitteln und deren charakteristischen Eigenschaften vorgegeben werden.
  • Gemäß einer besonders vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass in einem Auswahlschritt das Lichtspektrum der Leuchteinrichtung aus einer Anzahl von vorab definierten Lichtspektren ausgewählt und für eine nachfolgende Betriebsdauer vorgegeben wird. So können beispielsweise eine Anzahl von Lichtspektren mit unterschiedlicher Farbtemperatur vorgegeben und für eine Auswahl durch einen Benutzer zur Verfügung gestellt werden. Der Benutzer kann dann beispielsweise zwischen drei oder vier verschiedenen Farbtemperaturen diejenige auswählen, die für den im Einzelfall vorgesehenen Verwendungszweck besonders geeignet erscheint. Mit der Vorgabe einer Anzahl von vorkonfigurierten Lichtspektren wird die Benutzung und Einstellung durch den Benutzer erleichtert.
  • Es ist ebenfalls möglich, dass einem Benutzer die Möglichkeit eingeräumt wird, ein frei konfigurierbares Lichtspektrum vorzugeben, das mit den mehreren Leuchtmitteln durch eine geeignete Ansteuerung der Leuchtmittel und durch die Überlagerung der einzelnen Lichtspektren erzeugt wird. Auf diese Weise kann der Benutzer das mit der Leuchteinrichtung emittierte Lichtspektrum an völlig unterschiedliche Verwendungszwecke individuell anpassen und ist nicht auf die Auswahl eines vorgegebenen Lichtspektrums angewiesen und beschränkt. Für eine benutzerspezifische Vorgabe eines Lichtspektrums kann die Leuchteinrichtung geeignete Eingabemittel aufweisen und mit einer Anzeigeeinrichtung das jeweils vorgegebene Lichtspektrum anzeigen. Es ist ebenfalls möglich, für die Vorgabe eines Lichtspektrums eine Schnittstelle zu der Speichereinrichtung zur Verfügung zu stellen, um dort das von einem Benutzer gewählte Lichtspektrum bzw. die hierfür relevanten Parameter hinterlegen zu können.
  • Die Erfindung betrifft auch eine Leuchteinrichtung, mit der ein über einen möglichst langen Zeitraum möglichst konstantes Lichtspektrum emittiert werden kann. Zu diesem Zweck weist die erfindungsgemäße Leuchteinrichtung mindestens zwei Leuchtmittel mit unterschiedlichen Emissionscharakteristiken, mindestens eine Farbsensoreinrichtung, eine Speichereinrichtung und eine einen Mikroprozessor aufweisende Steuereinrichtung auf, wobei die Steuereinrichtung Farbkenngrößen, die von der Farbsensoreinrichtung erfasst werden, mit der Mikroprozessoreinrichtung zunächst in Farbwahrnehmungskenngrößen umwandeln und ausgehend von den Farbwahrnehmungskenngrößen neue Steuersignale erzeugen kann, und diese neuen Steuersignale an eine Betriebseinrichtung der Leuchteinrichtung übermitteln kann, mit welcher der Betriebsstrom für jedes Leuchtmittel bereitgestellt wird, um während des Betriebs der Leuchteinrichtung das von der Leuchteinrichtung emittierte Lichtspektrum möglichst konstant zu halten.
  • Als Farbsensoreinrichtung kann ein handelsüblicher, kostengünstiger und sehr kleiner RGB-Sensor verwendet werden. Der RGB-Sensor kann in der Nähe der einzelnen Leuchtmittel so angeordnet werden, dass der RGB-Sensor eine Überlagerung der Lichtemissionen der verschiedenen Leuchtmittel erfasst. Es können auch mehrere RGB-Sensoren angeordnet und deren Messwerte überlagert werden, um gemittelte Farbkenngrößen für die Lichtemission der einzelnen Leuchtmittel der Leuchteinrichtung zu erhalten.
  • Gemäß einer vorteilhaften Ausgestaltung des Erfindungsgedankens ist vorgesehen, dass die Leuchteinrichtung zusätzlich einen Temperatursensor aufweist, mit welchem je nach Anordnung des Temperatursensors eine gemittelte Betriebstemperatur der Leuchteinrichtung oder aber auch eine Umgebungstemperatur der Leuchteinrichtung erfasst werden kann. Es ist ebenfalls denkbar, dass die Leuchteinrichtung mehrere Temperatursensoren aufweist, die jeweils eine Betriebstemperatur eines zugeordneten Leuchtmittels oder aber einer zugeordneten Leuchtmittelgruppe erfassen.
  • Um möglichst viele verschiedene Lichtspektren möglichst detailgenau durch Überlagerung einzelner vorgegebener Lichtspektren der jeweils verwendeten Leuchtmittel erzeugen zu können ist vorgesehen, dass die Leuchteinrichtung mehr als drei verschiedene Leuchtdioden und darunter mindestens eine Leuchtdiode mit einem lumineszierenden Wellenlängenkonverter als Leuchtmittel aufweist.
  • Nachfolgend wird der Erfindungsgedanke anhand von einigen Ausführungsbeispielen näher erläutert. Es zeigt:
  • 1 eine schematische Darstellung von spektralen Leistungsverteilungen für verschiedene Leuchtdioden bei zwei verschiedenen Betriebstemperaturen,
  • 2 eine schematische Darstellung von einer spektralen Leistungsverteilung einer Leuchteinrichtung, die mehrere verschiedenen Leuchtdioden aufweist, bei zwei verschiedenen Betriebstemperaturen, und
  • 3 eine schematische Darstellung einer erfindungsgemäßen Leuchteinrichtung mit mehreren Leuchtmitteln und mit einer Farbsensoreinrichtung,
  • 4 eine schematische Darstellung einer abweichend ausgestalteten Leuchteinrichtung mit mehreren Leuchtmitteln, mit einer Farbsensoreinrichtung und mit einem Temperatursensor,
  • 5 eine schematische Darstellung von Farbwahrnehmungskenngrößen sowie von exemplarisch für einige Farborte angegebene MacAdams-Ellipsen in einem CIE-XYZ-Farbraumsystem, und.
  • 6 eine schematische Darstellung von Farbwahrnehmungskenngrößen sowie von einem exemplarisch um einen Farbort angegebenen kreisförmigen Bereich in einem CIE-LUV-Farbraumsystem.
  • In 1 sind schematisch für verschiedene Leuchtdioden deren spektrale Leistungsverteilung in Abhängigkeit von der emittierten Wellenlänge für zwei Temperaturen dargestellt, wobei die punktierten Linien jeweils die spektrale Leistungsverteilung bei 25 °C und die gestrichelten Linien jeweils die spektrale Leistungsverteilung bei 80 °C zeigen. Exemplarisch dargestellt sind dabei die spektralen Leistungsverteilungen 1‘ und 1‘‘ einer blauen Leuchtdiode 1, die spektralen Leistungsverteilungen 2‘ und 2‘‘ einer grünen Leuchtdiode 2, die spektralen Leistungsverteilungen 3‘ und 3‘‘ einer ersten roten Leuchtdiode 3, die spektralen Leistungsverteilungen 4‘ und 4‘‘ einer zweiten Leuchtdiode 4 sowie die spektralen Leistungsverteilungen 5‘ und 5‘‘ einer ein breitbandiges Weißlichtspektrum emittierende weiße Leuchtdiode 5, wobei die weiße Leuchtdiode 5 einen lumineszierenden Wellenlängenkonverter als Leuchtmittel aufweist. Es zeigt sich, dass sich bei allen Leuchtdioden 1 bis 5 mit steigender Temperatur eine Peakwellenlänge in Richtung einer höheren Wellenlänge verschiebt. Mit Ausnahme der ersten roten Leuchtdiode 3 sinkt mit zunehmender Temperatur die spektrale Leistungsverteilung im Bereich der jeweiligen Peakwellenlänge.
  • Eine ähnliche Veränderung der spektralen Leistungsverteilung kann für jede Leuchtdiode 1 bis 5 auch in Abhängigkeit von dem Betriebsstrom festgestellt und gemessen werden. Zudem steigt mit zunehmendem Betriebsstrom einer Leuchtdiode 1 bis 5 regelmäßig auch deren Betriebstemperatur, da die mit dem Betriebsstrom zugeführte Leistung zwar vergleichsweise effizient, jedoch nicht vollständig in Lichtemission umgewandelt werden kann und unvermeidbar auch eine zumindest geringe Wärmeabstrahlung erfolgt, durch welche die Betriebstemperatur der Leuchtdiode 1 bis 5 erhöht wird.
  • In 2 sind für die zwei Temperaturen 25 °C und 80 °C die jeweiligen Gesamtemissionsspektren G‘ und G‘‘ dargestellt, die sich aus einer Überlagerung der einzelnen in 1 dargestellten Lichtemissionen der verschiedenen Leuchtdioden 1 bis 5 ergeben. Analog zu 1 zeigt die punktierte Linie G‘‘ die spektrale Leistungsverteilung bei 25 °C und die gestrichelte Linie G‘ die spektrale Leistungsverteilung bei 80 °C. Es zeigt sich, dass in nahezu jedem Wellenlängenbereich das Gesamtemissionsspektrum G‘, bzw. G‘‘ mit zunehmender Temperatur eine Veränderung der spektralen Leistungsverteilung erfährt, wodurch eine Veränderung des Farbtons der Lichtemission bewirkt wird.
  • Bei einer in 3 exemplarisch dargestellten Leuchteinrichtung 6 sind die verschiedenen Leuchtdioden 1 bis 5 auf einem plattenförmigen Leuchtmittelträger 7 angeordnet. Der Leuchtmittelträger 7 ist in einem Gehäuse 8 so festgelegt, dass die einzelnen Leuchtdioden 1 bis 5 bei deren Betrieb durch eine Fensteröffnung 9 in dem Gehäuse 8 jeweils eine spektrale Leistungsverteilung emittieren. Die Ansteuerung der einzelnen Leuchtdioden 1 bis 5 erfolgt über eine Steuereinrichtung 10, welche auch die Betriebseinrichtung für die einzelnen Leuchtdioden 1 bis 5 beinhaltet und die einzelnen Leuchtdioden 1 bis 5 in Abhängigkeit von den jeweiligen Steuersignalen mit einem üblicherweise pulsweitenmodulierten Betriebsstrom versorgt. Durch die Überlagerung der verschiedenen Lichtspektren der einzelnen Leuchtdioden 1 bis 5 wird der von der Leuchteinrichtung 6 gewünschte Farbeindruck erzeugt.
  • In einem Abstand zu den Leuchtdioden 1 bis 5 ist in dem Gehäuse 8 ein RGB-Sensor 11 angeordnet, der das von den einzelnen Leuchtdioden 1 bis 5 emittierte Licht erfasst und drei Farbkenngrößen R, G und B an die Steuereinrichtung 10 übermittelt. Die Farbkenngrößen R, G und B werden mit der Steuereinrichtung 10 in Farbwahrnehmungskenngrößen x, y und z umgewandelt, wobei eine Transformation mit einer Parametermatrix berechnet wird, deren vorab ermittelten Matrixelemente aus einer Speichereinrichtung 12 abgerufen werden. Die neuen Steuersignale sind ausgehend von dem erfassten Farbkenngrößen R, G und B so vorgegeben, dass für einen menschlichen Betrachter eine möglichst konstante Farbwahrnehmung des von der Leuchteinrichtung 6 emittierten Lichts bewirkt wird.
  • Bei der in 4 exemplarisch dargestellten Leuchteinrichtung 6 sind mehrere RGB-Sensoren 11 längs eines Umfangsrands der Fensteröffnung 9 der Leuchteinrichtung 6 angeordnet. In der Steuereinrichtung 10 werden die einzelnen Messwerte der mehreren RGB-Sensoren 11 in geeigneter Weise überlagert, um für den außerhalb der Leuchteinrichtung 6 erzeugten Farbeindruck möglichst repräsentative gemittelte Farbkenngrößen zu berechnen. Zudem ist bei der in 4 dargestellten Leuchteinrichtung 6 ein Temperatursensor 13 auf dem Leuchtmittelträger 7 angeordnet, mit welchem eine gemittelte Betriebstemperatur der einzelnen Leuchtdioden 1 bis 5 erfasst werden kann, der für die Erzeugung neuer Steuersignale berücksichtigt werden kann.
  • In 5 ist schematisch ein durch Farbwahrnehmungskenngrößen definierter Farbraum 14 in dem CIE-XYZ-Farbraumsystem dargestellt. Durch die Angabe von zwei Parametern x und y kann für einen vorgegebenen Anteil z einer dritten Farbanteil der Normfarben Rot, Grün und Blau ein über den Zusammenhang x + y + z = 1 eindeutig bestimmter Farbort angegeben werden. In dem in 5 dargestellten Ausführungsbeispiel sind exemplarisch mehrere Farbörter 15 mit jeweiligen Parametern x und y zu einem vorgegebenen dritten Farbanteil z = 0,333 eingezeichnet. Für jeden Farbort 15 kann jeweils ein unterschiedlich großer und verschieden ausgerichteter ellipsenförmiger Bereich einer MacAdams-Ellipse 16 angegeben werden. Innerhalb von diesem Bereich der MacAdams-Ellipse 16 werden Abweichungen von dem Farbort 15 von einem menschlichen Betrachter nicht wahrgenommen. Für eine in zeitlichen Abständen erfolgende Korrektur oder eine kontinuierliche Regelung der Steuersignale der einzelnen Leuchtmittel bzw. Leuchtdioden 1 bis 5 kann der jeweils relevante Bereich der MacAdams-Ellipse 16 berücksichtigt und verwendet werden.
  • Bei dem in 6 exemplarisch dargestellten Ausführungsbeispiel sind die einzelnen Farbwahrnehmungskenngrößen in einem Farbraum 17 eines CIE-LUV-Farbmodellsystem definiert und durch Umwandlung aus den Farbkenngrößen ermittelt worden, die von dem einen RGB-Sensor 11 oder von den mehreren RGB-Sensoren 11 geliefert wurden. Ein Farbort 18 mit den Parametern u‘ = 0,3 und v‘ = 0,3 ist in 6 beispielhaft eingetragen. Um den Farbort 17 kann ein kreisförmig begrenzter Bereich 19 definiert werden, innerhalb dessen von dem Farbort 18 abweichende Farben bzw. Lichtspektren der Leuchteinrichtung 6 von einem Menschen nicht als unterschiedliche Farbe wahrgenommen werden können. Der kreisförmig begrenzte Bereich 19 bildet eine äquidistante Begrenzung um den Farbort 18, die mit besonders einfachen mathematischen Modellen und Verfahren für die Korrektur und Regelung der Steuersignale für die einzelnen Leuchtmittel, bzw. Leuchtdioden 1 bis 5 berücksichtigt und als Referenz- oder Schwellenwert vorgegeben werden kann. In dem CIE-LUV-Farbmodellsystem können Abweichungen eines gemessenen Farbortes 18 von einem für die Leuchteinrichtung (6) als Zielgröße vorgegebenen Farbort zumindest in erster Näherung in proportionale Korrekturterme für die neuen Steuersignale überführt werden.

Claims (21)

  1. Verfahren zur Steuerung einer Leuchteinrichtung (6) mit mindestens zwei Leuchtmitteln (1, 2, 3, 4, 5) mit unterschiedlichen Emissionscharakteristiken, wobei in einem Erfassungsschritt mindestens drei verschiedene Farbkenngrößen für nicht deckungsgleiche Wellenlängenbereiche mit einer Farbsensoreinrichtung erfasst werden, wobei in einem Umrechnungsschritt die mit der Farbsensoreinrichtung erfassten Farbkenngrößen in an die menschliche Farbwahrnehmung angepasste Farbwahrnehmungskenngrößen umgewandelt werden, wobei in einem Steuersignalerzeugungsschritt in Abhängigkeit von einem vorgegebenen Lichtspektrum, das mit der Leuchteinrichtung (6) emittiert werden soll, und der ermittelten Farbwahrnehmungskenngrößen Steuersignale für die mindestens zwei Leuchtmittel (1, 2, 3, 4, 5) erzeugt und an eine Betriebseinrichtung übermittelt werden, mit der der Betriebsstrom für jedes Leuchtmittel (1, 2, 3, 4, 5) bereitgestellt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Farbwahrnehmungskenngrößen in einem Farbraumsystem definiert sind, bei dem eine Änderung einer menschlichen Farbwahrnehmung unterhalb eines vorgebbaren Wahrnehmungsschwellenwerts ist, sofern eine Änderung der Farbwahrnehmungskenngrößen innerhalb eines mit einem vorgegebenen Farbwahrnehmungskenngrößenabstand begrenzten Bereichs erfolgt.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Farbwahrnehmungskenngrößen in einem Farbraumsystem definiert sind, bei dem ausgehend von einem ersten Farbort (15, 18) konvexe Bereichsgrenzen, vorzugsweise Ellipsen (16) oder Kreise (19), um den betreffenden Farbort (15, 18) vorgegeben werden können, die gleichgroße Farbwahrnehmungsunterschiede eines Menschen beschreiben.
  4. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass in dem Erfassungsschritt drei verschiedene Farbkenngrößen für einen blauen Wellenlängenbereich, für einen grünen Wellenlängenbereich und für einen roten Wellenlängenbereich erfasst werden.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass in dem Erfassungsschritt die drei verschiedenen Farbkenngrößen mit einem RGB-Sensor (11) erfasst werden.
  6. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass durch geeignete Filtereinrichtungen die Wellenlängenbereiche, in denen die Farbkenngrößen erfasst werden, zusätzlich voneinander abgegrenzt werden.
  7. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass in dem Umrechnungsschritt drei Farbwahrnehmungskenngrößen durch eine Matrixmultiplikation einer Parametermatrix der Dimension 3 × m mit den in dem Erfassungsschritt erfassten Farbkenngrößen und gegebenenfalls aus den Farbkenngrößen abgeleiteten Kenngrößen berechnet werden.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Anzahl m der für die Matrixmultiplikation verwendeten Farbkenngrößen und abgeleiteten Kenngrößen größer als 10, vorzugsweise 20 oder größer ist.
  9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass in einem vorausgehenden Parametrisierungsschritt die Matrixelemente der Parametermatrix durch spektrale Vergleichsmessungen der Leuchteinrichtung ermittelt und in einer Speichereinrichtung (12) der Leuchteinrichtung (6) abgespeichert werden.
  10. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mit einem Temperatursensor (13) die Betriebstemperatur der Leuchteinrichtung (6) oder einzelner Leuchtmittel (1, 2, 3, 4, 5) erfasst wird und die Betriebstemperatur für die Erzeugung neuer Steuersignale berücksichtigt wird.
  11. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass mit einem Regelalgorithmus ausgehend von Differenzen zwischen den ermittelten Farbwahrnehmungskenngrößen und den im Hinblick auf eine vorgegebene spektrale Leistungsverteilung der Leuchteinrichtung vorgegebenen Farbwahrnehmungskenngrößen Farbwahrnehmungskorrekturwerte für die Erzeugung neuer Steuersignale ermittelt werden.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass mit Hilfe von geeigneten Modellen aus den Farbwahrnehmungskorrekturwerten Leuchtmittelkorrekturwerte für die Steuersignale der einzelnen Leuchtmittel ermittelt werden.
  13. Verfahren nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass für jede Gruppe von Leuchtmitteln (1, 2, 3, 4, 5) mit übereinstimmender Emissionscharakteristik für jede Farbwahrnehmungskenngröße fortlaufend jeweils gesonderte Farbwahrnehmungskorrekturwerte für die Steuersignale ermittelt werden, die mit Hilfe eines Regelalgorithmus ausgehend von einer Differenz zwischen gemessenen Farbwahrnehmungskenngrößen und vorgegebenen Farbwahrnehmungskenngrößen ermittelt werden.
  14. Verfahren nach einem der vorausgehenden Ansprüche 1 bis 12, dadurch gekennzeichnet, dass für jede Gruppe von Leuchtmitteln (1, 2, 3, 4, 5) mit übereinstimmender Emissionscharakteristik für eine ausgewählte Farbwahrnehmungskenngröße fortlaufend jeweils Farbwahrnehmungskorrekturwerte für die Steuersignale ermittelt werden, die mit Hilfe eines Regelalgorithmus ausgehend von einer Differenz zwischen der gemessenen ausgewählten Farbwahrnehmungskenngröße und der vorgegebenen ausgewählten Farbwahrnehmungskenngröße ermittelt werden.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass für jede Ermittlung der Farbwahrnehmungskorrekturwerte jeweils diejenige Farbwahrnehmungskenngröße als ausgewählte Farbwahrnehmungskenngröße vorgegeben wird, deren auf die menschliche Farbwahrnehmung bezogene Abweichung von der vorgegebenen Farbwahrnehmungskenngröße maximal ist.
  16. Verfahren nach einem der vorausgehenden Ansprüche 1 bis 12, dadurch gekennzeichnet, dass für eine Regelung der Steuersignale der einzelnen Leuchtmittel (1, 2, 3, 4, 5) oder der Gruppen von Leuchtmitteln (1, 2, 3, 4, 5) eine Kaskadenregelung für die einzelnen Leuchtmittel (1, 2, 3, 4, 5) bzw. der Gruppen von Leuchtmitteln (1, 2, 3, 4, 5) durchgeführt wird.
  17. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass in dem Steuersignalerzeugungsschritt für jedes Leuchtmittel (1, 2, 3, 4, 5) in Abhängigkeit von einer Abweichung der spektralen Leistungsverteilung des Leuchtmittels (1, 2, 3, 4, 5) von einem für die Leuchteinrichtung (6) vorgegebenen Lichtspektrum der Leuchteinrichtung (6) ein Gewichtungsfaktor ermittelt wird, der bei einer Korrektur oder Regelung der Steuersignale für das betreffende Leuchtmittel (1, 2, 3, 4, 5) berücksichtigt wird.
  18. Verfahren nach einem der vorausgehenden Ansprüche, dadurch gekennzeichnet, dass in einem Auswahlschritt das Lichtspektrum der Leuchteinrichtung (6) aus einer Anzahl von vorab definierten Lichtspektren ausgewählt und für eine nachfolgende Betriebsdauer vorgegeben wird.
  19. Leuchteinrichtung (6) mit mindestens zwei Leuchtmitteln (1, 2, 3, 4, 5) mit unterschiedlichen Emissionscharakteristiken, mit mindestens einer Farbsensoreinrichtung, mit einer Speichereinrichtung (13) und mit einer einen Mikroprozessor aufweisenden Steuereinrichtung (10), wobei die Steuereinrichtung (10) Farbkenngrößen, die von der Farbsensoreinrichtung erfasst werden, mit der Mikroprozessoreinrichtung zunächst in Farbwahrnehmungskenngrößen umwandeln und ausgehend von den Farbwahrnehmungskenngrößen neue Steuersignale erzeugen kann, und diese neuen Steuersignale an eine Betriebseinrichtung (12) der Leuchteinrichtung (6) übermitteln kann, mit welcher der Betriebsstrom für jedes Leuchtmittel (1, 2, 3, 4, 5) bereitgestellt wird, um während des Betriebs der Leuchteinrichtung (6) das von der Leuchteinrichtung (6) emittierte Lichtspektrum möglichst konstant zu halten.
  20. Leuchteinrichtung (6) nach Anspruch 19, dadurch gekennzeichnet, dass die Farbsensoreinrichtung ein RGB-Sensor (11) ist.
  21. Leuchteinrichtung (6) nach Anspruch 19 oder Anspruch 20, dadurch gekennzeichnet, dass die Leuchteinrichtung (6) mindestens einen Temperatursensor (13) zur Erfassung einer Umgebungstemperatur der Leuchteinrichtung (6) oder einer Betriebstemperatur der Leuchtmittel (1, 2, 3, 4, 5) in der Umgebung der Leuchtmittel (1, 2, 3, 4, 5) aufweist.
DE102016103677.3A 2016-03-01 2016-03-01 Verfahren zur Steuerung einer Leuchteinrichtung und Leuchteinrichtung Withdrawn DE102016103677A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102016103677.3A DE102016103677A1 (de) 2016-03-01 2016-03-01 Verfahren zur Steuerung einer Leuchteinrichtung und Leuchteinrichtung
PCT/EP2017/054583 WO2017148906A1 (de) 2016-03-01 2017-02-28 Verfahren zur steuerung einer leuchteinrichtung und leuchteinrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016103677.3A DE102016103677A1 (de) 2016-03-01 2016-03-01 Verfahren zur Steuerung einer Leuchteinrichtung und Leuchteinrichtung

Publications (1)

Publication Number Publication Date
DE102016103677A1 true DE102016103677A1 (de) 2017-09-07

Family

ID=58387789

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016103677.3A Withdrawn DE102016103677A1 (de) 2016-03-01 2016-03-01 Verfahren zur Steuerung einer Leuchteinrichtung und Leuchteinrichtung

Country Status (2)

Country Link
DE (1) DE102016103677A1 (de)
WO (1) WO2017148906A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080103714A1 (en) * 2006-10-25 2008-05-01 Renaissance Lighting, Inc. Calibration method and apparatus for lighting fixtures using multiple spectrum light sources and light mixing
US20080215279A1 (en) * 2006-12-11 2008-09-04 Tir Technology Lp Luminaire control system and method
EP1461982B1 (de) * 2001-12-19 2009-09-16 Koninklijke Philips Electronics N.V. Farbregelung für led-leuchte
US20090302781A1 (en) * 2008-06-10 2009-12-10 Microsemi Corp. - Analog Mixed Signal Group Ltd. Color manager for backlight systems operative at multiple current levels
US20150296589A1 (en) * 2014-04-10 2015-10-15 Institut National D'optique Operation of a led lighting system at a target output color using a color sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256557B2 (en) * 2004-03-11 2007-08-14 Avago Technologies General Ip(Singapore) Pte. Ltd. System and method for producing white light using a combination of phosphor-converted white LEDs and non-phosphor-converted color LEDs
US20060097978A1 (en) * 2004-10-22 2006-05-11 Ng Kee Y Field-sequential color display with feedback control
US8253666B2 (en) * 2007-09-21 2012-08-28 Point Somee Limited Liability Company Regulation of wavelength shift and perceived color of solid state lighting with intensity and temperature variation
US9538603B2 (en) * 2013-04-19 2017-01-03 Lutron Electronics Co., Inc. Systems and methods for controlling color temperature

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1461982B1 (de) * 2001-12-19 2009-09-16 Koninklijke Philips Electronics N.V. Farbregelung für led-leuchte
US20080103714A1 (en) * 2006-10-25 2008-05-01 Renaissance Lighting, Inc. Calibration method and apparatus for lighting fixtures using multiple spectrum light sources and light mixing
US20080215279A1 (en) * 2006-12-11 2008-09-04 Tir Technology Lp Luminaire control system and method
US20090302781A1 (en) * 2008-06-10 2009-12-10 Microsemi Corp. - Analog Mixed Signal Group Ltd. Color manager for backlight systems operative at multiple current levels
US20150296589A1 (en) * 2014-04-10 2015-10-15 Institut National D'optique Operation of a led lighting system at a target output color using a color sensor

Also Published As

Publication number Publication date
WO2017148906A1 (de) 2017-09-08

Similar Documents

Publication Publication Date Title
DE60219504T2 (de) Led steuerungsgerät
EP2005799B1 (de) Farbtemperatur- und farbortsteuerung für eine leuchte
EP2701464B1 (de) Vorrichtung und Verfahren zur Erzeugung von Licht eines vorgegebenen Spektrums mit mindestens vier verschiedenfarbigen Lichtquellen
EP2223568B1 (de) Verfahren und anordnung zur einstellung eines farborts sowie leuchtsystem
EP2433472B1 (de) Verfahren zur einstellung eines farborts
DE60016674T2 (de) Anordnung und Verfahren zur Steuerung des Beleuchtungsspektrums
DE102008029816A1 (de) Schaltung zur Dimmung einer Lampe und zugehöriges Verfahren
WO2015051963A1 (de) Verfahren und steuergerät zum betreiben zumindest einer lichtquelle
DE102010030061A1 (de) Verfahren zum Betreiben einer Halbleiterleuchtvorrichtung und Farbregelvorrichtung zum Durchführen des Verfahrens
DE102008025864A1 (de) LED Modul für die Allgemeinbeleuchtung
DE102017125405A1 (de) Verfahren und Vorrichtung zum Kalibrieren von LED-Beleuchtung
DE102021103286A1 (de) Systeme, verfahren und vorrichtungen zum beeinflussen desspektralgehalts einer lichtausgabe
DE102012207185A1 (de) Anordnung zur Erzeugung von weißem Licht mit einstellbarer Farbtemperatur
DE102011079796B4 (de) Verfahren zur Ermittlung von PWM-Werten für LED-Module
DE102007004834A1 (de) Lichtgerät und Verfahren zur Realisierung einer gewünschten Farbmischung
WO2018189007A1 (de) Steuern einer wenigstens zwei elektrische lichtquellen aufweisenden leuchteinrichtung
WO2012025345A1 (de) Verfahren zum betreiben mindestens einer leuchtdiode und leuchtvorrichtung zum durchführen des verfahrens
DE102010011408A1 (de) Vorrichtung mit einem Leuchtmittel und Verfahren zu dessen Steuerung
EP1970745A2 (de) Beleuchtungsmodul insbesondere für Operationsmikroskop
DE102015110003A1 (de) Verfahren zur Steuerung einer Leuchteinrichtung, Verfahren zur Ermittlung von Steuersignalinformationen für die Ansteuerung und Leuchteinrichtung
EP1985912B1 (de) Operationsleuchte
DE102015117852A1 (de) Verfahren zur Steuerung einer Leuchteinrichtung und Leuchteinrichtung
DE102016103677A1 (de) Verfahren zur Steuerung einer Leuchteinrichtung und Leuchteinrichtung
DE202008018269U1 (de) LED Modul für die Allgemeinbeleuchtung
WO2022008250A1 (de) Leuchtmittelvorrichtung, zur abgabe von licht einer kontinuierlich einstellbaren farbe, insbesondere zur individualisierung und/oder beleuchtung eines innenraums

Legal Events

Date Code Title Description
R163 Identified publications notified
R005 Application deemed withdrawn due to failure to request examination