DE102016009798A1 - Neue anionische Tenside und Wasch- und Reinigungsmittel, welche diese enthalten - Google Patents

Neue anionische Tenside und Wasch- und Reinigungsmittel, welche diese enthalten Download PDF

Info

Publication number
DE102016009798A1
DE102016009798A1 DE102016009798.1A DE102016009798A DE102016009798A1 DE 102016009798 A1 DE102016009798 A1 DE 102016009798A1 DE 102016009798 A DE102016009798 A DE 102016009798A DE 102016009798 A1 DE102016009798 A1 DE 102016009798A1
Authority
DE
Germany
Prior art keywords
water
acid
general formula
weight
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102016009798.1A
Other languages
English (en)
Inventor
Christian Kropf
Alexander Schulz
Anna Klemmer
Regina Palkovits
Peter Hausoul
Lukas Kipshagen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Rheinisch Westlische Technische Hochschuke RWTH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA, Rheinisch Westlische Technische Hochschuke RWTH filed Critical Henkel AG and Co KGaA
Priority to DE102016009798.1A priority Critical patent/DE102016009798A1/de
Priority to EP17758445.5A priority patent/EP3497194A1/de
Priority to PCT/EP2017/070090 priority patent/WO2018029202A1/de
Publication of DE102016009798A1 publication Critical patent/DE102016009798A1/de
Priority to US16/273,382 priority patent/US11174451B2/en
Priority to US17/523,621 priority patent/US20220064568A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/26Sulfonic acids or sulfuric acid esters; Salts thereof derived from heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/10Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/12Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/043Liquid or thixotropic (gel) compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/044Solid compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Tenside der allgemeinen Formel (I),in der n und m unabhängig voneinander für Zahlen von 0 bis 17 stehen und 2 < n + m < 20 ist, und X+ für ein ladungsausgleichendes Kation steht, lassen sich gut in Wasch- oder Reinigungsmittel einarbeiten, besitzen herausragende anwendungstechnische Eigenschaften und können auf Basis nachwachsender Rohstoffe hergestellt werden.

Description

  • Die Erfindung betrifft anionische Tenside, die auf Basis nachwachsender Rohstoffe hergestellt werden können und die niedrige kritische Mizellbildungskonzentrationen (CMC) aufweisen sowie niedrige Grenzflächenspannungen erzeugen. Die Erfindung betrifft auch ein Verfahren zur Herstellung derartiger Tenside sowie Wasch- oder Reinigungsmittel, welche diese Tenside enthalten.
  • Der Einsatz von Tensiden zur Herabsetzung der Oberflächenspannung von Wasser, zur Bildung von Dispersionen und zur Lösungsvermittlung ist auf dem Gebiet der Wasch- und Reinigungsmittel schon lange allgemein bekannt. Obwohl viele Tenside ganz oder teilweise auf Basis nachwachsender Rohstoffe hergestellt werden, sind einige leistungsstarke und breit eingesetzte Vertreter nach wie vor petrochemisch basiert. Zudem existiert der ständige Wunsch, Tenside mit herausragenden anwendungstechnischen Eigenschaften bereitzustellen, um eine hohe Leistung auch bei niedrigem Tensideinsatz erzielen zu können.
  • Aufgabe der vorliegenden Erfindung ist es, Tenside zur Verfügung zu stellen, welche vorteilhafte anwendungstechnische Eigenschaften wie eine niedrige CMC und eine niedrige Oberflächenspannung aufweisen und auf Basis nachwachsender Rohstoffe hergestellt werden können. Darüber hinaus sollten die Tenside gut hautverträglich und auch gemeinsam mit anderen Tensiden konfektionierbar sein, damit sie sich insbesondere für den Einsatz in Wasch- und Reinigungsmitteln eignen.
  • Gegenstand der vorliegenden Erfindung ist in einer ersten Ausführungsform ein anionisches Tensid der allgemeinen Formel (I),
    Figure DE102016009798A1_0002
    in der n und m unabhängig voneinander für Zahlen von 0 bis 17, vorzugsweise n für eine Zahl von 0 bis 3 und m für eine Zahl von 5 bis 14, stehen und 2 < n + m < 20, vorzugsweise 6 < n + m < 16 ist, und X+ für ein ladungsausgleichendes Kation steht. X+ wird vorzugsweise ausgewählt aus der Gruppe umfassend das Proton, Alkalimetallkationen und die Gruppierung N+R1R2R3, in der R1, R2 und R3 unabhängig voneinander für Wasserstoff, eine Alkylgruppe mit 1 bis 6 C-Atomen oder eine Hydroxyalkylgruppe mit 2 bis 6 C-Atomen stehen.
  • Tenside der allgemeinen Formel (I) lassen sich durch Sulfatierung einer Verbindung der allgemeinen Formel (II),
    Figure DE102016009798A1_0003
    in der n und m die oben angegebenen Bedeutungen haben, mit einem Sulfatierungsagens, beispielsweise Chlorsulfonsäure oder Schwefeltrioxidpyridin, und gegebenenfalls Neutralisation durch anschließende Umsetzung mit X+OH, wobei X+ die oben angegebene Bedeutungen hat, herstellen. Verbindungen der allgemeinen Formel (II) sind durch Monoalkylierung von 2,5-Bis(hydroxymethyl)-tetrahydrofuran, insbesondere durch dessen Umsetzung mit Alkenen, zugänglich. 2,5-Bis(hydroxymethyl)-tetrahydrofuran kann durch Hydrierung von Hydroxymethylfurfural, einem Intermediat aus der Konversion von Cellulose, erhalten werden. n und m können, insbesondere wenn Alkengemische bei der Herstellung der erfindungsgemäßen Tenside eingesetzt werden, als analytisch zu ermittelnde Größen auch nicht-ganzzahlige Werte annehmen.
  • Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung einer oben definierten Verbindung der allgemeinen Formel (I) durch säurekatalysierte Umsetzung von 2,5-Bis(hydroxymethyl)-tetrahydrofuran mit einem Alken, insbesondere einem 1-Alken, mit 5 bis 22, insbesondere 9 bis 19 C-Atomen in äquimolaren Mengen bei erhöhter Temperatur, vorzugsweise bei Temperaturen im Bereich von 140°C bis 200°C, unter vorzugsweise lösemittelfreien Bedingungen und vorzugsweise möglichst starker Durchmischung, zu einer Verbindung der allgemeinen Formel (II), anschließender Sulfatierung mit einem Sulfatierungsagens und gegebenenfalls Neutralisation durch anschließende Umsetzung mit X+OH oder X+ 2CO2– 3, wobei X+ für ein Alkalimetallkation oder eine Gruppierung N+R1R2R3 steht, in der R1, R2 und R3 unabhängig voneinander für Wasserstoff, eine Alkylgruppe mit 1 bis 6 C-Atomen oder eine Hydroxyalkylgruppe mit 2 bis 6 C-Atomen stehen.
  • Die erfindungsgemäßen Tenside weisen sehr niedrige CMC-Werte auf und führen zu sehr niedrigen Grenzflächenspannungen gegenüber Öl mit einer schnellen Dynamik bei der Organisation an der Grenzfläche. Besonders bevorzugte erfindungsgemäße Tenside weisen in Wasser bei pH 8,5 und 25°C eine CMC von 0,01 g/l bis 0,25 g/l auf und erzeugen eine mittels der Spinning Drop Methode (20-minütige Equilibrierungszeit) gegen Isopropylmyristat bestimmbare Grenzflächenspannung bei einer Konzentration von 1 g/l in Wasser bei pH 8,5 und 25°C von kleiner 8 mN/m.
  • Die erfindungsgemäßen Tenside sind wie geschildert aus nachwachsenden Rohstoffen zugänglich. Sie weisen zudem den Vorteil auf, dass die nachwachsenden Rohstoffe, aus denen sie hergestellt werden können, keine Basis für die Gewinnung von Nahrungsmitteln sind, so dass die bei manchen aus anderen nachwachsenden Rohstoffen erhältlichen Tensiden beobachtete Nahrungsmittelkonkurrenzsituation hier nicht besteht.
  • Die erfindungsgemäßen Tenside werden vorzugsweise hergestellt, indem man 2,5-Bis(hydroxymethyl)-tetrahydrofuran mit dem Alken und einem sauren Katalysator, insbesondere einem sauren festen Katalysator, beispielsweise einem sauren Zeolith beziehungsweise einem Zeolith in der sogenannten H-Form, insbesondere Zeolith Beta und/oder Zeolith Y, bei einer Temperatur im Bereich von 140°C bis 200°C, insbesondere von 180°C bis 200°C, für eine Dauer von 8 Stunden bis 24 Stunden, insbesondere 12 Stunden bis 18 Stunden rührt, wobei eine möglichst starke Durchmischung der Reaktanden und des Katalysators besonders bevorzugt ist. Zur Aufarbeitung der so erhaltenen Verbindung der allgemeinen Formel (II) kann der Katalysator abgetrennt werden, vorzugsweise durch Zentrifugation oder Filtration. Die Reaktionsmischung kann beispielsweise destillativ aufgetrennt werden, wobei neben dem erwünschten Produkt gewünschtenfalls auch die nicht umgesetzten Edukte zurückgewonnen werden können. Eine so erhaltene Verbindung der allgemeinen Formel (II) wird mit einem Sulfatierungsagens, beispielsweise Chlorsulfonsäure oder Schwefeltrioxidpyridin, bei einer Temperatur im Bereich von vorzugsweise –20°C bis 75°C, insbesondere von 25°C bis 75°C, und einer Dauer von vorzugsweise 1 Stunde bis 24 Stunden, insbesondere 6 bis 18 Stunden, umgesetzt. Anschließend kann gewünschtenfalls das nach der Sulfatierung vorhandene ladungsausgleichende Kation durch Umsetzung mit X+OH, zum Beispiel 1 M methanolischer Natriumhydroxid-Lösung oder durch Umsetzung mit X+ 2CO2– 3, zum Beispiel Natriumcarbonat, ausgetauscht werden. Die Isolierung des Tensides der allgemeinen Formel (I) kann beispielsweise durch Ausfällen bei der Zugabe eines geeigneten Ausfällungsmittels, insbesondere Aceton, Diethylether oder Petrolether, realisiert werden.
  • Die erfindungsgemäßen Tenside eignen sich hervorragend als Inhaltsstoff in Wasch- und Reinigungsmitteln, Kosmetika wie Shampoos, Zahnpasten, und für die übrigen Einsatzgebiete, in denen üblicherweise bisher anionische Tenside eingesetzt werden, wie zum Beispiel in der Lebensmittelindustrie, den Geowissenschaften, der tertiären Erdölförderung, der Kunststofftechnik, der Metallbearbeitung, der Fotografie, dem Papierrecycling, der Werkzeugreinigung, und der Brandbekämpfung.
  • Besonders gute Ergebnisse werden bei ihrem Einsatz in Wasch- und Reinigungsmitteln erzielt, so dass weitere Gegenstände der vorliegenden Erfindung die Verwendung von anionischem Tensid der allgemeinen Formel (I) zur Herstellung von Wasch- oder Reinigungsmitteln, die Verwendung eines anionischen Tensids der allgemeinen Formel (I) zur Erhöhung der Leistung von Wasch- oder Reinigungsmitteln beim Waschen von Wäsche oder der Reinigung harter Oberflächen sowie die Wasch- oder Reinigungsmittel sind, die ein Tensid der allgemeinen Formel (I) enthalten.
  • Ein erfindungsgemäßes Mittel enthält vorzugsweise 1 Gew.-% bis 99 Gew.-%, insbesondere 3 Gew.-% bis 85 Gew.-% und besonders bevorzugt 5 Gew.-% bis 65 Gew.-% des Tensids der allgemeinen Formel (I).
  • Zusätzlich zu dem anionischen Tensid der allgemeinen Formel (I) kann das Wasch- oder Reinigungsmittel weitere Inhaltsstoffe enthalten, welche die anwendungstechnischen und/oder ästhetischen Eigenschaften des Mittels weiter verbessern. Im Rahmen der vorliegenden Erfindung enthält das Mittel vorzugsweise zusätzlich einen oder mehrere Stoffe aus der Gruppe der nichtionische Tenside, anionischen Tenside, Gerüststoffe (Builder), Bleichmittel, Bleichaktivatoren, Enzyme, Elektrolyte, pH-Stellmittel, Parfüme, Parfümträger, Fluoreszenzmittel, Farbstoffe, Hydrotope, Schauminhibitoren, Antiredepositionsmittel, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungsinhibitoren, antimikrobiellen Wirkstoffe, nicht-wässrigen Lösungsmittel, Germizide, Fungizide, Antioxidantien, Konservierungsmittel, Korrosionsinhibitoren, Antistatika, Bittermittel, Bügelhilfsmittel, Phobier- und Imprägniermittel, Haut-pflegende Wirkstoffe, Quell- und Schiebefestmittel, weichmachenden Komponenten sowie UV-Absorber.
  • Ein erfindungsgemäßes Mittel enthält vorzugsweise zusätzlich zu dem anionischen Tensid der allgemeinen Formel (I) bis zu 99 Gew.-%, insbesondere 3 Gew.-% bis 85 Gew.-% und besonders bevorzugt 5 Gew.-% bis 65 Gew.-% weiteres Tensid, wobei die zusätzlich vorhandenen Tenside vorzugsweise ebenfalls aus nachwachsenden Rohstoffen erhältlich sind.
  • Das erfindungsgemäße Mittel kann nichtionische Tenside enthalten. Geeignete nichtionische Tenside umfassen alkoxylierte Fettalkohole, alkoxylierte Fettsäurealkylester, Fettsäureamide, alkoxylierte Fettsäureamide, Polyhydroxyfettsäureamide, Alkylphenolpolyglycolether, Aminoxide, Alkylpolyglucoside und Mischungen daraus.
  • Als alkoxylierte Fettalkohole werden vorzugsweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 4 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear ist. Insbesondere sind Alkoholethoxylate mit 12 bis 18 C-Atomen, zum Beispiel aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 5 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 4 EO oder 7 EO, C9-11-Alkohol mit 7 EO, C12-18-Alkohole mit 5 EO oder 7 EO und Mischungen aus diesen. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO. Auch nichtionische Tenside, die EO- und PO-Gruppen zusammen im Molekül enthalten, sind erfindungsgemäß einsetzbar. Geeignet sind ferner auch eine Mischung aus einem (stärker) verzweigten ethoxylierten Fettalkohol und einem unverzweigten ethoxylierten Fettalkohol, wie beispielsweise eine Mischung aus einem C16-18-Fettalkohol mit 7 EO und 2-Propylheptanol mit 7 EO. Die Menge an nichtionischem Tensid beträgt vorzugsweise bis zu 25 Gew.-%, insbesondere 1 Gew.-% bis 20 Gew.-%, wobei die Angabe von Gew.-% hier und im Folgenden jeweils auf das gesamte Waschmittel bezogen ist, sofern nicht anders angegeben.
  • Gegebenenfalls zusätzlich vorhandenen anionische Tenside umfassen Alkylbenzolsulfonsäuresalze, Olefinsulfonsäuresalze, C12-18-Alkansulfonsäuresalze, Salze von Schwefelsäuremonoestern mit einem Fettalkohol, eine Fettsäureseifen, Salze von Schwefelsäuremonoestern mit einem ethoxylierten Fettalkohol oder eine Mischung aus zwei oder mehreren dieser anionischen Tenside.
  • Als Tenside vom Sulfonat-Typ kommen dabei zum Beispiel C9-13-Alkylbenzolsulfonate, Olefinsulfonate, das heißt Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch C12-18-Alkansulfonate und die Ester von α-Sulfofettsäuren (Estersulfonate), zum Beispiel die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren.
  • Als Alk(en)ylsulfate werden die Salze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxo-Alkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt.
  • Auch Fettalkoholethersulfate, wie die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet.
  • Weitere geeignete anionische Tenside sind Fettsäureseifen. Geeignet sind gesättigte und ungesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, (hydrierten) Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, zum Beispiel Kokos-, Palmkern-, Olivenöl- oder Talgfettsäuren, abgeleitete Seifengemische.
  • Die zusätzlichen anionischen Tenside einschließlich der Fettsäureseifen können in Form ihrer Natrium-, Kalium- oder Magnesium- oder Ammoniumsalze vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natriumsalze oder Ammoniumsalze vor. Zur Neutralisation einsetzbare Amine sind vorzugsweise Cholin, Triethylamin, Monoethanolamin, Diethanolamin, Triethanolamin, Methylethylamin oder eine Mischung daraus, wobei Monoethanolamin bevorzugt ist. In einer besonders bevorzugten Ausführungsformen enthält das Mittel, insbesondere wenn es in flüssiger Form vorliegt, mit Monoethanolamin neutralisierte Alkylbenzolsulfonsäure, insbesondere C9-13-Alkylbenzolsulfonsäure, und/oder mit Monoethanolamin neutralisierte Fettsäure.
  • Der Gehalt an zusätzlichem anionischem Tensid, falls ein solches vorhanden ist, beträgt in dem erfindungsgemäßen Mittel vorzugsweise bis zu 30 Gew.-%, insbesondere 1 Gew.-% bis 25 Gew.-%.
  • Ein erfindungsgemäßes Mittel enthält vorzugsweise mindestens einen wasserlöslichen und/oder wasserunlöslichen, organischen und/oder anorganischen Builder. Zu den wasserlöslichen organischen Buildersubstanzen gehören Polycarbonsäuren, insbesondere Citronensäure und Zuckersäuren, monomere und polymere Aminopolycarbonsäuren, insbesondere Glycindiessigsäure, Methylglycindiessigsäure, Nitrilotriessigsäure, Iminodisuccinate wie Ethylendiamin-N,N'-dibernsteinsäure und Hydroxyiminodisuccinate, Ethylendiamintetraessigsäure sowie Polyasparaginsäure, Polyphosphonsäuren, insbesondere Aminotris(methylenphosphonsäure), Ethylendiamintetrakis(methylenphosphonsäure), Lysintetra(methylenphosphonsäure) und 1-Hydroxyethan-1,1-diphosphonsäure, polymere Hydroxyverbindungen wie Dextrin sowie polymere (Poly-)carbonsäuren, insbesondere durch Oxidation von Polysacchariden zugängliche Polycarboxylate, polymere Acrylsäuren, Methacrylsäuren, Maleinsäuren und Mischpolymere aus diesen, die auch geringe Anteile polymerisierbarer Substanzen ohne Carbonsäurefunktionalität einpolymerisiert enthalten können. Die relative mittlere Molekülmasse der Homopolymeren ungesättigter Carbonsäuren liegt im allgemeinen zwischen 5000 g/mol und 200000 g/mol, die der Copolymeren zwischen 2000 g/mol und 200000 g/mol, vorzugsweise 50000 g/mol bis 120000 g/mol, jeweils bezogen auf freie Säure. Ein besonders bevorzugtes Acrylsäure-Maleinsäure-Copolymer weist eine relative mittlere Molekülmasse von 50000 bis 100000 auf. Geeignete, wenn auch weniger bevorzugte Verbindungen dieser Klasse sind Copolymere der Acrylsäure oder Methacrylsäure mit Vinylethern, wie Vinylmethylethern, Vinylester, Ethylen, Propylen und Styrol, in denen der Anteil der Säure mindestens 50 Gew.-% beträgt. Als wasserlösliche organische Buildersubstanzen können auch Terpolymere eingesetzt werden, die als Monomere zwei ungesättigte Säuren und/oder deren Salze sowie als drittes Monomer Vinylalkohol und/oder ein Vinylalkohol-Derivat oder ein Kohlenhydrat enthalten. Das erste saure Monomer beziehungsweise dessen Salz leitet sich von einer monoethylenisch ungesättigten C3-C8-Carbonsäure und vorzugsweise von einer C3-C4-Monocarbonsäue, insbesondere von (Meth)-acrylsäure ab. Das zweite saure Monomer beziehungsweise dessen Salz kann ein Derivat einer C4-C8-Dicarbonsäure sein, wobei Maleinsäure besonders bevorzugt ist. Die dritte monomere Einheit wird in diesem Fall von Vinylalkohol und/oder vorzugsweise einem veresterten Vinylalkohol gebildet. Insbesondere sind Vinylalkohol-Derivate bevorzugt, welche einen Ester aus kurzkettigen Carbonsäuren, beispielsweise von C1-C4-Carbonsäuren, mit Vinylalkohol darstellen. Bevorzugte Polymere enthalten dabei 60 Gew.-% bis 95 Gew.-%, insbesondere 70 Gew.-% bis 90 Gew.-% (Meth)acrylsäure bzw. (Meth)acrylat, besonders bevorzugt Acrylsäure bzw. Acrylat, und Maleinsäure bzw. Maleinat sowie 5 Gew.-% bis 40 Gew.-%, vorzugsweise 10 Gew.-% bis 30 Gew.-% Vinylalkohol und/oder Vinylacetat. Ganz besonders bevorzugt sind dabei Polymere, in denen das Gewichtsverhältnis von (Meth)acrylsäure beziehungsweise (Meth)acrylat zu Maleinsäure beziehungsweise Maleinat zwischen 1:1 und 4:1, vorzugsweise zwischen 2:1 und 3:1 und insbesondere 2:1 und 2,5:1 liegt. Dabei sind sowohl die Mengen als auch die Gewichtsverhältnisse auf die Säuren bezogen. Das zweite saure Monomer beziehungsweise dessen Salz kann auch ein Derivat einer Allylsulfonsäure sein, die in 2-Stellung mit einem Alkylrest, vorzugsweise mit einem C1-C4-Alkylrest, oder einem aromatischen Rest, der sich vorzugsweise von Benzol oder Benzol-Derivaten ableitet, substituiert ist. Bevorzugte Terpolymere enthalten dabei 40 Gew.-% bis 60 Gew.-%, insbesondere 45 bis 55 Gew.-% (Meth)acrylsäure beziehungsweise (Meth)acrylat, besonders bevorzugt Acrylsäure beziehungsweise Acrylat, 10 Gew.-% bis 30 Gew.-%, vorzugsweise 15 Gew.-% bis 25 Gew.-% Methallylsulfonsäure bzw. Methallylsulfonat und als drittes Monomer 15 Gew.-% bis 40 Gew.-%, vorzugsweise 20 Gew.-% bis 40 Gew.-% eines Kohlenhydrats. Dieses Kohlenhydrat kann dabei beispielsweise ein Mono-, Di-, Oligo- oder Polysaccharid sein, wobei Mono-, Di- oder Oligosaccharide bevorzugt sind. Besonders bevorzugt ist Saccharose. Durch den Einsatz des dritten Monomers werden vermutlich Sollbruchstellen in das Polymer eingebaut, die für die gute biologische Abbaubarkeit des Polymers verantwortlich sind. Diese Terpolymere weisen im Allgemeinen eine relative mittlere Molekülmasse zwischen 1000 g/mol und 200000 g/mol, vorzugsweise zwischen 200 g/mol und 50000 g/mol auf. Weitere bevorzugte Copolymere sind solche, die als Monomere Acrolein und Acrylsäure/Acrylsäuresalze beziehungsweise Vinylacetat aufweisen. Die organischen Buildersubstanzen können, insbesondere zur Herstellung flüssiger Mittel, in Form wässriger Lösungen, vorzugsweise in Form 30- bis 50-gewichtsprozentiger wässriger Lösungen eingesetzt werden. Alle genannten Säuren werden in der Regel in Form ihrer wasserlöslichen Salze, insbesondere ihre Alkalisalze, eingesetzt.
  • Derartige organische Buildersubstanzen können gewünschtenfalls in Mengen bis zu 40 Gew.-%, insbesondere bis zu 25 Gew.-% und vorzugsweise von 1 Gew.-% bis 8 Gew.-% enthalten sein. Mengen in der oberen Hälfte der genannten Bereiche werden vorzugsweise in pastenförmigen oder flüssigen, insbesondere wasserhaltigen, Mitteln eingesetzt.
  • Als wasserlösliche anorganische Buildermaterialien kommen insbesondere Polyphosphate, vorzugsweise Natriumtriphosphat, in Betracht. Als wasserunlösliche anorganische Buildermaterialien werden insbesondere kristalline oder amorphe, wasserdispergierbare Alkalialumosilikate, in Mengen nicht über 25 Gew.-%, vorzugsweise von 3 Gew.-% bis 20 Gew.-% und insbesondere in Mengen von 5 Gew.-% bis 15 Gew.-% eingesetzt. Unter diesen sind die kristallinen Natriumalumosilikate in Waschmittelqualität, insbesondere Zeolith A, Zeolith P sowie Zeolith MAP und gegebenenfalls Zeolith X, bevorzugt. Mengen nahe der genannten Obergrenze werden vorzugsweise in festen, teilchenförmigen Mitteln eingesetzt. Geeignete Alumosilikate weisen insbesondere keine Teilchen mit einer Korngröße über 30 μm auf und bestehen vorzugsweise zu wenigstens 80 Gew.-% aus Teilchen mit einer Größe unter 10 μm. Ihr Calciumbindevermögen liegt in der Regel im Bereich von 100 bis 200 mg CaO pro Gramm.
  • Zusätzlich oder alternativ zum genannten wasserunlöslichen Alumosilikat und Alkalicarbonat können weitere wasserlösliche anorganische Buildermaterialien enthalten sein. Zu diesen gehören neben den Polyphosphaten wie Natriumtriphosphat insbesondere die wasserlöslichen kristallinen und/oder amorphen Alkalisilikat-Builder. Derartige wasserlösliche anorganische Buildermaterialien sind in den Mitteln vorzugsweise in Mengen von 1 Gew.-% bis 20 Gew.-%, insbesondere von 5 Gew.-% bis 15 Gew.-% enthalten. Die als Buildermaterialien brauchbaren Alkalisilikate weisen vorzugsweise ein molares Verhältnis von Alkalioxid zu SiO2 unter 0,95, insbesondere von 1:1,1 bis 1:12 auf und können amorph oder kristallin vorliegen. Bevorzugte Alkalisilikate sind die Natriumsilikate, insbesondere die amorphen Natriumsilikate, mit einem molaren Verhältnis Na2O:SiO2 von 1:2 bis 1:2,8. Als kristalline Silikate, die allein oder im Gemisch mit amorphen Silikaten vorliegen können, werden vorzugsweise kristalline Schichtsilikate der allgemeinen Formel Na2SixO2x+1·yH2O eingesetzt, in der x, das sogenannte Modul, eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate sind solche, bei denen x in der genannten allgemeinen Formel die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate (Na2Si2O5·yH2O) bevorzugt. Auch aus amorphen Alkalisilikaten hergestellte, praktisch wasserfreie kristalline Alkalisilikate der obengenannten allgemeinen Formel, in der x eine Zahl von 1,9 bis 2,1 bedeutet, können in den Mitteln eingesetzt werden. In einer weiteren bevorzugten Ausführungsform wird ein kristallines Natriumschichtsilikat mit einem Modul von 2 bis 3 eingesetzt, wie es aus Sand und Soda hergestellt werden kann. Natriumsilikate mit einem Modul im Bereich von 1,9 bis 3,5 werden in einer weiteren Ausführungsform eingesetzt. In einer bevorzugten Ausgestaltung solcher Mittel setzt man ein granulares Compound aus Alkalisilikat und Alkalicarbonat ein, wie es zum Beispiel unter dem Namen Nabion® 15 im Handel erhältlich ist.
  • Als geeignete peroxidische Bleichmittel kommen insbesondere organische Persäuren oder persaure Salze organischer Säuren, wie Phthalimidopercapronsäure, Perbenzoesäure, Monoperoxyphthalsäure, und Diperdodecandisäure sowie deren Salze wie Magnesiummonoperoxyphthalat, Diacylperoxide, Wasserstoffperoxid und unter den Einsatzbedingungen Wasserstoffperoxid abgebende anorganische Salze, wie Alkaliperborat, Alkalipercarbonat und/oder Alkalipersilikat, und Wasserstoffperoxid-Einschlußverbindungen, wie H2O2-Harnstoffaddukte, sowie Mischungen aus diesen in Betracht. Wasserstoffperoxid kann dabei auch mit Hilfe eines enzymatischen Systems, das heißt einer Oxidase und ihres Substrats, erzeugt werden. Sofern feste Persauerstoffverbindungen eingesetzt werden sollen, können diese in Form von Pulvern oder Granulaten verwendet werden, die auch in im Prinzip bekannter Weise umhüllt sein können. Besonders bevorzugt wird Alkalipercarbonat, Alkaliperborat-Monohydrat oder Wasserstoffperoxid eingesetzt. Ein in im Rahmen der Erfindung einsetzbares Waschmittel enthält peroxidisches Bleichmittel in Mengen von vorzugsweise bis zu 60 Gew.-%, insbesondere von 5 Gew.-% bis 50 Gew.-% und besonders bevorzugt von 15 Gew.-% bis 30 Gew.-% oder alternativ von 2,5 Gew.-% bis 20 Gew.-%, wobei in flüssigen Mitteln Wasserstoffperoxid und in festen Mitteln Natriumpercarbonat das besonders bevorzugte peroxidische Bleichmittel ist. Vorzugsweise weisen peroxidische Bleichmittel-Partikel eine Teilchengröße im Bereich von 10 μm bis 5000 μm, insbesondere von 50 μm bis 1000 μm und/oder eine Dichte von 0,85 g/cm3 bis 4,9 g/cm3, insbesondere von 0,91 g/cm3 bis 2,7 g/cm3 auf.
  • Als bleichaktivierende, unter Perhydrolysebedingungen Peroxocarbonsäure-liefernde Verbindung können insbesondere Verbindungen, die unter Perhydrolysebedingungen gegebenenfalls substituierte Perbenzoesäure und/oder aliphatische Peroxocarbonsäuren mit 1 bis 12 C-Atomen, insbesondere 2 bis 4 C-Atomen ergeben, allein oder in Mischungen, eingesetzt werden. Geeignet Bleichaktivatoren, die O- und/oder N-Acylgruppen insbesondere der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate oder -carboxylate beziehungsweise die Sulfon- oder Carbonsäuren von diesen, insbesondere Nonanoyl- oder Isononanoyl- oder Lauroyloxybenzolsulfonat (NOBS beziehungsweise iso-NOBS beziehungsweise LOBS) oder Decanoyloxybenzoat (DOBA), deren formale Kohlensäureesterderivate wie 4-(2-Decanoyloxyethoxycarbonyloxy)-benzolsulfonat (DECOBS), acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Di-acetoxy-2,5-dihydrofuran sowie acetyliertes Sorbitol und Mannitol und deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetyl-fruktose, Tetraacetylxylose und Octaacetyllactose, acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam.
  • Zusätzlich zu den Verbindungen, die unter Perhydrolysebedingungen Peroxocarbonsäuren bilden, oder an deren Stelle können weitere bleichaktivierende Verbindungen, wie beispielsweise Nitrile, aus denen sich unter Perhydrolysebedingungen Perimidsäuren bilden, vorhanden sein. Dazu gehören insbesondere Aminoacetonitrilderivate mit quaterniertem Stickstoffatom gemäß der Formel
    Figure DE102016009798A1_0004
    in der R1 für -H, -CH3, einen C2-24-Alkyl- oder -Alkenylrest, einen substituierten C1-24-Alkyl- oder C2-24-Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH2, -CN und -N(+)-CH2-CN, einen Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit mindestens einer, vorzugsweise zwei, gegebenenfalls substituierten C1-24-Alkylgruppe(n) und gegebenenfalls weiteren Substituenten am aromatischen Ring steht, R2 und R3 unabhängig voneinander ausgewählt sind aus -CH2-CN, -CH3, -CH2-CH3, CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-O)nH mit n = 1, 2, 3, 4, 5 oder 6, R4 und R5 unabhängig voneinander eine voranstehend für R1, R2 oder R3 angegebene Bedeutung haben, wobei mindestens 2 der genannten Reste, insbesondere R2 und R3, auch unter Einschluss des Stickstoffatoms und gegebenenfalls weiterer Heteroatome ringschließend miteinander verknüpft sein können und dann vorzugsweise einen Morpholino-Ring ausbilden, und X ein ladungsausgleichendes Anion, vorzugsweise ausgewählt aus Benzolsulfonat, Toluolsulfonat, Cumolsulfonat, den C9-15-Alkylbenzolsulfonaten, den C1-20-Alkylsulfaten, den C8-22-Carbonsäuremethylestersulfonaten, Sulfat, Hydrogensulfat und deren Gemischen, ist, können eingesetzt werden. Unter Perhydrolysebedingungen Peroxocarbonsäuren oder Perimidsäuren bildende Bleichaktivatoren sind vorzugsweise in Mengen bis zu 25 Gew.-%, insbesondere 0,1 Gew.-% bis 10 Gew.-% in erfindungsgemäßen Mitteln vorhanden. Vorzugsweise weisen Bleichaktivator-Partikel eine Teilchengröße im Bereich von 10 μm bis 5000 μm, insbesondere von 50 μm bis 1000 μm und/oder eine Dichte von 0,85 g/cm3 bis 4,9 g/cm3, insbesondere von 0,91 g/cm3 bis 2,7 g/cm3 auf.
  • Die Anwesenheit von bleichkatalysierenden Übergangsmetallkomplexen, zusätzlich zu oder an Stelle von den genannten Bleichaktivatoren, ist möglich. Diese werden vorzugsweise unter den Cobalt-, Eisen-, Kupfer-, Titan-, Vanadium-, Mangan- und Rutheniumkomplexen ausgewählt. Als Liganden in derartigen Übergangsmetallkomplexen kommen sowohl anorganische als auch organische Verbindungen in Frage, zu denen neben Carboxylaten insbesondere Verbindungen mit primären, sekundären und/oder tertiären Amin- und/oder Alkohol-Funktionen, wie Pyridin, Pyridazin, Pyrimidin, Pyrazin, Imidazol, Pyrazol, Triazol, 2,2'-Bispyridylamin, Tris-(2-pyridylmethyl)amin, 1,4,7-Triazacyclononan, 1,4,7-Trimethyl-1,4,7-triazacyclononan, 1,5,9-Trimethyl-1,5,9-triazacyclododecan, (Bis-((1-methylimidazol-2-yl)-methyl))-(2-pyridylmethyl)-amin, N,N'-(Bis-(1-methylimidazol-2-yl)-methyl)-ethylendiamin, N-Bis-(2-benzimidazolylmethyl)-aminoethanol, 2,6-Bis-(bis-(2-benzimidazolylmethyl)aminomethyl)-4-methylphenol, N,N,N',N'-Tetrakis-(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropan, 2,6-Bis-(bis-(2-pyridylmethyl)aminomethyl)-4-methylphenol, 1,3-Bis-(bis-(2-benzimidazolyl-methyl)aminomethyl)-benzol, Sorbitol, Mannitol, Erythritol, Adonitol, Inositol, Lactose, und gegebenenfalls substituierte Salene, Porphine und Porphyrine gehören. Zu den anorganischen Neutralliganden gehören insbesondere Ammoniak und Wasser. Falls nicht sämtliche Koordinationsstellen des Übergangsmetallzentralatoms durch Neutralliganden besetzt sind, enthält der Komplex weitere, vorzugsweise anionische und unter diesen insbesondere ein- oder zweizähnige Liganden. Zu diesen gehören insbesondere die Halogenide wie Fluorid, Chlorid, Bromid und Iodid, und die (NO2)-Gruppe, das heißt ein Nitro-Ligand oder ein Nitrito-Ligand. Die (NO2)-Gruppe kann an ein Übergangsmetall auch chelatbildend gebunden sein oder sie kann zwei Übergangsmetallatome asymmetrisch oder μ1-O-verbrücken. Außer den genannten Liganden können die Übergangsmetallkomplexe noch weitere, in der Regel einfacher aufgebaute Liganden, insbesondere ein- oder mehrwertige Anionliganden, tragen. In Frage kommen beispielsweise Nitrat, Acetat, Trifluoracetat, Formiat, Carbonat, Citrat, Oxalat, Perchlorat sowie komplexe Anionen wie Hexafluorophosphat. Die Anionliganden sollen für den Ladungsausgleich zwischen Übergangsmetall-Zentralatom und dem Ligandensystem sorgen. Auch die Anwesenheit von Oxo-Liganden, Peroxo-Liganden und Imino-Liganden ist möglich. Insbesondere derartige Liganden können auch verbrückend wirken, so dass mehrkernige Komplexe entstehen. Im Falle verbrückter, zweikerniger Komplexe müssen nicht beide Metallatome im Komplex gleich sein. Auch der Einsatz zweikerniger Komplexe, in denen die beiden Übergangsmetallzentralatome unterschiedliche Oxidationszahlen aufweisen, ist möglich. Falls Anionliganden fehlen oder die Anwesenheit von Anionliganden nicht zum Ladungsausgleich im Komplex führt, sind in den gemäß der Erfindung zu verwendenden Übergangsmetallkomplex-Verbindungen anionische Gegenionen anwesend, die den kationischen Übergangsmetall-Komplex neutralisieren. Zu diesen anionischen Gegenionen gehören insbesondere Nitrat, Hydroxid, Hexafluorophosphat, Sulfat, Chlorat, Perchlorat, die Halogenide wie Chlorid oder die Anionen von Carbonsäuren wie Formiat, Acetat, Oxalat, Benzoat oder Citrat. Beispiele für einsetzbare Übergangsmetallkomplex-Verbindungen sind [N,N'-Bis[(2-hydroxy-5-vinylphenyl)-methylen]-1,2-diamino-cyclohexan]-mangan-(III)-chlorid, [N,N'-Bis[(2-hydroxy-5-nitrophenyl)-methylen]-1,2-diamino-cyclohexan]-mangan-(III)-acetat, [N,N'-Bis[(2-hydroxyphenyl)-methylen]-1,2-phenylendiamin]-mangan-(III)-acetat, [N,N'-Bis[(2-hydroxyphenyl)-methylen]-1,2-diaminocyclohexan]-mangan-(III)-chlorid, [N,N'-Bis[(2-hydroxyphenyl)-methylen]-1,2-diaminoethan]-mangan-(III)-chlorid, [N,N'-Bis[(2-hydroxy-5-sulfonatophenyl)-methylen]-1,2-diaminoethan]-mangan-(III)-chlorid, Mangan-oxalatokomplexe, Nitropentammin-cobalt(III)-chlorid, Nitritopentammin-cobalt(III)-chlorid, Hex-ammincobalt(III)-chlorid, Chloropentammin-cobalt(III)-chlorid sowie der Peroxo-Komplex [(NH3)5Co-O-O-Co(NH3)5]Cl4.
  • Als in den Mitteln verwendbare Enzyme kommen solche aus der Klasse der Proteasen, Amylasen, Lipasen, Cutinasen, Pullulanasen, Hemicellulasen, Cellulasen, Oxidasen, Laccasen und Peroxidasen sowie deren Gemische in Frage. Besonders geeignet sind aus Pilzen oder Bakterien, wie Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Streptomyces griseus, Humicola lanuginosa, Humicola insolens, Pseudomonas pseudoalcaligenes, Pseudomonas cepacia oder Coprinus cinereus gewonnene enzymatische Wirkstoffe. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in den erfindungsgemäßen Wasch- oder Reinigungsmitteln vorzugsweise in Mengen bis zu 5 Gew.-%, insbesondere von 0,002 Gew.-% bis 4 Gew.-%, enthalten. Falls das erfindungsgemäße Mittel Protease enthält, weist es vorzugsweise eine proteolytische Aktivität im Bereich von etwa 100 PE/g bis etwa 10000 PE/g, insbesondere 300 PE/g bis 8000 PE/g auf. Falls mehrere Enzyme in dem erfindungsgemäßen Mittel eingesetzt werden sollen, kann dies durch Einarbeitung der zwei oder mehreren separaten beziehungsweise in bekannter Weise separat konfektionierten Enzyme oder durch zwei oder mehrere gemeinsam in einem Granulat konfektionierte Enzyme durchgeführt werden.
  • Zur Einstellung eines gewünschten, sich durch die Mischung der übrigen Komponenten nicht von selbst ergebenden pH-Werts können die erfindungsgemäßen Mittel system- und umweltverträgliche Säuren, insbesondere Citronensäure, Essigsäure, Weinsäure, Äpfelsäure, Milchsäure, Glykolsäure, Bernsteinsäure, Glutarsäure und/oder Adipinsäure, aber auch Mineralsäuren, insbesondere Schwefelsäure, oder Basen, insbesondere Ammonium- oder Alkalihydroxide, enthalten. Derartige pH-Regulatoren sind in den erfindungsgemäßen Mitteln in Mengen von vorzugsweise nicht über 20 Gew.-%, insbesondere von 1,2 Gew.-% bis 17 Gew.-%, enthalten.
  • Vergrauungsinhibitoren haben die Aufgabe, den von der Textilfaser abgelösten Schmutz in der Flotte suspendiert zu halten. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Stärke, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich andere als die obengenannten Stärkederivate verwenden, zum Beispiel Aldehydstärken. Bevorzugt werden Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
  • Die Mittel können gewünschtenfalls einen üblichen Farbübertragungsinhibitor, diesen dann vorzugsweise in Mengen bis zu 2 Gew.-%, insbesondere 0,1 Gew.-% bis 1 Gew.-%, enthalten, der in einer bevorzugten Ausgestaltung ausgewählt wird aus den Polymeren aus Vinylpyrrolidon, Vinylimidazol, Vinylpyridin-N-Oxid oder den Copolymeren aus diesen. Brauchbar sind sowohl Polyvinylpyrrolidone mit Molgewichten von 15000 g/mol bis 50000 g/mol wie auch Polyvinylpyrrolidone mit höheren Molgewichten von beispielsweise bis zu über 1000000 g/mol, insbesondere von 1500000 g/mol bis 4000000 g/mol, N-Vinylimidazol/N-Vinylpyrrolidon-Copolymere, Polyvinyloxazolidone, Copolymere auf Basis von Vinylmonomeren und Carbonsäureamiden, pyrrolidongruppenhaltige Polyester und Polyamide, gepfropfte Polyamidoamine und Polyethylenimine, Polyamin-N-Oxid-Polymere und Polyvinylalkohole. Eingesetzt werden können aber auch enzymatische Systeme, umfassend eine Peroxidase und Wasserstoffperoxid beziehungsweise eine in Wasser Wasserstoffperoxid-liefernde Substanz. Der Zusatz einer Mediatorverbindung für die Peroxidase, zum Beispiel eines Acetosyringons, eines Phenolderivats oder eines Phenotiazins oder Phenoxazins, ist in diesem Fall bevorzugt, wobei auch zusätzlich obengenannte polymere Farbübertragungsinhibitorwirkstoffe eingesetzt werden können. Polyvinylpyrrolidon weist vorzugsweise eine durchschnittliche Molmasse im Bereich von 10000 g/mol bis 60000 g/mol, insbesondere im Bereich von 25000 g/mol bis 50000 g/mol auf. Unter den Copolymeren sind solche aus Vinylpyrrolidon und Vinylimidazol im Molverhältnis 5:1 bis 1:1 mit einer durchschnittlichen Molmasse im Bereich von 5000 g/mol bis 50000 g/mol, insbesondere 10000 g/mol bis 20000 g/mol bevorzugt. In bevorzugten Ausführungsformen der Erfindung sind die Waschmittel allerdings frei von derartigen zusätzlichen Farbübertragungsinhibitoren.
  • Waschmittel können als optische Aufheller beispielsweise Derivate der Diaminostilbendisulfonsäure beziehungsweise deren Alkalimetallsalze enthalten, obgleich sie für den Einsatz als Colorwaschmittel vorzugsweise frei von optischen Aufhellern sind. Geeignet sind zum Beispiel Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, zum Beispiel die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten optischen Aufheller können verwendet werden.
  • Insbesondere beim Einsatz in maschinellen Verfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C18-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bisfettsäurealkylendiamiden. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, zum Beispiel solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granulare, in Wasser lösliche beziehungsweise dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamid bevorzugt.
  • In einer bevorzugten Ausführungsform ist das erfindungsgemäße Mittel teilchenförmig und enthält neben dem Tensid der allgemeinen Formel (I) Builder, insbesondere in einer Menge im Bereich von 1 Gew.-% bis 60 Gew.-%.
  • In einer weiteren bevorzugten Ausführungsform ist ein erfindungsgemäßes Mittel flüssig und enthält 1 Gew.-% bis 90 Gew.-%, insbesondere 10 Gew.-% bis 85 Gew.-%, bevorzugt 25 Gew.-% bis 75 Gew.-%, und besonders bevorzugt 35 Gew.-% bis 65 Gew.-% Wasser, wassermischbares Lösungsmittel oder eines Gemisches aus Wasser und wassermischbarem Lösungsmittel. Zu wassermischbaren Lösungsmitteln gehören beispielsweise einwertige Alkohole mit 1 bis 4 C-Atomen, insbesondere Methanol, Ethanol, Isopropanol und tert.-Butanol, Diole und Triole mit 2 bis 4 C-Atomen, insbesondere Ethylenglykol, Propylenglykol und Glycerin, sowie deren Gemische und die aus den genannten Verbindungsklassen ableitbaren Ether. Derartige wassermischbare Lösungsmittel sind in den erfindungsgemäßen Mitteln vorzugsweise in Mengen nicht über 30 Gew.-%, insbesondere von 2 Gew.-% bis 20 Gew.-%, vorhanden.
  • In einer weiteren bevorzugten Ausführungsform liegt das erfindungsgemäße Mittel einzeldosierfertig portioniert in einer aus wasserlöslichem Material gebildeten Kammer vor; dann enthält das Mittel vorzugsweise weniger als 15 Gew.-%, insbesondere im Bereich von 1 Gew.-% bis 12 Gew.-% Wasser. Eine Portion ist eine eigenständige Dosiereinheit mit mindestens einer Kammer, in der zu dosierendes Gut enthalten ist. Eine Kammer ist ein durch Wandungen (zum Beispiel durch eine Folie) abgegrenzter Raum, welcher auch ohne das zu dosierende Gut (gegebenenfalls unter Veränderung seiner Form) existieren kann. Bei einer Oberflächenbeschichtung oder einer Schicht einer Oberflächenbeschichtung handelt es sich somit nicht um eine Wandung gemäß der vorliegenden Erfindung.
  • Dabei sind die Wandungen der Kammer aus einem wasserlöslichen Material. Die Wasserlöslichkeit des Materials kann mit Hilfe eines in einem quadratischen Rahmen (Kantenlänge auf der Innenseite: 20 mm) fixierten quadratischen Films des besagten Materials (Film: 22 × 22 mm mit einer Dicke von 76 μm) nach dem folgenden Messprotokoll bestimmt werden. Besagter gerahmter Film wird in 800 ml auf 20°C temperiertes, destilliertes Wasser in einem 1 Liter Becherglas mit kreisförmiger Bodenfläche (Fa. Schott, Mainz, Becherglas 1000 ml, niedrige Form) eingetaucht, so dass die Fläche des eingespannten Films im rechten Winkel zur Bodenfläche des Becherglases angeordnet ist, die Oberkante des Rahmens 1 cm unter der Wasseroberfläche ist und die Unterkante des Rahmens parallel zur Bodenfläche des Becherglases derart ausgerichtet ist, dass die Unterkante des Rahmens entlang des Radius der Bodenfläche des Becherglases verläuft und die Mitte der Unterkante des Rahmens über der Mitte des Radius des Becherglasbodens angeordnet ist. Das Material löst sich unter Rühren (Rührgeschwindigkeit Magnetrührer 300 rpm, Rührstab: 5 cm lang) innerhalb von 600 Sekunden derart auf, dass mit dem bloßen Auge keine einzelnen festförmigen Partikel mehr sichtbar sind.
  • Die Wandungen der Kammern und damit die wasserlöslichen Umhüllungen der erfindungsgemäßen Waschmittel werden vorzugsweise durch ein wasserlösliches Folienmaterial gebildet. Solche wasserlöslichen Verpackungen können entweder durch Verfahren des vertikalen Formfüllversiegelns oder durch Warmformverfahren hergestellt werden.
  • Das Warmformverfahren schließt im Allgemeinen das Formen einer ersten Lage aus einem wasserlöslichen Folienmaterial zum Bilden von Ausbuchtungen zum Aufnehmen einer Zusammensetzung darin, Einfüllen der Zusammensetzung in die Ausbuchtungen, Bedecken der mit der Zusammensetzung gefüllten Ausbuchtungen mit einer zweiten Lage aus einem wasserlöslichen Folienmaterial und Versiegeln der ersten und zweiten Lagen miteinander zumindest um die Ausbuchtungen herum ein.
  • Das wasserlösliche Folienmaterial wird vorzugsweise ausgewählt aus Polymeren oder Polymergemischen. Die Umhüllung kann aus einer oder aus zwei oder mehr Lagen von wasserlöslichem Folienmaterial gebildet werden. Die wasserlöslichen Folienmaterialien der ersten Lage und der weiteren Lagen, falls vorhanden, können gleich oder unterschiedlich sein.
  • Es ist bevorzugt, dass die wasserlösliche Umhüllung Polyvinylalkohol oder ein Polyvinylalkoholcopolymer enthält; besonders bevorzugt besteht sie aus Polyvinylalkohol oder Polyvinylalkoholcopolymer.
  • Wasserlösliche Folien zur Herstellung der wasserlöslichen Umhüllung basieren bevorzugt auf einem Polyvinylalkohol oder einem Polyvinylalkoholcopolymer, dessen Molekulargewicht im Bereich von 10.000 bis 1.000.000 gmol–1, vorzugsweise von 20.000 bis 500.000 gmol–1, besonders bevorzugt von 30.000 bis 100.000 gmol–1 und insbesondere von 40.000 bis 80.000 gmol–1 liegt.
  • Die Herstellung von Polyvinylalkohol geschieht üblicherweise durch Hydrolyse von Polyvinylacetat, da der direkte Syntheseweg nicht möglich ist. Ähnliches gilt für Polyvinylalkoholcopolymere, die aus entsprechend aus Polyvinylacetatcopolymeren hergestellt werden. Bevorzugt ist, wenn wenigstens eine Lage der wasserlöslichen Umhüllung einen Polyvinylalkohol umfasst, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% ausmacht.
  • Einem zur Herstellung der wasserlöslichen Umhüllung geeigneten Folienmaterial können zusätzlich Polymere, ausgewählt aus der Gruppe umfassend Acrylsäure-haltige Polymere, Polyacrylamide, Oxazolin-Polymere, Polystyrolsulfonate, Polyurethane, Polyester, Polyether, Polymilchsäure, und/oder Mischungen der vorstehenden Polymere, zugesetzt sein. Auch die Copolymerisation von solchen Polymeren zugrundeliegenden Monomeren, einzeln oder in Mischungen aus zweien oder mehreren, mit Vinylacetat ist möglich.
  • Bevorzugte Polyvinylalkoholcopolymere umfassen neben Vinylalkohol eine ethylenisch ungesättigte Carbonsäure, deren Salz oder deren Ester. Besonders bevorzugt enthalten solche Polyvinylalkoholcopolymere neben Vinylalkohol Acrylsäure, Methacrylsäure, Acrylsäureester, Methacrylsäureester oder Mischungen daraus; unter den Estern sind C1-4-Alkylester oder -Hydroxyalkylester bevorzugt. Ebenso bevorzugte Polyvinylalkoholcopolymere umfassen neben Vinylalkohol als weitere Monomere ethylenisch ungesättigte Dicarbonsäuren. Geeignete Dicarbonsäure sind beispielsweise Itaconsäure, Maleinsäure, Fumarsäure und Mischungen daraus, wobei Itaconsäure besonders bevorzugt ist.
  • Geeignete wasserlösliche Folien zum Einsatz in den Umhüllungen der wasserlöslichen Verpackungen gemäß der Erfindung sind Folien, die von der Firma MonoSol LLC beispielsweise unter der Bezeichnung M8630, C8400 oder M8900 vertrieben werden. Andere geeignete Folien umfassen Folien mit der Bezeichnung Solublon® PT, Solublon® GA, Solublon® KC oder Solublon® KL von der Aicello Chemical Europe GmbH oder die Folien VF-HP von Kuraray.
  • Die Wasch- oder Reinigungsmittelportion, umfassend das Wasch- oder Reinigungsmittel und die wasserlösliche Umhüllung, kann eine oder mehr Kammern aufweisen. Die wasserlöslichen Umhüllungen mit einer Kammer können eine im Wesentlichen formstabile kugel-, rotationsellipsoid-, würfel-, quader- oder kissenförmige Ausgestaltung mit einer kreisförmigen, elliptischen, quadratischen oder rechteckigen Grundform aufweisen. Das Mittel kann in einer oder mehreren Kammern, falls vorhanden, der wasserlöslichen Umhüllung enthalten sein.
  • In einer bevorzugten Ausführungsform weist die wasserlösliche Umhüllung zwei Kammern auf. In dieser Ausführungsform können beide Kammern jeweils eine feste Teilzusammensetzung oder jeweils eine flüssige Teilzusammensetzung enthalten, oder die erste Kammer enthält eine flüssige und die zweite Kammer eine feste Teilzusammensetzung.
  • Die Anteile der Mittel, die in den unterschiedlichen Kammern einer wasserlöslichen Umhüllung mit zwei oder mehr Kammern enthalten sind, können dieselbe Zusammensetzung aufweisen. Vorzugsweise weisen die Mittel in einer wasserlöslichen Umhüllung mit mindestens zwei Kammern jedoch Teilzusammensetzungen auf, die sich mindestens in einem Inhaltsstoff und/oder in dem Gehalt mindestens eines Inhaltsstoffes unterscheiden. Vorzugsweise weist eine Teilzusammensetzung solcher erfindungsgemäßer Mittel Enzym und/oder Bleichaktivator auf und eine getrennt davon vorliegende weitere Teilzusammensetzung weist peroxidisches Bleichmittel auf, wobei dann die erstgenannte Teilzusammensetzung insbesondere kein peroxidisches Bleichmittel und die zweitgenannte Teilzusammensetzung insbesondere kein Enzym und keinen Bleichaktivator aufweist.
  • Durch die portionsweise Verpackung in eine wasserlösliche Umhüllung wird der Anwender in die Lage versetzt, für eine Anwendung eine oder gewünschtenfalls mehrere, vorzugsweise eine, der Portionen in die Wasch- oder Geschirrspülmaschine, insbesondere in die Einspülkammer einer Waschmaschine, oder in ein Behältnis zur Durchführung eines manuellen Wasch- oder Reinigungsverfahrens zu geben. Derartige Portionspackungen erfüllen den Wunsch des Verbrauchers nach vereinfachter Dosierung. Nach Zugabe von Wasser löst sich das Umhüllungsmaterial auf, so dass die Inhaltsstoffe freigesetzt werden und in der Flotte ihre Wirkung entfalten können. Vorzugsweise wiegt eine wasserlöslich umhüllte Portion 10 g bis 35 g, insbesondere 12 g bis 28 g und besonders bevorzugt 12 g bis 15 g, wobei auf den in der Gewichtsangabe enthaltenen Anteil der wasserlöslichen Umhüllung 0,3 g bis 2,5 g, insbesondere 0,7 g bis 1,2 g entfallen.
  • Die Herstellung fester erfindungsgemäßer Mittel bietet keine Schwierigkeiten und kann auf bekannte Weise, zum Beispiel durch Sprühtrocknen oder Granulation, erfolgen, wobei Enzyme und eventuelle weitere thermisch empfindliche Inhaltsstoffe wie zum Beispiel Bleichmittel gegebenenfalls später separat zugesetzt werden. Zur Herstellung von Mitteln mit erhöhtem Schüttgewicht, insbesondere im Bereich von 650 g/l bis 950 g/l, ist ein einen Extrusionsschritt aufweisendes Verfahren bevorzugt.
  • Flüssige beziehungsweise pastöse erfindungsgemäße Mittel in Form von Wasser übliche Lösungsmittel enthaltenden Lösungen werden in der Regel durch einfaches Mischen der Inhaltsstoffe, die in Substanz oder als Lösung in einen automatischen Mischer gegeben werden können, hergestellt.
  • Beispiele
  • Beispiel 1: Synthese von Natrium 5-[((dodecan-2-yloxy)methyl)tetrahydrofuran-2-yl]methylsulfat
  • A: Herstellung von 2,5-Bis(hydroxymethyl)-tetrahydrofuran (BHMTHF)
  • 5,0 g Hydroxymethylfurfural (HMF; 40 mmol) wurde in 20 ml Ethanol gelöst und nach Zugabe von 0,25g Ni/SiO2 (5 Gew.-% bezogen auf HMF) in einem Autoklav bei einer Temperatur von 100°C und einem Druck von 70 bar Wasserstoff über Nacht gerührt. Nach Ende der Reaktion wurde der Katalysator über einen Spritzenfilter abgetrennt und das Lösungsmittel am Rotationsverdampfer entfernt. Destillation unter vermindertem Druck liefert das farblose Produkt (3.5 g, 26.5 mmol, 70%).
    1H-NMR (400 MHz, CDCl3): δ (ppm) = 1.70 (m, 2H, H3), 1.83 (m, 2H, H3), 3.41 (dd, 2H, H1), 3.65 (dd, 2H, H1), 3.99 (m, 2H, H2), 4.14 (s, 2H, OH).
    13C-NMR (100 MHz, CDCl3): δ (ppm) = 27.05 (s, 2C, C3), 64.68 (s, 2C, C2), 80.29 (s, 2C, C1).
  • B: Herstellung von 5-[((Dodecan-2-yloxy)methyl)tetrahydrofuran-2-yl]methanol
  • Eine Reaktionsmischung aus 13,6 g BHMTHF (103 mmol), 17,4 g 1-Dodecen (103 mmol) und 1,4 g des Katalysators Zeolith H-BEA 15 wurde für 16 Stunden auf 180°C unter maximaler Durchmischung erhitzt. Anschließend wurde die Mischung mit 150 ml iso-Propanol homogenisiert und der Katalysator abgetrennt. Iso-Propanol wurde am Rotationsverdampfer entfernt und der Rückstand mit Methanol und Petrolether extrahiert. Über Destillation der Petrolether-Fraktion im Hochvakuum wurde bei 60°C das verbliebene Dodecen abgetrennt, eine Erhöhung der Temperatur auf 120°C lieferte 4,0 g des Produkts (13,4 mmol, 13%).
    13C-NMR (100 MHz, CDCl3): δ (ppm) = 14.24 (s, 1C, C18), 19.51 (d, 1C, C7), 22.81 (s, 1C, C17), 25.61 (m, 1C, C10), 27.73 (d, 1C, C3), 28.34 (d, 1C, C4), 29.75 (s, 3C, C12-14), 29.81 (s, 1C, C15), 29.89 (s, 1C, C11), 32.04 (s, 1C, C16), 36.45 (d, 1C, C9), 65.82 (d, 1C, C1), 70.61 (d, 1C, C6), 78.38 (d, 1C, C8), 79.04 (d, 1C, C5), 80.20 (d, 1C, C2).
  • C: Herstellung von Natrium 5-[((dodecan-2-yloxy)methyl)tetrahydrofuran-2-yl]methylsulfat
  • 2,8 g des in Stufe B hergestellten verzweigten BHMTHF-Ethers (9,3 mmol) wurde in 5 ml Chloroform gelöst. Unter Eiskühlung wurde eine Lösung von 1,1 g Chlorsulfonsäure (9,3 mmol) in 75 ml Chloroform über einen Zeitraum von 30 Minuten zugetropft. Anschließend wurde die Eiskühlung entfernt und die Reaktionsmischung für 1 h bei Raumtemperatur gerührt. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und der Rückstand in 5 ml Methanol gelöst. Die Lösung wurde mit methanolischer NaOH neutralisiert und weitere 300 ml Methanol wurden zugegeben. Der sich bei der Neutralisation bildende Feststoff wurde über einen Spritzenfilter abgetrennt. Das Lösungsmittel des klaren Filtrats wurde am Rotationsverdampfer entfernt und der Rückstand in einer Mischung aus Acetonitril mit wenig Aceton aufgenommen. Das gewünschte Produkt fiel aus, wurde abgetrennt und getrocknet. Man erhielt 1,3 g Natrium 5-[((dodecan-2-yloxy)methyl)tetrahydrofuran-2-yl]methylsulfat (P1; 3,4 mmol, 40%).
  • D: Alternative Herstellung von Natrium 5-[((dodecan-2-yloxy)methyl)tetrahydrofuran-2-yl]methylsulfat
  • 5,0 g des in Stufe B hergestellten verzweigten BHMTHF-Ethers (16,6 mmol) wurde in 200 ml Acetonitril gelöst. Nach Zugabe von 3,96 g Schwefeltrioxid-Pyridin-Komplex (24,9 mmol) wurde die Reaktionsmischung auf 75°C erhitzt und für 6 Stunden gerührt. Nach Ende der Reaktion wurde 0,1 ml vollentsalztes Wasser hinzugegeben und die Mischung für 10 Minuten bei 75°C gerührt. Anschließend wurde das Lösungsmittel am Rotationsverdampfer entfernt und der Rückstand nach Trocknen im Hochvakuum in 200 ml Ethanol aufgenommen und mit 3,51 g Natriumcarbonat (33,2 mmol) versetzt. Die Mischung wurde für zwei Stunden bei 50°C gerührt, bis keine Gasentwicklung mehr zu sehen war. Anschließend wurde die Lösung über Kieselgel gefiltert und dieses mehrfach mit Ethanol gespült. Die erhaltenen Flüssigphasen wurde gesammelt und das Lösungsmittel am Rotationsverdampfer entfernt. Nach Zugabe von Petrolether fiel ein weißer Feststoff aus, der nach Abzentrifugation so lange mit Petrolether versetzt und erneut abzentrifugiert wurde, bis die Petroletherphase nach der Zentrifugation farblos blieb. Das so erhaltene weiße Produkt (P1; 3,8 g, 9,6 mmol, 58%) wurde am Rotationsverdampfer und im Hochvakuum getrocknet.
    Figure DE102016009798A1_0005
    13C-NMR (100 MHz, D2O): δ (ppm) = 13.88 (s, 1C, C18), 19.14 (s, 1C, C7), 22.65 (s, 1C, C17), 25.58 (s, 1C, C10), 29.49 (s, 2C, C3,4), 29.84 (m, 5C, C11-15), 31.98 (s, 1C, C16), 36.22 (s, 1C, C9), 70.01 (s, 1C, C6), 71.14 (s, 1C, C1), 75.98 (s, 1C, C8), 77.55 (s, 1C, C2), 78.54 (s, 1C, C5).
  • Die kritische Mizellkonzentration (CMC) von Tensid P1 wurde durch Messung der Oberflächenspannung seiner wässrigen Lösung als Funktion der Konzentration bei 25°C und einem pH von 8,5 zu 0,11 g/l bestimmt. Die Grenzflächenspannung einer wässrigen Lösung von P1 (Konzentration 1 g/l) gegenüber Isopropylmyristat bei pH 8,5 und 25°C wurde mittels der Spinning Drop Methode gemessen. Nach 20 Minuten ergab sich ein Wert von 4,2 mN/m.
  • Beispiel 2: Waschleistung
  • Die Waschleistung von P1 wurde in Waschversuchen in miniaturisierter Form an den in Tabelle 1 angegebenen standardisierten Anschmutzungen auf Baumwolle getestet. Bei einer Waschtemperatur von 40°C, einer Waschzeit von 1 h und einer Dosierung von 4,1 g/l eines Waschmittels V1, welches frei von Tensiden gemäß allgemeiner Formel (I) war, oder einer Dosierung von 4,1 g/l eines Waschmittels M1, das ansonsten wie V1 zusammengesetzt war, aber zusätzlich 2 Gew.-% des Tensids P1 enthielt, oder einer Dosierung von 4,1 g/l eines Waschmittels V2, das ansonsten wie V1 zusammengesetzt war, aber zusätzlich 2 Gew.-% Na-Dodecylbenzolsulfonat enthielt, erhielt man als Ergebnis von colorimetrischen Messungen die ebenfalls in Tabelle 1 angegebenen Differenzen der Unterschiede in den Helligkeitswerte nach und vor dem Waschen (ΔΔY-Werte) zwischen den Mitteln M1 und V1 sowie V2 und V1. Angegeben sind Mittelwerte von 5-fach Bestimmungen. Je größer der Wert, desto besser ist die Waschleistung von M1 oder von V2 im Vergleich zu V1. Tabelle 1:
    Anschmutzung/Mittel M1 V2
    Mayonaise mit Ruß 1,4 –0,2
    Gebrauchtes Bratenfett 1,3 1,0

Claims (10)

  1. Anionisches Tensid der allgemeinen Formel (I),
    Figure DE102016009798A1_0006
    in der n und m unabhängig voneinander für Zahlen von 0 bis 17 stehen und 2 < n + m < 20 ist, und X+ für ein ladungsausgleichendes Kation steht.
  2. Verfahren zur Herstellung eines anionischen Tensids der allgemeinen Formel (I),
    Figure DE102016009798A1_0007
    in der n und m unabhängig voneinander für Zahlen von 0 bis 17 stehen und 2 < n + m < 20 ist, und X+ für ein ladungsausgleichendes Kation steht, durch säurekatalysierte Umsetzung von 2,5-Bis(hydroxymethyl)-tetrahydrofuran mit einem Alken, insbesondere einem 1-Alken, mit 5 bis 22, insbesondere 9 bis 19 C-Atomen in äquimolaren Mengen bei erhöhter Temperatur zu einer Verbindung der allgemeinen Formel (II),
    Figure DE102016009798A1_0008
    anschließender Sulfatierung mit einem Sulfatierungsagens und gegebenenfalls Neutralisation durch anschließende Umsetzung mit X+OH oder X+ 2CO2– 3, wobei X+ für ein Alkalimetallkation oder eine Gruppierung N+R1R2R3 steht, in der R1, R2 und R3 unabhängig voneinander für Wasserstoff, eine Alkylgruppe mit 1 bis 6 C-Atomen oder eine Hydroxyalkylgruppe mit 2 bis 6 C-Atomen stehen.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass man 2,5-Bis(hydroxymethyl)-tetrahydrofuran mit dem Alken und einem sauren Katalysator, insbesondere einem sauren festen Katalysator, beispielsweise einem sauren Zeolith beziehungsweise einem Zeolith in der sogenannten H-Form, insbesondere Zeolith Beta und/oder Zeolith Y, bei einer Temperatur im Bereich von 140°C bis 200°C, insbesondere von 180°C bis 200°C, für eine Dauer von 8 Stunden bis 24 Stunden, insbesondere 12 Stunden bis 18 Stunden rührt, und die so erhaltene Verbindung der allgemeinen Formel (II) mit einem Sulfatierungsagens, beispielsweise Chlorsulfonsäure oder Schwefeltrioxidpyridin, bei einer Temperatur im Bereich von –20°C bis 75°C, insbesondere von 25°C bis 75°C, und einer Dauer von 1 Stunde bis 24 Stunden, insbesondere 6 bis 18 Stunden, umsetzt.
  4. Wasch- oder Reinigungsmittel, enthaltend ein anionisches Tensid der allgemeinen Formel (I),
    Figure DE102016009798A1_0009
    in der n und m unabhängig voneinander für Zahlen von 0 bis 17 stehen und 2 < n + m < 20 ist, und X+ für ein ladungsausgleichendes Kation steht.
  5. Mittel nach Anspruch 4, dadurch gekennzeichnet, dass es 1 Gew.-% bis 99 Gew.-%, insbesondere 3 Gew.-% bis 85 Gew.-%, des Tensids der allgemeinen Formel (I) enthält.
  6. Mittel nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass es zusätzlich bis zu 99 Gew.-%, insbesondere 3 Gew.-% bis 85 Gew.-%, weiteres Tensid enthält.
  7. Mittel nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass es teilchenförmig ist und Builder, insbesondere in einer Menge im Bereich von 1 Gew.-% bis 60 Gew.-%, enthält, oder dass es flüssig ist und 1 Gew.-% bis 90 Gew.-%, insbesondere 10 Gew.-% bis 85 Gew.-% Wasser, wassermischbares Lösungsmittel oder eines Gemisches aus Wasser und wassermischbarem Lösungsmittel enthält.
  8. Mittel nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass es einzeldosierfertig portioniert in einer aus wasserlöslichem Material gebildeten Kammer vorliegt und weniger als 15 Gew.-%, insbesondere im Bereich von 1 Gew.-% bis 12 Gew.-% Wasser enthält.
  9. Verwendung eines anionischen Tensids der allgemeinen Formel (I),
    Figure DE102016009798A1_0010
    in der n und m unabhängig voneinander für Zahlen von 0 bis 17 stehen und 2 < n + m < 20 ist, und X+ für ein ladungsausgleichendes Kation steht, zur Erhöhung der Leistung von Wasch- oder Reinigungsmitteln beim Waschen von Wäsche oder der Reinigung harter Oberflächen.
  10. Tensid nach Anspruch 1, Verfahren nach Anspruch 2 oder 3, Mittel nach einem der Ansprüche 4 bis 8, oder Verwendung nach Anspruch 9, dadurch gekennzeichnet, dass in den Verbindungen der allgemeinen Formel (I) n für eine Zahl von 0 bis 3 und m für eine Zahl von 5 bis 14 stehen, und/oder X+ aus der Gruppe umfassend das Proton, Alkalimetallkationen und die Gruppierung N+R1R2R3, in der R1, R2 und R3 unabhängig voneinander für Wasserstoff, eine Alkylgruppe mit 1 bis 6 C-Atomen oder eine Hydroxyalkylgruppe mit 2 bis 6 C-Atomen stehen, ausgewählt wird.
DE102016009798.1A 2016-08-12 2016-08-12 Neue anionische Tenside und Wasch- und Reinigungsmittel, welche diese enthalten Withdrawn DE102016009798A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102016009798.1A DE102016009798A1 (de) 2016-08-12 2016-08-12 Neue anionische Tenside und Wasch- und Reinigungsmittel, welche diese enthalten
EP17758445.5A EP3497194A1 (de) 2016-08-12 2017-08-08 Neue anionische tenside und wasch- und reinigungsmittel, welche diese enthalten
PCT/EP2017/070090 WO2018029202A1 (de) 2016-08-12 2017-08-08 Neue anionische tenside und wasch- und reinigungsmittel, welche diese enthalten
US16/273,382 US11174451B2 (en) 2016-08-12 2019-02-12 Anionic surfactants and detergents and cleaning agents containing same
US17/523,621 US20220064568A1 (en) 2016-08-12 2021-11-10 New Anionic Surfactants And Detergents And Cleaning Agents Containing Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016009798.1A DE102016009798A1 (de) 2016-08-12 2016-08-12 Neue anionische Tenside und Wasch- und Reinigungsmittel, welche diese enthalten

Publications (1)

Publication Number Publication Date
DE102016009798A1 true DE102016009798A1 (de) 2018-02-15

Family

ID=59738290

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016009798.1A Withdrawn DE102016009798A1 (de) 2016-08-12 2016-08-12 Neue anionische Tenside und Wasch- und Reinigungsmittel, welche diese enthalten

Country Status (4)

Country Link
US (2) US11174451B2 (de)
EP (1) EP3497194A1 (de)
DE (1) DE102016009798A1 (de)
WO (1) WO2018029202A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019216681A1 (de) * 2019-10-29 2021-04-29 Henkel Ag & Co. Kgaa Einsatz von Tensiden aus nachwachsenden Rohstoffen

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019000092A1 (de) * 2019-01-10 2020-07-16 Henkel Ag & Co. Kgaa Neue anionische Tenside und Wasch- und Reinigungsmittel, welche diese enthalten
DE102019001851A1 (de) * 2019-03-18 2020-09-24 Henkel Ag & Co. Kgaa Neue anionische Tenside und Wasch- und Reinigungsmittel, welche diese enthalten
CN113061122B (zh) * 2021-03-15 2023-04-07 昆明理工大学 一种2,5-二羟甲基四氢呋喃的制备方法
EP4416255A1 (de) 2021-10-14 2024-08-21 The Procter & Gamble Company Gewebe und haushaltspflegeprodukt mit kationischem schmutzabweisendem polymer und lipaseenzym
WO2024119298A1 (en) 2022-12-05 2024-06-13 The Procter & Gamble Company Fabric and home care composition comprising a polyalkylenecarbonate compound
CN116333826B (zh) * 2023-03-23 2024-06-07 北京巴瑞医疗器械有限公司 一种用于磁微粒免疫诊断的清洗液

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3014926A (en) * 1960-01-05 1961-12-26 Merck & Co Inc N-(5-hydroxymethyl-2-tetrahydrofurfuryl)amides and derivatives thereof
AT304739B (de) * 1969-11-24 1973-01-25 Unilever Nv Wasch- und Reinigungsmittel
US3855248A (en) * 1972-05-08 1974-12-17 Monsanto Co Dioxolane polycarboxylates
JPS5412925B2 (de) * 1973-06-06 1979-05-26
US3835163A (en) * 1973-08-02 1974-09-10 Monsanto Co Tetrahydrofuran polycarboxylic acids
CN103073526B (zh) * 2012-12-26 2014-12-03 中国科学院宁波材料技术与工程研究所 一种2,5-二取代的四氢呋喃类混合物的制备方法
AU2014366334B2 (en) * 2013-12-19 2018-01-18 Archer Daniels Midland Company Mono- and dialkyl ethers of furan-2,5-dimethanol and (tetra-hydrofuran-2,5-diyl)dimethanol and amphiphilic derivatives thereof
US10570352B2 (en) * 2015-01-08 2020-02-25 Stepan Company Cold-water laundry detergents

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019216681A1 (de) * 2019-10-29 2021-04-29 Henkel Ag & Co. Kgaa Einsatz von Tensiden aus nachwachsenden Rohstoffen

Also Published As

Publication number Publication date
US20220064568A1 (en) 2022-03-03
EP3497194A1 (de) 2019-06-19
WO2018029202A1 (de) 2018-02-15
US20190169531A1 (en) 2019-06-06
US11174451B2 (en) 2021-11-16

Similar Documents

Publication Publication Date Title
EP3221441B1 (de) Wasserlöslich umhülltes portionswaschmittel
DE102016009798A1 (de) Neue anionische Tenside und Wasch- und Reinigungsmittel, welche diese enthalten
WO2016066464A1 (de) Waschmittel mit mannosylerythritollipid
EP3676258B1 (de) Neue anionische tenside und wasch- und reinigungsmittel, welche diese enthalten
EP3676269B1 (de) Neue anionische tenside und wasch- und reinigungsmittel, welche diese enthalten
EP3676257B1 (de) Neue anionische tenside und wasch- und reinigungsmittel, welche diese enthalten
EP3497193B1 (de) Wasch- und reinigungsmittel mit anionischen tensiden aus nachwachsenden rohstoffen
EP3942007B1 (de) Neue anionische tenside und wasch- und reinigungsmittel, welche diese enthalten
EP3908646B1 (de) Neue anionische tenside und wasch- und reinigungsmittel, welche diese enthalten
EP3331855B1 (de) Neue anionische tenside und waschmittel, welche diese enthalten
EP3331856B1 (de) Neue anionische tenside und waschmittel, welche diese enthalten
WO2021110620A1 (de) Oberflächenaktive agentien
DE102019217963A1 (de) Polymere oberflächenaktive Wirkstoffe und Wasch- und Reinigungsmittel, welche diese enthalten
EP4198112A1 (de) Neue tensidkombination und wasch- und reinigungsmittel, welche diese enthalten
WO2021140017A1 (de) Farbübertragungsinhibierung beim waschen
DE102022210849A1 (de) Sophorolipid-Tenside mit oberflächenaktiven Gegenkationen

Legal Events

Date Code Title Description
R081 Change of applicant/patentee

Owner name: HENKEL AG & CO. KGAA, DE

Free format text: FORMER OWNERS: HENKEL AG & CO. KGAA, 40589 DUESSELDORF, DE; RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE (RWTH) AACHEN, 52062 AACHEN, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee