DE102016100063A1 - Optoelektronische leuchtvorrichtung und anzeigeeinrichtung - Google Patents

Optoelektronische leuchtvorrichtung und anzeigeeinrichtung Download PDF

Info

Publication number
DE102016100063A1
DE102016100063A1 DE102016100063.9A DE102016100063A DE102016100063A1 DE 102016100063 A1 DE102016100063 A1 DE 102016100063A1 DE 102016100063 A DE102016100063 A DE 102016100063A DE 102016100063 A1 DE102016100063 A1 DE 102016100063A1
Authority
DE
Germany
Prior art keywords
light
emitting
reflection
optical component
lighting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102016100063.9A
Other languages
English (en)
Other versions
DE102016100063B4 (de
Inventor
Christopher Wiesmann
Peter Brick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to DE102016100063.9A priority Critical patent/DE102016100063B4/de
Priority to PCT/EP2016/082883 priority patent/WO2017118595A1/de
Priority to US16/067,364 priority patent/US11054552B2/en
Publication of DE102016100063A1 publication Critical patent/DE102016100063A1/de
Application granted granted Critical
Publication of DE102016100063B4 publication Critical patent/DE102016100063B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • B29D11/00326Production of lenses with markings or patterns having particular surface properties, e.g. a micropattern
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Planar Illumination Modules (AREA)
  • Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Die Erfindung betrifft eine optoelektronische Leuchtvorrichtung, umfassend: – einen Reflektor aufweisend eine Reflektorfläche, – ein beabstandet zur Reflektorfläche und der Reflektorfläche gegenüberliegend angeordnetes optisches Bauteil, – ein auf der Reflektorfläche angeordnetes lichtemittierendes Bauelement aufweisend eine lichtemittierende Fläche, – wobei das optische Bauteil mehrere unterschiedlich ausgebildete Reflexionselemente für eine Reflexion von von der lichtemittierenden Fläche emittierter elektromagnetischer Strahlung in Richtung der Reflektorfläche aufweist. Die Erfindung betrifft ferner eine Anzeigeeinrichtung.

Description

  • Die Erfindung betrifft eine optoelektronische Leuchtvorrichtung. Die Erfindung betrifft des Weiteren eine Anzeigeeinrichtung.
  • Lambertsch abstrahlende lichtemittierende Dioden erzeugen auf einer beabstandeten Fläche eine stark inhomogene Verteilung (proportional zu cos4). Das heißt, dass die lichtemittierenden Dioden zur homogenen Hinterleuchtung in der Regel sehr dicht gesetzt werden müssen. In der Regel sollten die Dioden in einem Verhältnis von einem Abstand der lichtemittierenden Dioden zu einer Dicke der Hinterleuchtungseinheit (Abstand zwischen den lichtemittierenden Dioden und der zu beleuchtenden Fläche) von < 1 beabstandet zueinander gesetzt werden.
  • Um das vorstehend genannte Verhältnis zu vergrößern, wird in der Regel hinter jeder lichtemittierenden Diode eine Sekundärlinse eingesetzt. Solche Sekundärlinsen sind zum Beispiel vom Argus oder TIR(Total Internal Reflection)-Typ. Dies erfordert in der Regel eine enge Toleranz bei der Herstellung dieser Sekundärlinsen als auch bei der Positionierung von lichtemittierenden Dioden zu den Sekundärlinsen. Die Toleranzen liegen üblicherweise im Bereich < 100 µm.
  • Die der Erfindung zugrundeliegende Aufgabe ist darin zu sehen, ein effizientes Konzept zum effizienten Beleuchten einer zu beleuchtenden Fläche bereitzustellen.
  • Diese Aufgabe wird mittels des jeweiligen Gegenstands der unabhängigen Ansprüche gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand von jeweils abhängigen Unteransprüchen.
  • Nach einem Aspekt wird eine optoelektronische Leuchtvorrichtung bereitgestellt, umfassend:
    • – einen Reflektor aufweisend eine Reflektorfläche,
    • – ein beabstandet zur Reflektorfläche und der Reflektorfläche gegenüberliegend angeordnetes optisches Bauteil,
    • – ein auf der Reflektorfläche angeordnetes lichtemittierendes Bauelement aufweisend eine lichtemittierende Fläche,
    • – wobei das optische Bauteil mehrere unterschiedlich ausgebildete Reflexionselemente für eine Reflexion von von der lichtemittierenden Fläche emittierter elektromagnetischer Strahlung in Richtung der Reflektorfläche aufweist.
  • Nach noch einem Aspekt wird eine Anzeigeeinrichtung bereitgestellt, umfassend:
    • – eine zu beleuchtende Fläche und
    • – die optoelektronische Leuchtvorrichtung,
    • – wobei das optische Bauteil zwischen dem Reflektor und der zu beleuchtenden Fläche angeordnet ist.
  • Die Erfindung beruht auf der Erkenntnis, dass die obige Aufgabe dadurch gelöst werden kann, dass zwischen dem Reflektor und der zu beleuchtenden Fläche ein optisches Bauteil angeordnet wird, welches mehrere unterschiedlich ausgebildete Reflexionselemente aufweist. Diese Reflexionselemente reflektieren elektromagnetische Strahlung, die von der lichtemittierenden Fläche emittiert wird, zurück in Richtung der Reflektorfläche. Somit kann in vorteilhafter Weise die zurückreflektierte elektromagnetische Strahlung vom Reflektor in Richtung des optischen Bauteils reflektiert werden, wobei es aufgrund dieser erneuten Reflexion in der Summe dann zu einer homogeneren Beleuchtungsstärkeverteilung der mittels der Leuchtvorrichtung emittierten elektromagnetischen Strahlung kommt als ohne das optische Bauteil. Die erneute Reflexion verbreitert also die ursprünglich Abstrahlcharakteristik des lichtemittierenden Bauelements.
  • Zum Beispiel ist der Reflektor für eine diffuse Reflexion ausgebildet. Der Reflektor kann somit insbesondere in vorteilhafter Weise die zurückreflektierte elektromagnetische Strahlung diffus umsortieren.
  • Das optische Bauteil reflektiert die elektromagnetische Strahlung nur teilweise, ein Teil der elektromagnetischen Strahlung wird also stets durch das Bauteil strahlen, so dass elektromagnetische Strahlung auf die Fläche auftreffen kann.
  • Dadurch, dass die mehreren Reflexionselemente des optischen Bauteils unterschiedlich ausgebildet sind, wird insbesondere der technische Vorteil bewirkt, dass eine effiziente Rückreflexion und somit eine effiziente Homogenisierung der emittierten elektromagnetischen Strahlung bewirkt werden kann. Denn in der Regel handelt es sich bei der emittierten elektromagnetischen Strahlung um eine divergente elektromagnetische Strahlung, die eine vorbestimmte Beleuchtungsstärkeverteilung aufweist. Das heißt, dass das Licht an unterschiedlichen Orten am optischen Bauteil unter unterschiedlichen Einfallswinkeln auf das optische Bauteil einfallen wird. Insofern kann in der Regel eine bestimmte Ausgestaltung eines Reflexionselements die elektromagnetische Strahlung nur an einer bestimmten Position oder an einem bestimmten Ort die emittierte elektromagnetische Strahlung optimal in Richtung der Reflektorfläche zurückreflektieren. Somit ist es in der Regel nicht möglich, ein universelles Reflexionselement zu konstruieren, welches an beliebigen Orten die emittierte elektromagnetische Strahlung stets gleich gut reflektiert. Diesem Umstand wird somit erfindungsgemäß dadurch Rechnung getragen, dass unterschiedlich ausgebildete Reflexionselemente verwendet werden, so dass die Nachteile, die sich aufgrund der divergenten elektromagnetischen Strahlung und der vorgegebenen Beleuchtungsstärkeverteilung ergeben, überwunden werden können.
  • Es wird somit insbesondere der technische Vorteil bewirkt, dass eine Beleuchtungsstärkeverteilung der mittels der lichtemittierenden Fläche emittierten elektromagnetischen Strahlung aufgrund dieser Mehrfachreflexion verbreitert wird. Dadurch wird insbesondere der technische Vorteil bewirkt, dass die zu beleuchtende Fläche homogener beleuchtet werden kann als ohne das Bauteil.
  • Somit wird also insbesondere der technische Vorteil bewirkt, dass eine effiziente und homogene Beleuchtung der zu beleuchtenden Fläche ermöglicht ist.
  • Ein lichtemittierendes Bauelement im Sinne der vorliegenden Erfindung ist zum Beispiel eine lichtemittierende Diode. Ein lichtemittierendes Bauelement ist zum Beispiel eine Laserdiode. Zum Beispiel ist das lichtemittierende Bauelement als ein optoelektronischer Halbleiterchip ausgebildet, insbesondere als ein Leuchtdiodenchip oder als ein Laserdiodenchip.
  • Der Laserdiodenchip ist zum Beispiel als ein Volumenemitter oder als ein Topemitter ausgebildet.
  • Das lichtemittierende Bauelement befindet sich zwischen dem Reflektor und dem optischen Bauteil.
  • Das lichtemittierende Bauelement weist insbesondere eine Lambertsche Abstrahlcharakteristik auf.
  • In einer Ausführungsform ist die lichtemittierende Fläche der Reflektorfläche abgewandt ist.
  • In einer Ausführungsform ist die lichtemittierende Fläche dem optischen Bauteil zugewandt. Das optische Bauteil liegt somit insbesondere der lichtemittierenden Fläche gegenüber.
  • In einer Ausführungsform ist die lichtemittierende Fläche zum Beispiel zumindest teilweise mittels zwei gegenüberliegenden Seitenflächen des lichtemittierenden Bauelements gebildet. Das heißt also insbesondere, dass das Bauelement mittels seiner zwei gegenüberliegenden Seitenflächen elektromagnetische Strahlung emittiert.
  • In einer Ausführungsform ist die lichtemittierende Fläche zumindest teilweise mittels einer Oberseite des lichtemittierenden Bauelements gebildet. Das heißt also insbesondere, dass das Bauelement mittels seiner Oberseite elektromagnetische Strahlung emittiert.
  • In einer Ausführungsform ist die lichtemittierende Fläche mittels der zwei gegenüberliegenden Seitenflächen und der Oberseite des Bauelements gebildet. Das heißt also, dass das Bauelement mittels seiner Oberseite und seiner zwei gegenüberliegenden Seitenflächen elektromagnetische Strahlung emittiert.
  • Die Reflektorfläche des Reflektors ist also insbesondere ausgebildet, elektromagnetische Strahlung zu reflektieren.
  • Elektromagnetische Strahlung im Sinne der vorliegenden Erfindung bezeichnet insbesondere elektromagnetische Strahlung in einem Wellenlängenbereich von 380 nm bis 780 nm, also für das menschliche Auge sichtbare Strahlung. Das heißt also, dass die elektromagnetische Strahlung zum Beispiel Licht ist. Sofern der Begriff „Licht“ verwendet wird, soll stets allgemein elektromagnetische Strahlung mitgelesen werden und umgekehrt.
  • Elektromagnetische Strahlung im Sinne der vorliegenden Erfindung umfasst insbesondere einen Infrarot-Wellenlängenbereich, also insbesondere einen Wellenlängenbereich von 780 nm bis 1 mm.
  • Nach einer Ausführungsform ist vorgesehen, dass die mehreren Reflexionselemente zumindest teilweise einen Totalreflexionsabschnitt für eine Totalreflexion von zumindest einem Teil der emittierten elektromagnetischen Strahlung in Richtung der Reflektorfläche umfassen.
  • Dadurch wird insbesondere der technische Vorteil bewirkt, dass eine effiziente Rückreflexion der emittierten elektromagnetischen Strahlung bewirkt werden kann. Das heißt, dass zumindest ein Teil der emittierten elektromagnetischen Strahlung mittels der Totalreflexionsabschnitte total in Richtung der Reflektorfläche zurückreflektiert wird.
  • In einer Ausführungsform ist vorgesehen, dass der jeweilige Totalreflexionsabschnitt ein Element ausgewählt aus der folgenden Gruppe von Totalreflexionsabschnitten ist: Pyramidenabschnitt, Kegelabschnitt, Prismenabschnitt.
  • Dadurch wird insbesondere der technische Vorteil bewirkt, dass über diese Totalreflexionsabschnitte eine effiziente Totalreflexion erzielt werden kann. Ein Pyramidenabschnitt ist als Pyramide ausgebildet. Ein Kegelabschnitt ist also als Kegel ausgebildet. Ein Prismenabschnitt ist also als Prisma ausgebildet. Prismen, Pyramiden oder Kegel sind in der geometrischen Optik besonders bevorzugte und effiziente Mittel, um einen Lichtstrahl, allgemeinen elektromagnetischer Strahlung, effizient total zu reflektieren.
  • Eine Pyramide, ein Kegel und ein Prisma weisen jeweils eine Grundfläche auf, die eine Eintrittsfläche für die emittierte elektromagnetische Strahlung bildet. Beabstandet zur Grundfläche weisen eine Pyramide, ein Kegel und ein Prisma jeweils eine Spitze auf. Diese Spitze (, die aufgrund von Fertigungstoleranzen keine perfekt ausgebildete Spitze sein muss, zum Beispiel ist die Spitze als abgerundete oder abgeschnittene Spitze ausgebildet,) ist der Reflektorfläche abgewandt. Die Grundfläche ist der Reflektorfläche zugewandt. Emittierte elektromagnetische Strahlung kann so durch die Grundfläche in die Pyramide, den Kegel oder das Prisma eintreten und kann dann an der Mantelfläche des Kegels respektive der Pyramide respektive des Prismas zurück in Richtung Grundfläche reflektiert werden, um dann aus dem optischen Bauteil wieder auszutreten, um in Richtung Reflektorfläche zu strahlen. Insbesondere abhängig von einem Einfallswinkel in das optische Bauteil und einer konkreten geometrischen Ausgestaltung des Totalreflexionsabschnitts wird eine Totalreflexion durch den entsprechenden Totalreflexionsabschnitt für die unter einem bestimmten Einfallswinkel einfallende elektromagnetische Strahlung bewirkt. Für elektromagnetische Strahlung, die unter einem anderen Einfallswinkel in das optische Bauteil einfällt, wird durch den entsprechenden Totalreflexionsabschnitt zwar keine Totalreflexion mehr bewirkt, aber immerhin eine Teilreflexion.
  • Die Grundfläche ist zum Beispiel viereckig oder dreieckig.
  • Bei den vorstehend genannten Totalreflexionsabschnitten ist eine Gerade definiert, die von der Spitze zu einem Mittelpunkt der Grundfläche verläuft. Diese Gerade kann auch als eine Achse des Totalreflexionsabschnitts bezeichnet werden.
  • Sofern die Spitze nicht perfekt ausgebildet sein sollte, wird zur Definition oder Hilfskonstruktion dieser Geraden anstelle der Spitze der Schnittpunkt der gedanklich verlängerten aufeinander zulaufenden Seitenflächen des Totalreflexionsabschnitts verwendet.
  • In einer Ausführungsform ist vorgesehen, dass ein jeweiliger Winkel zwischen einer von einer Spitze des Totalreflexionsabschnitts und einem Mittelpunkt einer Grundfläche des Totalreflexionsabschnitts verlaufenden Gerade und einer Normalen der Reflektorfläche für Reflexionselemente mit einem größerem lateralen Abstand zum lichtemittierenden Bauelement größer ist als für Reflexionselemente mit einem kleineren lateralen Abstand zum lichtemittierenden Bauelement.
  • Die Totalreflexionsabschnitte sind also mit ihrer Achse in Richtung der Reflektorfläche gekippt oder verkippt und zwar desto verkippter je weiter die Reflexionselemente lateral von dem lichtemittierenden Bauelement beabstandet sind. Dadurch wird insbesondere der technische Vorteil bewirkt, dass die emittierte elektromagnetische Strahlung effizient von den Reflexionselementen zurück in Richtung der Reflektorfläche reflektiert zu werden. Das Prisma ist also als ein schiefes Prisma ausgebildet. Die Pyramide ist also als eine schiefe Pyramide ausgebildet. Der Kegel ist also als ein schiefer Kegel ausgebildet. Hierbei gilt insbesondere: Für weiter entfernte Totalreflexionsabschnitte ist der entsprechende Totalreflexionsabschnitt schiefer als für weniger entfernte Totalreflexionsabschnitte.
  • Dadurch wird ferner insbesondere der technische Vorteil bewirkt, dass eine effiziente Totalreflexion auch für emittierte elektromagnetische Strahlung bewirkt werden kann, die nicht senkrecht bezogen auf die lichtemittierende Fläche emittiert wird, sondern unter einem Winkel zur Normalen der lichtemittierenden Fläche vom lichtemittierenden Bauelement abgestrahlt wird. Je größer dieser Winkel ist, also je seitlicher (bezogen auf das lichtemittierende Bauteil) die elektromagnetische Strahlung emittiert wird, desto mehr ist es sinnvoll, dass die Totalreflexionsabschnitte mit ihrer Achse in Richtung der Reflektorfläche gekippt sind, um eine effiziente Totalreflexion zu bewirken. Dies wird also erfindungsgemäß dadurch bewirkt, dass mit zunehmendem lateralen Abstand der Reflexionselemente zum lichtemittierenden Bauelement ein Winkel zwischen der jeweiligen Achse und einer Normalen der Reflektorfläche größer wird.
  • Der laterale Abstand eines Reflexionselements ist zum Beispiel als ein lateraler Abstand zwischen einer durch den Mittelpunkt der lichtemittierenden Fläche verlaufenden Normalen der lichtemittierenden Fläche und dem Reflexionselement, insbesondere zwischen einer durch den Mittelpunkt der lichtemittierenden Fläche verlaufenden Normalen der lichtemittierenden Fläche und einer Normalen des optischen Bauteils, die durch einen Schnittpunkt der Achse des Totalreflexionsabschnitts mit einer Unterseite des optischen Bauteils verläuft, die der Reflektorfläche zugewandt ist, definiert.
  • Gemäß einer Ausführungsform ist vorgesehen, dass der jeweiliger Winkel proportional zu arcsin(1/n·sin(arctan(r/d))), vorzugsweise mit einer Toleranz von beispielsweise plus/minus 10 Grad, insbesondere von plus/minus 5 Grad, ist, wobei n ein Brechungsindex des optischen Bauteils ist, d ein Abstand der lichtemittierenden Fläche zum optischen Bauteil ist und r der laterale Abstand des entsprechenden Reflexionselements zum lichtemittierenden Bauelement ist.
  • Dadurch wird insbesondere der technische Vorteil bewirkt, dass eine besonders effiziente Totalreflexion der emittierten elektromagnetischen Strahlung über einen entsprechend großen Raumwinkel ermöglicht ist.
  • Gemäß einer weiteren Ausführungsform ist vorgesehen, dass die Reflexionselemente zumindest teilweise eine parallel zur jeweiligen Geraden ausgerichtete Flanke aufweisen, die näher zum lichtemittierenden Bauelement angeordnet ist als der Totalreflexionsabschnitt. Parallel zur jeweiligen Geraden werden auch solche Flanken bezeichnet, die aufgrund von Fertigungstoleranzen einen Winkel von beispielsweise 10 Grad, insbesondere von 5 Grad, zur Geraden aufweisen.
  • Dadurch wird insbesondere der technische Vorteil bewirkt, dass eine Abschattung der einfallenden und dann im Bauteil verlaufenden elektromagnetischen Strahlung, bevor die eingefallene elektromagnetische Strahlung durch die Grundfläche in einen Totalreflexionsabschnitt eintritt, verhindert werden kann. Dadurch wird insbesondere der technische Vorteil bewirkt, dass eine Lichtausbeute erhöht werden kann, allgemein eine Ausbeute elektromagnetischer Strahlung. Somit wird insbesondere der technische Vorteil bewirkt, dass die zu beleuchtende Fläche effizient beleuchtet werden kann.
  • Nach einer Ausführungsform ist vorgesehen, dass eine der Reflektorfläche zugewandte Unterseite des optischen Bauteils strukturiert und/oder gekrümmt ist.
  • Dadurch wird insbesondere der technische Vorteil bewirkt, dass die Unterseite ebenfalls für eine Reflexion der emittierten elektromagnetischen Strahlung in Richtung der Reflektorfläche beitragen kann. Dadurch wird somit in vorteilhafter Weise eine effiziente Rückreflexion bewirkt.
  • Nach einer Ausführungsform ist vorgesehen, dass die mehreren Reflexionselemente konzentrisch um das lichtemittierende Bauelement oder linear angeordnet sind.
  • Die konzentrische Anordnung bewirkt insbesondere den Vorteil, dass eine effiziente und gleichmäßige Rückreflexion der emittierten elektromagnetischen Strahlung bewirkt werden. Eine lineare Anordnung bewirkt insbesondere den technischen Vorteil, dass die zu beleuchtende Fläche effizient linear beleuchtet werden kann.
  • Dass die mehreren Reflexionselemente nach einer Ausführungsform konzentrisch um das lichtemittierende Bauelement angeordnet sind, bedeutet insbesondere, dass die mehreren Reflexionselemente entlang eines Kreises oder entlang mehrerer Kreise mit unterschiedlichen Radien angeordnet sind, wobei ein Mittelpunkt des Kreises respektive der Kreise durch das lichtemittierende Bauelement festgelegt ist. Zum Beispiel bildet ein Mittelpunkt der lichtemittierenden Fläche das Zentrum des Kreises respektive der mehreren Kreise.
  • Nach einer Ausführungsform ist vorgesehen, dass das optische Bauteil als ein extrudiertes oder als ein spritzgegossenes optisches Bauteil ausgebildet ist.
  • Dadurch wird insbesondere der technische Vorteil bewirkt, dass das optische Bauteil effizient hergestellt ist.
  • Ein extrudiertes Bauteil bezeichnet ein Bauteil, welches mittels eines Extrusionsverfahrens hergestellt ist. Zum Beispiel ist das optische Bauteil als eine Folie gebildet. Folien sind in der Regel technisch einfach und kostengünstig herzustellen. Somit wird also der technische Vorteil bewirkt, dass das optische Bauteil technisch einfach und kostengünstig hergestellt werden kann respektive ist.
  • Ein spritzgegossenes optisches Bauteil bezeichnet ein Bauteil, welches mittels eines Spritzgussverfahrens hergestellt ist. Auch mittels eines solchen Verfahrens ist in vorteilhafter Weise eine effiziente und einfache und kostengünstige Herstellung des Bauteil ermöglicht.
  • Nach einer Ausführungsform ist vorgesehen, dass die mehreren Reflexionselemente als gestempelte Reflexionselemente ausgebildet sind.
  • Dadurch wird insbesondere der technische Vorteil bewirkt, dass die Reflexionselemente effizient hergestellt sind. Gestempelte Reflexionselemente bezeichnen somit insbesondere Reflexionselemente, die gestempelt wurden. Über ein solches Stempelverfahren ist es in vorteilhafter Weise ermöglicht, die geometrischen Formen, die für eine Totalreflexion benötigt werden, effizient und einfach herzustellen.
  • Nach einer Ausführungsform ist vorgesehen, dass mehrere lichtemittierende Bauelemente mit ihrer jeweiligen lichtemittierenden Fläche der Reflektorfläche abgewandt auf der Reflektorfläche angeordnet sind, wobei eine normal zum optischen Bauteil und mittig zwischen zwei lichtemittierenden Bauelementen verlaufende Spiegelachse definiert ist, so dass beidseitig der Spiegelachse zwei spiegelsymmetrisch ausgebildete, Reflexionselemente umfassende Abschnitte des optischen Bauteils ausgebildet sind, die jeweils von der Spiegelachse bis zu einem Abstand zur optischen Achse verlaufen, der der Hälfte des Abstands zwischen den zwei entsprechenden lichtemittierenden Bauelementen entspricht.
  • Dadurch wird insbesondere der technische Vorteil bewirkt, dass bei mehreren lichtemittierenden Bauelementen ebenfalls eine effiziente und gleichmäßige Rückreflexion ermöglicht ist.
  • Nach einer Ausführungsform ist vorgesehen, dass ab einem vorbestimmten lateralen Abstand zum lichtemittierenden Bauelement die Reflexionselemente derart ausgebildet sind, dass die Totalreflexion des zumindest einen Teils der emittierten elektromagnetischen Strahlung reduziert oder ausgeschaltet ist.
  • Dadurch wird insbesondere der technische Vorteil bewirkt, dass ab einem vorbestimmten lateralen Abstand zum lichtemittierenden Bauelement eine Transmission durch das optische Bauteil verbessert wird, so dass hierüber eine effiziente und homogene Beleuchtung der zu beleuchtenden Fläche ermöglicht ist.
  • Die Formulierung "optisches" in der Formulierung "optisches Bauteil" bedeutet insbesondere, dass das Bauteil aus einem Material gebildet ist, welches eine Transmission für die emittierte elektromagnetische Strahlung von mindestens 90 %, insbesondere 95 %, zum Beispiel 99 %, aufweist. Das heißt also, dass das optische Bauteil aus einem Material gebildet ist, welches für die emittierte elektromagnetische Strahlung zumindest teilweise, insbesondere vollständig, transparent ist. Anstelle der Formulierung Material kann auch die Formulierung "Werkstoff" verwendet werden.
  • Zum Beispiel ist vorgesehen, dass das optische Bauteil aus einem oder mehreren der folgenden Elemente gebildet ist: Epoxidharz, Polycarbonat (PC), Silikon, Glas und Polymethylmethacrylat (PMMA) gebildet ist.
  • Die optoelektronische Leuchtvorrichtung bildet nach einer Ausführungsform eine Hinterleuchtungseinheit zum Hinterleuchten (oder Beleuchten) einer Fläche einer Anzeigeeinrichtung. Die optoelektronische Leuchtvorrichtung kann somit insbesondere als eine Hinterleuchtungseinheit bezeichnet werden, insbesondere als eine Hinterleuchtungseinheit für eine Anzeigeeinrichtung.
  • Die zu beleuchtende oder zu hinterleuchtenden Fläche ist nach einer Ausführungsform von einer Flüssigkristallanzeige (LCD: Liquid Cristal Display) umfasst.
  • Die Anzeigeeinrichtung umfasst somit nach einer Ausführungsform eine Flüssigkristallanzeige, die zum Beispiel eine zu beleuchtende oder zum Beispiel eine zu hinterleuchtende Fläche aufweist.
  • In einer Ausführungsform sind mehrere lichtemittierende Bauelemente, insbesondere mit ihrer jeweiligen lichtemittierenden Fläche der Reflektorfläche abgewandt, auf der Reflektorfläche angeordnet. Insbesondere sind die Bauelemente periodisch angeordnet.
  • In einer Ausführungsform ist vorgesehen, dass die Reflexionselemente als mehrere konzentrische Ringe oder Kreise, insbesondere als unterbrochene Ringe oder unterbrochene Kreise, angeordnet sind, wobei ein jeweiliger Mittelpunkt oder ein jeweiliges Zentrum dieser Ringe oder Kreise durch die Mittelpunkte der Reflexionselemente festgelegt ist.
  • In einer Ausführungsform sind die Reflexionselemente als ein Polygon angeordnet.
  • Die Formulierung „respektive“ umfasst insbesondere die Formulierung „und/oder“.
  • Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenfassung mit den Zeichnungen näher erläutert werden, wobei
  • 1 lichtemittierende Bauelemente, die eine zu beleuchtende Fläche beleuchten,
  • 2 eine grafische Darstellung einer Beleuchtungsstärkeverteilung eines lichtemittierenden Bauelements,
  • 3 und 4 jeweils einen Ausschnitt aus der Beleuchtungsstärkeverteilung der 2,
  • 5 ein optisches Bauteil in einer Ansicht,
  • 6 das optische Bauteil der 5 in einer weiteren Ansicht,
  • 7 das optische Bauteil gemäß 6,
  • 8 einen graphischen Verlauf eines Winkels zwischen einer Achse eines Totalreflexionsabschnitts und einer Normalen einer Reflektorfläche in Abhängigkeit von einem lateralen Abstand des entsprechenden Reflexionselements zum lichtemittierenden Bauelement,
  • 9 eine optoelektronische Leuchtvorrichtung,
  • 10 und 11 jeweils eine dreidimensional gezeichnete Ansicht des optischen Bauteils der 5 und 6,
  • 12 ein weiteres optisches Bauteil,
  • 13 eine Ausführungsform des optischen Bauteils der 5 und 6, in welcher ab einem vorbestimmten lateralen Abstand zum lichtemittierenden Bauelement eine Totalreflexion reduziert oder ausgeschaltet ist,
  • 14 eine Beleuchtungsstärkeverteilung bei der optoelektronischen Leuchtvorrichtung der 9 und
  • 15 und 16 jeweils einen Ausschnitt aus der Beleuchtungsstärkeverteilung der 14
    zeigen.
  • Im Folgenden können für gleiche Merkmale gleiche Bezugszeichen verwendet werden. Der Übersicht halber ist vorgesehen, dass nicht in sämtlichen Zeichnungen sämtliche Merkmale stets mit einem Bezugszeichen versehen sind.
  • 1 zeigt einen Reflektor 101 umfassend eine Reflektorfläche 103. Auf der Reflektorfläche 103 sind zwei lichtemittierende Bauelemente 105 angeordnet. Bei den lichtemittierenden Bauelementen handelt es sich nach einer Ausführungsform um lichtemittierende Dioden.
  • Die lichtemittierenden Bauelemente 105 weisen jeweils eine lichtemittierende Fläche 107 auf. Die jeweilige lichtemittierend Fläche ist der Reflektorfläche 103 abgewandt. Die lichtemittierende Fläche 107 ist an einer Oberseite der Bauelemente 105 gebildet.
  • Die lichtemittierenden Bauelemente 105 emittieren über die lichtemittierenden Flächen 107 zum Beispiel Licht. In einer nicht gezeigten Ausführungsform ist vorgesehen, dass die lichtemittierenden Bauelemente 105 anstelle oder zusätzlich zur Oberseite über zwei gegenüberliegende Seitenflächen 123 elektromagnetische Strahlung, insbesondere Licht, emittieren. Die lichtemittierende Fläche ist dann gemäß dieser Ausführungsform zumindest teilweise durch die gegenüberliegenden Seitenflächen 123 respektive durch die Oberseite gebildet.
  • Ferner ist eine Flüssigkristallanzeige 109 vorgesehen, die eine zu beleuchtende Fläche 111 aufweist. Diese zu beleuchtende Fläche 111 ist der Reflektorfläche 103 zugewandt.
  • Der Reflektor mit den lichtemittierenden Bauelementen 105 bildet somit eine Hinterleuchtungseinheit für die Flüssigkristallanzeige 109.
  • Lichtemittierende Dioden weisen in der Regel eine Beleuchtungsstärkeverteilung auf, die dem Lambertschen Abstrahlgesetz folgt. Das heißt, dass die Beleuchtungsstärkeverteilung folgende Gleichung erfüllt: I(theta) = I0·cos(theta)
  • I0 bezeichnet die Intensität des senkrecht zur lichtemittierenden Fläche 107 emittierten Lichts, also parallel zu einer Normalen 113 der lichtemittierenden Fläche 107.
  • Theta bezeichnet den Winkel eines mittels der lichtemittierenden Fläche 107 emittierten Lichtstrahls 119 zu der Normalen 113.
  • Die entsprechende Beleuchtungsstärkeverteilung durch ein lichtemittierendes Bauelement 105 auf der Fläche 111 erfüllt somit folgende Gleichung:
  • E(theta) = E0·cos4(theta).
  • E0 bezeichnet die Beleuchtungsstärke senkrecht zur lichtemittierenden Fläche 107.
  • Die Lambertsche Abstrahlcharakteristik einer lichtemittierenden Diode führt zu einer stark inhomogenen Beleuchtungsstärkeverteilung auf der Fläche 111.
  • Dies führt also zu relativ viel Licht unmittelbar über dem lichtemittierenden Bauelement 105 und zu relativ wenig Licht in den Lücken zwischen benachbarten lichtemittierenden Bauelementen 105.
  • Ein Abstand a zwischen zwei lichtemittierenden Bauelementen 105 ist mit einem Doppelpfeil mit dem Bezugszeichen 115 gekennzeichnet. Der Abstand a ist definiert als die Distanz zwischen dem jeweiligen Mittelpunkt der lichtemittierenden Flächen 107.
  • Eine Dicke oder ein Abstand d zwischen der Reflektorfläche 103 und der Fläche 111 ist mit einem Doppelpfeil mit dem Bezugszeichen 117 gekennzeichnet.
  • 2 zeigt eine Beleuchtungsstärkeverteilung auf der Fläche 111 bei einem Abstand a zwischen zwei lichtemittierenden Bauelementen 105 von 20 mm sowie einer Dicke d von 5 mm.
  • Die Achse mit dem Bezugszeichen 201 ist die x-Achse und gibt einen lateralen Abstand auf der Fläche 111 relativ zum Mittelpunkt der lichtemittierenden Fläche 107 in Millimetern an.
  • Die Achse mit dem Bezugszeichen 203 ist die y-Achse und gibt einen bezogen auf den lateralen Abstand vertikalen Abstand auf der Fläche 111 relativ zum Mittelpunkt der lichtemittierenden Fläche 107 in Millimetern an.
  • Das Bezugszeichen 205 zeigt auf eine Skala, die die Beleuchtungsstärke in Lux angibt.
  • Die in 2 gezeigte Beleuchtungsstärkeverteilung zeigt deutlich, dass sich der Hauptanteil der Beleuchtungsstärke um den Mittelpunkt konzentriert.
  • 3 zeigt einen Schnitt durch die Beleuchtungsstärkeverteilung der 2 für y = 0 mm.
  • 4 zeigt einen Schnitt durch die Beleuchtungsstärkeverteilung der 2 für x = 0 mm.
  • Um diese inhomogene Beleuchtungsstärkeverteilung zu homogenisieren, ist nach einer Ausführungsform ein optisches Bauteil 501 vorgesehen, das in 5 in einer seitlichen Schnittansicht gezeigt ist und das zwischen den lichtemittierenden Bauelementen 105 und der Fläche 111 angeordnet wird.
  • Das optische Bauteil 501 ist mit seiner Unterseite 503 der Reflektorfläche 103 zugewandt. Das optische Bauteil 501 weist mehrere Reflexionselemente 504 auf. Die Reflexionselemente 504 weisen jeweils einen Prismenabschnitt 505 auf. Der Prismenabschnitt 505 weist als Mantelfläche einen ersten Schenkel 507 und einen winklig zum ersten Schenkel 507 verlaufenden zweiten Schenkel 509 auf. Die beiden Schenkel 507, 509 treffen sich in einer Spitze 515 des Prismenabschnitts 505. Eine jeweilige Achse der Prismenabschnitte 505 ist mit dem Bezugszeichen 510 gekennzeichnet. Eine entsprechende Basis der beiden Prismenabschnitte 505 ist aufgrund der Schnittansicht als gestrichelte Linie mit dem Bezugszeichen 517 gezeichnet.
  • Ein Lichtstrahl, welcher beabstandet und parallel zur Achse 510 in den Prismenabschnitt 505 eintritt, wird durch die jeweilige Innenseite der beiden Schenkeln 507, 509 zurück in Richtung der Reflektorfläche 103 totalreflektiert.
  • Ein in das Bauteil 501 einfallender Lichtstrahl ist mit einem Pfeil mit dem Bezugszeichen 119 gekennzeichnet. Der Lichtstrahl 119 trifft auf die Innenseite des Schenkel 507 und wird von dieser in Richtung der Innenseite des Schenkels 509 reflektiert. Dieses reflektierte Licht ist symbolisch mit einem Pfeil mit dem Bezugszeichen 511 dargestellt. Dieser reflektierte Lichtstrahl 511 trifft auf die Innenseite des Schenkels 509 und wird von dieser zurück in Richtung Reflektorfläche 103 reflektiert. Dieses zurückreflektierte Licht ist mit einem Pfeil mit dem Bezugszeichen 513 gekennzeichnet.
  • Der Übersicht halber ist in 5 kein lichtemittierendes Bauelement 105 eingezeichnet. Lediglich die mittels der lichtemittierenden Fläche 107 emittierte elektromagnetische Strahlung ist symbolisch mit Pfeilen mit den Bezugszeichen 119 dargestellt.
  • Die Reflektorfläche 103 selbst ist zum Beispiel als diffus reflektierend ausgebildet und/oder zum Beispiel als stark seitwärts streuend, also als lateral streuend, bezogen auf eine Normale zur Reflektorfläche 103 ausgebildet.
  • Das heißt also, dass Licht, welches durch die Reflexionselemente 504 zurück in Richtung Reflektorfläche 103 reflektiert wird, von der Reflektorfläche 103 wiederum diffus oder stark lateral streuend reflektiert werden kann, so dass eine ursprüngliche Lambertsche Abstrahlcharakteristik verbreitert oder homogenisiert werden kann.
  • Das optische Bauteil 501 weist noch weitere Reflexionselemente auf, die aus zeichnerischen Gründen in 5 nicht dargestellt sind, die aber nachfolgend unter Bezugnahme auf die weiteren Figuren beschrieben und gezeigt sind.
  • 6 zeigt das optische Bauteil 501 mit weiteren Reflexionselementen 601 in einer seitlichen Schnittansicht. Diese weiteren Reflexionselemente 601 sind bezogen auf die in 5 gezeigten Reflexionselemente 504 verschieden zu diesen ausgebildet. Die Reflexionselemente 601 befinden sich lateral von dem lichtemittierenden Bauelement 105 weiter beabstandet als die Reflexionselemente 504.
  • Der Übersicht halber sind die in 5 gezeigten Reflexionselemente 504 in 6 nicht eingezeichnet.
  • Die Reflexionselemente 601 weisen analog zu den Reflexionselementen 504 jeweils einen Prismenabschnitt 505 auf, der jeweils in Richtung der Reflektorfläche 103, also insbesondere in Richtung der lichtemittierenden Bauelemente 105, verkippt oder geneigt ist. Das heißt, dass eine jeweilige Achse 603 der Prismenabschnitte 505 nicht mehr normal zur Reflektorfläche 103 respektive zur lichtemittierenden Fläche 107 verläuft. Vielmehr ist nun ein Winkel 621 zwischen der jeweiligen Achse 603 und einer Normalen 619 der Reflektorfläche 103 gebildet, wobei dieser Winkel 621 > 0 Grad ist, also verschieden von 0 Grad ist. Die Normale 619 entspricht hier der Normalen der Unterseite 503, insofern diese eben und parallel zur Reflektorfläche 103 verläuft.
  • Da die Reflexionselemente 601 lateral weiter beabstandet sind als die Reflexionselemente 504, wird das einfallende Licht 119 unter einem größeren Einfallswinkel in die Reflexionselemente 601 einfallen relativ zu den Reflexionselementen 504, die sich im Wesentlichen unmittelbar über dem lichtemittierenden Bauelement 105 befinden.
  • Die Reflexionselemente 601 weisen jeweils eine parallel zur Achse 603 ausgerichtete Flanke 609 auf, die näher zum lichtemittierenden Bauelement 105 angeordnet ist als der Prismenabschnitt 505.
  • Ein beispielhafter Strahlenverlauf ist mit Pfeilen dargestellt, was nachfolgend näher beschrieben wird.
  • Das Bezugszeichen 119 zeigt auf einen mittels der lichtemittierenden Fläche 107 emittierten Lichtstrahl 119. Dieser wird an der Unterseite 503 des optischen Bauteils 501 gebrochen. Der gebrochene und somit in das optischen Bauteil 501 eingefallene Lichtstrahl ist mit dem Bezugszeichen 611 gekennzeichnet.
  • Der gebrochene Lichtstrahl 611 wird an der Innenseite des Schenkel 507 in Richtung der Innenseite des Schenkels 509 reflektiert. Dieser reflektierte Lichtstrahl ist mit dem Bezugszeichen 613 gekennzeichnet. An der Innenseite des Schenkels 509 wird dieser Lichtstrahl 613 in Richtung Unterseite 503 reflektiert. Dieser reflektierte Lichtstrahl ist mit dem Bezugszeichen 615 gekennzeichnet. Durch den Austritt des Lichtstrahle 615 aus dem optischen Bauteil 501 wird dieser Lichtstrahl gebrochen und zurück in Richtung Reflektorfläche 103 respektive lichtemittierendes Bauelement 105 reflektiert. Dieser zurückreflektierte und somit aus dem Bauteil 501 ausgetretene Lichtstrahl ist mit dem Bezugszeichen 617 gekennzeichnet.
  • Somit findet also eine Totalreflexion statt auch für Licht oder elektromagnetische Strahlung, die unter einem Winkel > 0° von der lichtemittierenden Fläche relativ zur Normalen der lichtemittierenden Fläche abgestrahlt wird.
  • Wenn hingegen anstelle der Reflexionselemente 601 die Reflexionselemente 504 verwendet würden, so würden diese Reflexionselemente in diesem lateralen Abstand zum lichtemittierenden Bauelement 105 das Licht nicht genauso gut total reflektieren wie die Reflexionselemente 601. Dies deshalb nicht, da die Reflexionselemente 504 nicht in Richtung der Reflektorfläche 103 verkippt sind.
  • 7 zeigt nochmals das optische Bauteil mit den Reflexionselementen 601. Gegenüber der in 6 gezeigten Darstellung ist hier noch zusätzlich der Einfallswinkel 701 zwischen dem einfallenden Strahl 119 und der Normalen 619 eingezeichnet.
  • Der Winkel 701 wird im Folgenden als "theta_ein" bezeichnet, wobei "ein" für "einfallender Strahl" steht. Der Winkel 621 wird im Folgenden als "theta_kipp" bezeichnet, wobei "kipp" für "gekippte Achse" steht, insofern die Achse 603 relativ zur Achse 510 in Richtung der lichtemittierenden Bauelemente 105 gekippt oder geneigt ist.
  • Es gilt nach einer Ausführungsform folgende Gleichung: theta_ein = arctan(r/d)
  • "d" bezeichnet hier im Gegensatz zu 1 den Abstand zwischen der Reflektorfläche 107 und dem optischen Bauteil 501.
  • "r" bezeichnet den lateralen Abstand des Reflexionselements 601 bezogen auf eines der lichtemittierende Bauelemente 105.
  • Es gilt nach einer Ausführungsform folgende Gleichung: theta_kipp = arcsin(1/n·sin(theta_ein)).
  • Hierbei ist n der Brechungsindex des optischen Bauteils 501. 8 zeigt die Abhängigkeit von theta_kipp von dem lateralen Abstand r. Der graphische Verlauf ist durch eine Kurve mit dem Bezugszeichen 805 gezeichnet. Die Achse mit dem Bezugszeichen 801 gibt den lateralen Abstand r in Millimeter an. Die Achse mit dem Bezugszeichen 803 gibt theta_kipp in Grad an.
  • Deutlich zu erkennen ist, dass mit zunehmendem lateralem Abstand zu einem lichtemittierenden Bauelement ein Totalreflexionsabschnitt in Richtung der Reflektorfläche 103 verkippt sein sollte, um eine optimale Totalreflexion zu bewirken.
  • 9 zeigt eine optoelektronische Leuchtvorrichtung 901 umfassend den Reflektor 101 mit einem auf der Reflektorfläche 103 angeordneten lichtemittierenden Bauelement 105 sowie das optische Bauteil 501 mit den Reflexionselementen 504, 601. Ferner ist die Flüssigkristallanzeige 109 vorgesehen, wobei die Fläche 111 der Reflektorfläche 103 zugewandt ist.
  • Das optische Bauteil 501 ist zwischen dem Reflektor 101 und der Flüssigkristallanzeige 109 angeordnet.
  • Somit zeigt die 9 eine Anzeigeeinrichtung 903, die die optoelektronische Leuchtvorrichtung 901 sowie eine zu beleuchtende Fläche, die Fläche 111 der Flüssigkristallanzeige 109. Die optoelektronische Leuchtvorrichtung 901 bildet somit eine Hinterleuchtungseinheit für die Flüssigkristallanzeige 111.
  • Zwischen den Reflexionselementen 504 und den Reflexionselementen 601 sind aus zeichnerischen Gründen keine weiteren Reflexionselemente gezeichnet. Dennoch ist nach einer Ausführungsform vorgesehen, dass auch zwischen diesen Reflexionselementen weitere Reflexionselemente vorgesehen sind, die bezogen auf die Reflexionselemente 504, 601 unterschiedlich zu diesen ausgebildet sind. Beispielsweise sind jeweilige Totalreflexionsabschnitte dieser Reflexionselemente mit ihrer Achse weniger stark in Richtung Reflektorfläche 103 geneigt als die Totalreflexionsabschnitte der Reflexionselemente 601.
  • Obwohl lediglich Strahlengänge eingezeichnet sind, die eine Totalreflexion des mittels der lichtemittierenden Fläche 107 emittierten Lichts zeigen, so wird dennoch aufgrund von in der Realität nicht immer perfekter Totalreflexion ein gewisser Anteil an Licht (oder allgemein an elektromagnetischer Strahlung) durch das optische Bauteil 501 strahlen in Richtung der Fläche 111 der Flüssigkristallanzeige 109.
  • 10 zeigt einen Ausschnitt aus dem optischen Bauteil 501 im Bereich um die Reflexionselemente 504 in einer dreidimensionalen Ansicht.
  • 11 zeigt eine dreidimensionale Ansicht für einen Bereich um die Reflexionselemente 601 des Bauteils 501.
  • Gemäß den in 10 und 11 gezeigten Darstellungen sind die Reflexionselemente 504, 601 konzentrisch angeordnet, wobei das entsprechende Zentrum normal oberhalb der lichtemittierenden Fläche 107 eines der Bauelemente 105 liegt.
  • 12 zeigt eine weitere optoelektronische Leuchtvorrichtung 1200.
  • Anstelle des optischen Bauteils 501 ist hier ein optisches Bauteil 1201 vorgesehen, das mehrere unterschiedlich ausgebildete Reflexionselemente 1203, 1205, 1207 aufweist. Die Reflexionselemente 1203, 1205, 1207 sind zum Beispiel als unterschiedlich ausgebildete Prismen oder Pyramiden ausgebildet. Zum Beispiel unterscheiden sie sich die jeweiligen Prismen oder Pyramiden in einer Höhe voneinander bezogen auf die Unterseite 503 des optischen Bauteils 1201.
  • Es wird an dieser Stelle angemerkt, dass die Totalreflexion für eine effiziente Homogenisierung des mittels der lichtemittierenden Fläche emittierten Lichts nicht perfekt sein muss. Es reicht bereits für eine effiziente Homogenisierung, dass ein Anteil von mindestens 50 % des emittierten Lichts total in Richtung der Reflektorfläche 103 zurückreflektiert wird.
  • Beispielhafte Strahlengänge sind in 12 mit Pfeilen mit den Bezugszeichen 1209 eingezeichnet. Selbst wenn ein Lichtstrahl nicht optimal in ein entsprechendes Reflexionselement 1203, 1205, 1207 einfällt, so wird das entsprechende Licht zwar nicht perfekt totalreflektiert werden, sondern unter einer gewissen Winkelabweichung. Dennoch wird das Licht in der Regel stets zurück zum Reflektor 101 reflektiert und kann somit von der Reflektorfläche 103 erneut in Richtung des Bauteils 1201 zurückreflektiert werden, um eine weitere Homogenisierung der ursprünglichen Lambertschen Abstrahlcharakteristik des lichtemittierenden Bauelements 105 zu bewirken.
  • 13 zeigt die optoelektronische Leuchtvorrichtung 901 gemäß 9, wobei hier eine Schnittlinie 1301 durch die Reflexionselemente 601 eingezeichnet ist. Es ist nach einer Ausführungsform vorgesehen, dass die Reflexionselemente 601 entlang dieser Schnittlinie 1301 abgeschnitten sind. Das heißt zum Beispiel, dass die jeweilige Spitze 515 der Prismenabschnitte 505 wie abgeschnitten oder abgerundet ausgebildet ist. Dadurch wird also bewirkt, dass die so modifizierten Reflexionselemente das einfallende Licht nicht mehr genauso gut total reflektieren können wie die nicht modifizierten Reflexionselemente. Es wird also eine Reduktion der Totalreflexion oder Retroreflexion bewirkt. Eine solch selektive Ausschaltung respektive Reduktion der Totalreflexion wird insbesondere für Reflexionselemente durchgeführt, die sich in einem vorbestimmten lateralen Abstand zum lichtemittierenden Bauelement 105 befinden.
  • Das heißt also, dass ein vorbestimmter lateraler Abstand relativ zum lichtemittierenden Bauelement 105 vorgegeben wird, wobei für Reflexionselemente, die sich in einem lateralen Abstand zum lichtemittierenden Bauelement 105 befinden, der größer ist als der vorbestimmte Abstand, die Total- oder Retroreflexion selektiv ausgeschaltet respektive reduziert wird. Dies zum Beispiel dadurch, dass Spitzen oder Ecken als abgeflachte oder abgerundete oder als abgeschnittene Spitzen oder Ecken ausgebildet werden Nach einer Ausführungsform ist vorgesehen, dass das optische Bauteil Bereiche aufweist, die frei von Reflexionselementen sind. In diesen Bereichen, auch Transmissionsbereiche genannt, kann emittierte elektromagnetische Strahlung direkt durch das Bauteil strahlen, ohne zurückreflektiert zu werden.
  • 14 bis 16 zeigen respektive analog zu den 2 bis 4 eine Beleuchtungsstärkeverteilung bei der optoelektronischen Leuchtvorrichtung 901. Hierbei ist ein Abstand zwischen zwei lichtemittierenden Bauelementen von 20 mm gewählt worden. Ein Abstand zwischen dem Reflektor und der zu beleuchtenden Fläche beträgt 5 mm. Es sind noch keine zusätzlichen optischen Elemente, zum Beispiel Linsen oder Folien, zwischen dem optischem Bauteil und zu beleuchtender Fläche vorgesehen.
  • Dennoch wird allein aufgrund des optischen Bauteils mit den unterschiedlich ausgebildeten Reflexionselementen eine verbesserte, also insbesondere homogenere, Beleuchtungsstärkeverteilung erzielt.
  • 15 zeigt analog zu 2 eine Schnittdarstellung durch die in 14 gezeigte Beleuchtungsstärkeverteilung, wobei y = 0 ist.
  • 16 zeigt einen Schnitt durch die in 14 gezeigte Beleuchtungsstärkeverteilung, wobei x = 0 ist.
  • Ein Verhältnis von minimaler Beleuchtungsstärke zu maximaler Beleuchtungsstärke (E_min/E_max) ist hier größer als 70 % bei einer Effizienz von mehr als 80 %.
  • Zusammenfassend umfasst die Erfindung also insbesondere den Gedanken, zwischen dem Reflektor mit den lichtemittierenden Elementen und zu beleuchtenden Flächen ein optisches Bauteil vorzusehen, welches unterschiedlich ausgebildete Reflexionselemente, die zum Beispiel als retroreflektierende Strukturen ausgebildet sind, vorzusehen. Die Reflexionselemente sind zum Beispiel als Prismen, Pyramiden oder als Kegel ausgebildet. Eine Grundfläche eines Prismas respektive einer Pyramide ist zum Beispiel dreieckig oder viereckig. Solche Strukturen reflektieren oder werfen das Licht mittels einer Totalreflexion mit einer hohen Effizienz zurück in Richtung Reflektor.
  • Es ist zum Beispiel vorgesehen, dass die Reflexionselemente lokal in Richtung der Reflektorfläche geneigt sind. Dies bewirkt eine hohe Effizienz für verschiedene laterale Abstände zu einem lichtemittierenden Bauelement. Die Prismen respektive die Pyramiden respektive die Kegel sind zum Beispiel schief.
  • Das optische Bauteil ist beabstandet zu den lichtemittierenden Bauelementen angeordnet. Die lichtemittierenden Bauelemente spannen somit jeweils von der Position des optischen Bauteils aus gesehen einen kleinen Raumwinkel auf, so dass ein definierter und kleiner Raumwinkel vorgegeben wird, der eine effiziente Umlenkung des Lichts erlaubt.
  • Es ist ferner folgender Vorteil gegeben. Eine Positionierung der lichtemittierenden Bauelemente zum optischen Bauteil ist relativ tolerant. Zum Beispiel beträgt eine Toleranz sowohl im Abstand zwischen optischem Bauteil und Reflektorfläche als auch ein lateraler Abstand einige 100 µm.
  • Zum Beispiel ist vorgesehen, dass das optische Bauteil als Folie oder als eine Platte ausgebildet ist, so dass das optische Bauteil den gesamten Reflektor überdecken kann. Ein solch ausgebildetes Bauteil ist in der Regel kostengünstig herzustellen und kann effizient und kostengünstig montiert werden.
  • Das optische Bauteil ist insbesondere aus einem Material mit einem hohen Brechungsindex gebildet, so dass die Totalreflexion auch für solches Licht effizient bewirkt werden kann, welches nicht perfekt aus der Richtung des lichtemittierenden Bauelements einfällt.
  • Da das optische Bauteil eine Homogenisierung der Beleuchtungsstärkeverteilung der emittierten elektromagnetischen Strahlung bewirkt, kann das optische Bauteil auch als ein Homogenisierer bezeichnet werden.
  • Obwohl die Erfindung im Detail durch die bevorzugten Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.
  • Bezugszeichenliste
  • 101
    Reflektor
    103
    Reflektorfläche
    105
    lichtemittierendes Bauelement
    107
    lichtemittierende Fläche
    109
    Flüssigkristallanzeige
    111
    zu beleuchtende Fläche
    113
    Normale der lichtemittierenden Fläche
    115
    Abstand zwischen zwei lichtemittierenden Bauelementen
    117
    Abstand zwischen dem Reflektor und der Flüssigkristallanzeige
    119
    Lichtstrahl
    121
    Winkel zwischen der Normalen 113 und dem Lichtstrahl 119
    123
    Seitenfläche
    201
    x-Achse
    203
    y-Achse
    205
    Beleuchtungsstärke
    501
    optisches Bauteil
    503
    Unterseite des optischen Bauteils
    504
    Reflexionselement
    505
    Prismenabschnitt
    507, 509
    Schenkel
    510
    Achse
    511, 513
    reflektiertes Licht
    515
    Spitze
    517
    Grundfläche
    601
    Reflexionselement
    603
    Achse
    609
    Flanke
    611
    gebrochener Lichtstrahl
    613, 615
    reflektiertes Licht
    617
    austretender Lichtstrahl
    619
    Normale
    621
    Winkel zwischen der Normalen 619 und der Achse 603
    701
    Einfallswinkel
    801
    x-Achse
    803
    y-Achse
    805
    Kurve
    901
    optoelektronische Leuchtvorrichtung
    903
    Anzeigeeinrichtung
    1200
    optoelektronische Leuchtvorrichtung
    1201
    optisches Bauteil
    1203, 1205, 1207
    Reflexionselemente
    1209
    Strahlenverläufe
    1301
    Schnittlinie

Claims (13)

  1. Optoelektronische Leuchtvorrichtung (901, 1200), umfassend: – einen Reflektor (101) aufweisend eine Reflektorfläche (103), – ein beabstandet zur Reflektorfläche (103) und der Reflektorfläche (103) gegenüberliegend angeordnetes optisches Bauteil (501, 1201), – ein auf der Reflektorfläche (103) angeordnetes lichtemittierendes Bauelement (105) aufweisend eine lichtemittierende Fläche (107), – wobei das optische Bauteil (501, 1201) mehrere unterschiedlich ausgebildete Reflexionselemente (504, 601, 1203, 1205, 1207) für eine Reflexion von von der lichtemittierenden Fläche (107) emittierter elektromagnetischer Strahlung in Richtung der Reflektorfläche (103) aufweist.
  2. Optoelektronische Leuchtvorrichtung (901, 1200) nach Anspruch 1, wobei die mehreren Reflexionselemente (504, 601, 1203, 1205, 1207) zumindest teilweise einen Totalreflexionsabschnitt (505) für eine Totalreflexion von zumindest einem Teil der emittierten elektromagnetischen Strahlung in Richtung der Reflektorfläche (103) umfassen.
  3. Optoelektronische Leuchtvorrichtung (901, 1200) nach Anspruch 2, wobei der jeweilige Totalreflexionsabschnitt (505) ein Element ausgewählt aus der folgenden Gruppe von Totalreflexionsabschnitten ist: Pyramidenabschnitt, Kegelabschnitt, Prismenabschnitt (505).
  4. Optoelektronische Leuchtvorrichtung (901, 1200) nach Anspruch 3, wobei ein jeweiliger Winkel (617) zwischen einer von einer Spitze (515) des Totalreflexionsabschnitts (505) und einem Mittelpunkt einer Grundfläche (517) des Totalreflexionsabschnitts (505) verlaufenden Gerade und einer Normalen (619) der Reflektorfläche (103) für zumindest einige Reflexionselemente mit einem größerem lateralen Abstand zum lichtemittierenden Bauelement größer ist als für Reflexionselemente mit einem kleineren lateralen Abstand zum lichtemittierenden Bauelement (105).
  5. Optoelektronische Leuchtvorrichtung (901, 1200) nach Anspruch 4, wobei der jeweiliger Winkel (617) proportional zu arcsin(1/n·sin(arctan(r/d))) ist, wobei n ein Brechungsindex des optischen Bauteils (501, 1201) ist, d ein Abstand der lichtemittierenden Fläche (107) zum optischen Bauteil (501) ist und r der laterale Abstand (905) des entsprechenden Reflexionselements (504, 601, 1203, 1205, 1207) zum lichtemittierenden Bauelement (105) ist.
  6. Optoelektronische Leuchtvorrichtung (901, 1200) nach Anspruch 4 oder 5, wobei die Reflexionselemente (504, 601, 1203, 1205, 1207) zumindest teilweise eine parallel zur jeweiligen Geraden ausgerichtete Flanke (609) aufweisen, die näher zum lichtemittierenden Bauelement (105) angeordnet ist als der Totalreflexionsabschnitt (505).
  7. Optoelektronische Leuchtvorrichtung (901, 1200) nach einem der Ansprüche 2 bis 6, wobei ab einem vorbestimmten lateralen Abstand (905) zum lichtemittierenden Bauelement (105) die Reflexionselemente (504, 601, 1203, 1205, 1207) derart ausgebildet sind, dass die Totalreflexion des zumindest einen Teils der emittierten elektromagnetischen Strahlung reduziert oder ausgeschaltet ist.
  8. Optoelektronische Leuchtvorrichtung (901, 1200) nach einem der vorherigen Ansprüche, wobei eine der Reflektorfläche (103) zugewandte Unterseite (503) des optischen Bauteils (501, 1201) strukturiert und/oder gekrümmt ist.
  9. Optoelektronische Leuchtvorrichtung (901, 1200) nach einem der vorherigen Ansprüche, wobei die mehreren Reflexionselemente (504, 601, 1203, 1205, 1207) konzentrisch um das lichtemittierende Bauelement (105) oder linear angeordnet sind.
  10. Optoelektronische Leuchtvorrichtung (901, 1200) nach einem der vorherigen Ansprüche, wobei das optische Bauteil (501, 1201) als ein extrudiertes oder als ein spritzgegossenes optisches Bauteil ausgebildet ist.
  11. Optoelektronische Leuchtvorrichtung (901, 1200) nach einem der vorherigen Ansprüche, wobei die mehreren Reflexionselemente (504, 601, 1203, 1205, 1207) als gestempelte Reflexionselemente ausgebildet sind.
  12. Optoelektronische Leuchtvorrichtung (901, 1200) nach einem der vorherigen Ansprüche, wobei mehrere lichtemittierende Bauelemente (105) mit ihrer jeweiligen lichtemittierenden Fläche (107) der Reflektorfläche (103) abgewandt auf der Reflektorfläche (103) angeordnet sind, wobei eine normal zum optischen Bauteil (501, 1201) und mittig zwischen zwei lichtemittierenden Bauelementen (105) verlaufende Spiegelachse definiert ist, so dass beidseitig der Spiegelachse zwei spiegelsymmetrisch ausgebildete, Reflexionselemente umfassende Abschnitte des optischen Bauteils ausgebildet sind, die jeweils von der Spiegelachse bis zu einem Abstand zur optischen Achse verlaufen, der der Hälfte des Abstands zwischen den zwei entsprechenden lichtemittierenden Bauelementen (105) entspricht.
  13. Anzeigeeinrichtung (903), umfassend: – eine zu beleuchtende Fläche (111) und – die optoelektronische Leuchtvorrichtung (901, 1200) nach einem der vorherigen Ansprüche, – wobei das optische Bauteil (501, 1201) zwischen dem Reflektor (101) und der zu beleuchtenden Fläche (111) angeordnet ist.
DE102016100063.9A 2016-01-04 2016-01-04 Optoelektronische leuchtvorrichtung und anzeigeeinrichtung Active DE102016100063B4 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102016100063.9A DE102016100063B4 (de) 2016-01-04 2016-01-04 Optoelektronische leuchtvorrichtung und anzeigeeinrichtung
PCT/EP2016/082883 WO2017118595A1 (de) 2016-01-04 2016-12-29 Optoelektronische leuchtvorrichtung und anzeigeeinrichtung
US16/067,364 US11054552B2 (en) 2016-01-04 2016-12-29 Optoelectronic lighting apparatus and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016100063.9A DE102016100063B4 (de) 2016-01-04 2016-01-04 Optoelektronische leuchtvorrichtung und anzeigeeinrichtung

Publications (2)

Publication Number Publication Date
DE102016100063A1 true DE102016100063A1 (de) 2017-07-06
DE102016100063B4 DE102016100063B4 (de) 2020-07-09

Family

ID=57777619

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016100063.9A Active DE102016100063B4 (de) 2016-01-04 2016-01-04 Optoelektronische leuchtvorrichtung und anzeigeeinrichtung

Country Status (3)

Country Link
US (1) US11054552B2 (de)
DE (1) DE102016100063B4 (de)
WO (1) WO2017118595A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10102586A1 (de) * 2001-01-20 2002-07-25 Philips Corp Intellectual Pty Beleuchtungseinrichtung mit punktförmigen Lichtquellen
US20030016539A1 (en) * 2000-03-16 2003-01-23 Minano Juan C. High efficiency non-imaging optics
US20080247172A1 (en) * 2004-09-28 2008-10-09 Goldeneye, Inc. Light recycling illumination systems having restricted angular output
US20080316761A1 (en) * 2005-07-28 2008-12-25 Light Prescriptions Innovators, Llc Free-Form Lenticular Optical Elements and Their Application to Condensers and Headlamps
WO2012120332A1 (en) * 2011-03-07 2012-09-13 Koninklijke Philips Electronics N.V. A light emitting module, a lamp and a luminaire

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735952B1 (de) * 1993-12-21 2000-03-22 Minnesota Mining And Manufacturing Company Mehrschichtiger optischer film
US5825543A (en) * 1996-02-29 1998-10-20 Minnesota Mining And Manufacturing Company Diffusely reflecting polarizing element including a first birefringent phase and a second phase
US7072096B2 (en) 2001-12-14 2006-07-04 Digital Optics International, Corporation Uniform illumination system
US7370993B2 (en) * 2004-09-28 2008-05-13 Goldeneye, Inc. Light recycling illumination systems having restricted angular output
US7775700B2 (en) * 2004-10-01 2010-08-17 Rohm And Haas Electronics Materials Llc Turning film using array of roof prism structures
JP4158824B2 (ja) * 2005-09-15 2008-10-01 ソニー株式会社 光透過フィルム、光透過フィルムの製造方法及び液晶表示装置
TWI289815B (en) * 2006-10-30 2007-11-11 Au Optronics Corp Electroluminescent display
KR101289040B1 (ko) 2007-10-19 2013-07-23 엘지디스플레이 주식회사 백라이트 모듈
JP5493312B2 (ja) * 2008-08-22 2014-05-14 ソニー株式会社 面発光装置及び画像表示装置
US20100165634A1 (en) 2008-12-29 2010-07-01 Hei-Tai Hong Ultra-thin light guidance device
WO2010141261A2 (en) * 2009-06-02 2010-12-09 3M Innovative Properties Company Light redirecting film and display system incorporating same
JP5401534B2 (ja) * 2011-03-25 2014-01-29 シャープ株式会社 発光装置、照明装置、および表示装置
TW201506300A (zh) * 2013-08-06 2015-02-16 Hon Hai Prec Ind Co Ltd 光源模組

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030016539A1 (en) * 2000-03-16 2003-01-23 Minano Juan C. High efficiency non-imaging optics
DE10102586A1 (de) * 2001-01-20 2002-07-25 Philips Corp Intellectual Pty Beleuchtungseinrichtung mit punktförmigen Lichtquellen
US20080247172A1 (en) * 2004-09-28 2008-10-09 Goldeneye, Inc. Light recycling illumination systems having restricted angular output
US20080316761A1 (en) * 2005-07-28 2008-12-25 Light Prescriptions Innovators, Llc Free-Form Lenticular Optical Elements and Their Application to Condensers and Headlamps
WO2012120332A1 (en) * 2011-03-07 2012-09-13 Koninklijke Philips Electronics N.V. A light emitting module, a lamp and a luminaire

Also Published As

Publication number Publication date
DE102016100063B4 (de) 2020-07-09
US20190025479A1 (en) 2019-01-24
US11054552B2 (en) 2021-07-06
WO2017118595A1 (de) 2017-07-13

Similar Documents

Publication Publication Date Title
DE102005006585B4 (de) Lichtleitplatte
DE10330261B4 (de) Fahrzeugleuchte
EP2587125B1 (de) Scheinwerferprojektionsmodul für ein Kraftfahrzeug
EP0944799B1 (de) Beleuchtungseinheit
EP2607774B1 (de) Kraftfahrzeugbeleuchtungseinrichtung mit einer langen und flachen leuchtenden Fläche
EP1881258B1 (de) Leuchteinheit mit einer Leuchtdiode mit integriertem Lichtumlenkkörper
EP2538130A1 (de) Optisches System mit einer Lichteinkopplung von Licht punktförmiger Lichtquellen in einen flächigen Lichtleiter
DE102011083586A1 (de) Linsenelement und optische Einheit, die dieses verwendet
WO2015086307A1 (de) Kraftfahrzeugbeleuchtungseinrichtung
EP3015761B1 (de) Leuchtenbaugruppe mit optischem element
WO2014139797A1 (de) Optisches element und optoelektronisches bauelement mit optischem element
EP3071879B1 (de) Optisches element und beleuchtungsvorrichtung mit optischem element
DE112016000316B4 (de) Optoelektronisches Bauelement
DE102012200903A1 (de) Optikanordnung und Verfahren zur optischen Abtastung einer Objektebene mit einem Mehrkanalabbildungssystem
DE102004046256A1 (de) Oberflächenleuchtsystem
DE102014004472A1 (de) Leuchtmodul aufweisend ein optisches Element
DE202013012202U1 (de) Optisches Element mit einem TIR-Flächenabschnitt für verbesserte räumliche Lichtverteilung
DE102008018051B4 (de) Optisches Bauteil und Beleuchtungsvorrichtung mit demselben
DE102006048412B4 (de) Optischer Film und Beleuchtungsvorrichtung, die den optischen Film verwendet
DE102011013370A1 (de) Optoelektronisches Halbleiterbauteil
EP3211470A1 (de) Vorrichtung zur beleuchtung einer zielmarke
DE102016100063B4 (de) Optoelektronische leuchtvorrichtung und anzeigeeinrichtung
EP3477193A1 (de) Abdeckung für ein leuchtmodul und leuchtmodul
DE102011087543A1 (de) Optoelektronische anordnung
DE102018207516B3 (de) Head-Up-Display mit einer von mehreren verteilt angeordneten Lichtquellen beleuchteten Anzeige

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final