DE102015222684A1 - Steuergerät für einen Verbrennungsmotor - Google Patents

Steuergerät für einen Verbrennungsmotor Download PDF

Info

Publication number
DE102015222684A1
DE102015222684A1 DE102015222684.0A DE102015222684A DE102015222684A1 DE 102015222684 A1 DE102015222684 A1 DE 102015222684A1 DE 102015222684 A DE102015222684 A DE 102015222684A DE 102015222684 A1 DE102015222684 A1 DE 102015222684A1
Authority
DE
Germany
Prior art keywords
emission
combustion engine
internal combustion
control unit
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102015222684.0A
Other languages
English (en)
Other versions
DE102015222684B4 (de
Inventor
Benjamin Segtrop
Michael Mazur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of DE102015222684A1 publication Critical patent/DE102015222684A1/de
Application granted granted Critical
Publication of DE102015222684B4 publication Critical patent/DE102015222684B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/38Control for minimising smoke emissions, e.g. by applying smoke limitations on the fuel injection amount

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Steuergerät (1) für einen Verbrennungsmotor (2), mit einer Funktion, die unter Berücksichtigung einer Betriebszustandsinformation (FW, SB) einer Obergrenze und einer kumulierten Ist-Größe eine Führungsgröße (x(t)) bestimmt, die einen Betriebszustand des Verbrennungsmotors (2) so beeinflusst, so dass mehrere Ist-Größen so eingestellt werden, dass kumulierte Ist-Größen in einem Betriebszeitraum mit einer Zusammenstellung aus beliebigen, in zufälliger Reihenfolge eingestellten, unterschiedlichen Betriebszuständen des Verbrennungsmotors (2) Obergrenzen für diesen Betriebszeitraum nicht überschreiten, wobei eine Zielfunktion minimiert wird, indem die Führungsgröße (x(t)) mittels einer Indifferenzkurve (I) aus pareto-optimalen Alternativen ausgewählt wird.

Description

  • Die vorliegende Erfindung betrifft ein Steuergerät für einen Verbrennungsmotor zur Bestimmung wenigstens einer Führungsgröße für einen Verbrennungsmotor.
  • Steuergeräte dienen dazu, im Fahrzeugbereich wichtige Motorfunktionen zu steuern. Insbesondere dienen sie auch dazu, ergänzend zu konstruktiven Maßnahmen wie Brennraumgestaltung und der Beeinflussung der Gemischbildung durch Einspritzsysteme und Einspritzverfahren, im Motorbetrieb den Kraftstoffverbrauch und die damit zusammenhängenden CO2-Emissionen sowie wesentliche Abgaskomponenten wie Kohlenmonoxid (CO), Kohlenwasserstoffe (HC), Stickoxide (NOx) sowie Ruß und Partikel zu senken.
  • Bekannte Funktionen eines Steuergeräts erhalten Informationen über einen Betriebszustand des Motors (zum Beispiel Drehzahl, Drehmoment, gewünschtes Drehmoment, Temperatur, DPF (Diesel-Partikelfilter)beladung und bestimmen Führungsgrößen, welche den Verbrauch und die Emissionen im Betrieb beeinflussen.
  • Zur Bestimmung dieser Führungsgrößen dienen oft ebenfalls im Steuergerät hinterlegte Motorkennfelder, in denen bspw. eine Soll-Abgasrückführungsrate oder ein Soll-Ladedruck in Abhängigkeit zum oben genannten Betriebszustand hinterlegt sind.
  • Geeignete Führungsgrößen sind zum Beispiel Abgasrückführungsrate, Abgasrückführungsaufteilung, Füllung, Einspritzzeitpunkt, Zündzeitpunkt. Von diesen Führungsgrößen werden dann Stellgrößen abgeleitet (zum Beispiel Drosselklappenstellung, Stellung einer VTG (Variable Turbinengeometrie)).
  • Der Begriff „Verbrennungsmotor“ umfasst in diesem Zusammenhang das vollständige Verbrennungsmotorsystem mit all seinen Aggregaten, Hilfsaggregaten und Stellelementen.
  • Mit dieser Strategie kann sichergestellt werden, dass in festgelegten Geschwindigkeitsprofilen durch eine optimierte Zuordnung bestimmter Führungsgrößen die Emissionsobergrenzen nicht überschritten werden. Ein Beispiel für solche Geschwindigkeitsprofile sind normierte Fahrzyklen, zum Beispiel der NEFZ (neuer Europäischer Fahrzyklus), die zur Bestimmung der Abgas- und/oder Verbrauchswerte gefahren werden. Für solche Zyklen sind beispielsweise globale Optimierungsansätze bekannt, wie sie in Heiko Sequenz: Emission Modelling and Model-Based Optimisation of the Engine Control, D17 Darmstädter Dissertationen 2012 angegeben sind.
  • Im realen Fahrbetrieb (und ggf. bei sogenannten Real-Driving-Emissions-Testverfahren) treten nun beliebige, unterschiedliche Geschwindigkeitsprofile und Betriebszustände auf, die vor und während der Fahrt nicht bekannt sind. Da die einzelnen Betriebszustände auch unabhängig von der Motorsteuerung schon unterschiedliche Emissionswerte aufweisen, können die Verbrauchs- und Emissionswerte (l/100km bzw. mg/km) bei diesen beliebigen, unterschiedlichen Fahrprofilen teilweise erheblich nach unten oder oben abweichen. Eine globale Optimierung von bspw. Kraftstoffverbrauch oder CO2-Emissionen bei Nichtüberschreiten von Emissionsgrenzen ist durch die bekannten Steuerstrategien somit nicht mehr gegeben.
  • Insbesondere bei konkurrierenden Emissionsgrößen, wie sie beispielsweise in einem Dieselmotor bei den Ruß(partikel)emissionen und den Stickoxidemissionen auftreten, können Situationen auftreten, bei denen beispielsweise in einem Geschwindigkeitsprofil die zulässigen Stickoxidemissionen überschritten werden und die zulässigen Rußemissionen deutlich unterschritten werden.
  • Es besteht also die Aufgabe, ein Steuergerät für einen Verbrennungsmotor mit einer Funktion bereitzustellen, das die oben geschilderten Probleme wenigstens teilweise löst und geeignet ist, bei Real-Driving-Emissions-Testverfahren die Führungsgrößen wie beispielsweise Abgasrückführungsrate (AGR-Rate), AGR-Aufteilung (Hochdruck/Niederdruck), Füllung, Raildruck, aber auch die Nutzung von Abgasnachbehandlungssystemen wie beispielsweise Dieselpartikelfilter und SCR (selektive katalytische Reduktion) im Hinblick auf den Kraftstoff- und AdBlue-Verbrauch sowie die Emissionsgrößen zu optimieren.
  • Diese Aufgabe wird durch das erfindungsgemäße Steuergerät nach Anspruch 1, einen Verbrennungsmotor nach Anspruch 8 und ein Fahrzeug nach Anspruch 9 gelöst.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen und der folgenden Beschreibung bevorzugter Ausführungsbeispiele der vorliegenden Erfindung.
  • Ein erfindungsgemäßes Steuergerät eines Verbrennungsmotors bestimmt unter Berücksichtigung einer Betriebszustandsinformation, Emissionsobergrenzen und einer kumulierten Ist-Emissionsgröße eine Führungsgröße (zum Beispiel AGR-Rate, AGR-Aufteilung, Füllung), die an den Verbrennungsmotor abgegeben wird.
  • Die Betriebszustandsinformationen umfassen zum Beispiel die Drehzahl, das aktuelle Drehmoment, das gewünschte Drehmoment, die Temperatur, die DPF-Beladung und andere Größen.
  • Die kumulierte Ist-Emissionsgröße umfasst die Summe aller in einem bestimmten Betriebszeitraum vom Verbrennungsmotor ausgestoßenen Emissionen.
  • Über diese Führungsgröße(n) wird wenigstens ein Betriebszustand des Verbrennungsmotors so eingestellt, dass mehrere Ist-Emissionsgrößen so beeinflusst werden, dass die kumulierten Ist-Emissionsgrößen in einem bestimmten Betriebszeitraum mit einer Zusammenstellung aus beliebigen, in zufälliger Reihenfolge eingestellten, unterschiedlichen Betriebszuständen des Verbrennungsmotors Emissionsobergrenzen für diesen Betriebszeitraum nicht überschreiten (mg/km) und eine Zielfunktion so weit wie möglich reduziert wird. Hier wird eine zu minimierende bzw. zu optimierende Größe als Zielfunktion bezeichnet (z.B. Kraftstoffverbrauch bzw. die davon abhängigen CO2-Emissionen, Regenerationsintervalle diverser Abgasnachbehandlungssysteme wie Rußpartikelfilter, AdBlue-Verbrauch, NOx Emissionen etc. oder eine Kombination solcher Größen).
  • Der Begriff „beliebige“ Betriebszustände soll alle technisch sinnvollen Betriebszustände umfassen, die im sachgerechten Normalbetrieb eines Verbrennungsmotors auftreten können.
  • So ein Steuerungskonzept hat den Vorteil, dass beispielsweise eine unkritische Ist-Emissionsgröße durch eine Veränderung der Führungsgröße so weit erhöht wird, dass eine kritische Ist-Emissionsgröße so weit verringert wird, dass sichergestellt wird, dass das Emissionsgrenzniveau (Emissionsgrenzwert) einer Emissionsgröße für die kritische Emissionsgröße nicht erreicht oder in einem Zeitraum nicht überschritten wird.
  • In einer Ausführung werden dabei eine oder mehrere Führungsgröße(n) durch eine Indifferenzkurve aus pareto-optimalen Alternativen – von bspw. Einspritzmenge, Ist-Emissionen und/oder AdBlue-Dosierung – ausgewählt. Dies geschieht nach einer Heuristik, die die Abstände der kumulierten Ist-Emissionen zu ihrem Grenzniveau berücksichtigt. Die Führungsgröße wird also bei diesem Verfahren dynamisch und situationsbedingt bestimmt bzw. adaptiert.
  • Dabei gibt es Ausführungen, bei denen die Betriebszustandsinformation wenigstens eine Drehzahl (n) und ein Soll-Drehmoment (M) umfasst.
  • Bei einer Ausführung umfassen die Ist-Emissionsgrößen wenigstens zwei der folgenden Größen. Zu den Größen gehören NOx-Ausstoß, HC-Ausstoß, CO-Ausstoß, CO2-Ausstoß, kombinierter HC- und NOx-Ausstoß, Rußpartikelanzahl, Rußpartikelmasse, Zustand eines Dieselpartikelfilters, Zustand eines NOx-Speicherkatalysators.
  • In einer anderen Ausführung umfasst die Führungsgröße wenigstens eine der folgenden Größen, die sich auf das Emissionsverhalten auswirken, nämlich AGR-Rate, AGR-Aufteilung, Füllung, Zündzeitpunkt. Die daraus abgeleiteten Stellgrößen umfassen dabei eine der folgenden Größen, über die bei modernen Motoren die gewünschte Führungsgröße bewirkt werden kann, nämlich Drosselklappenstellung; Einstellung der variablen Turbinengeometrie, Einspritzzeitpunkt, Nockenwellenverstellung.
  • In einer anderen Ausführung werden zwei Ist-Emissionsgrößen betrachtet, und zwar insbesondere der Stickoxidausstoß und der Rußausstoß, die bei Dieselmotoren konkurrierend zusammenhängen.
  • Mit Hilfe eines Verbrennungsmotors mit einem erfindungsgemäßen Steuergerät, lassen sich verbesserte Verbrauchswerte und Emissionswerte realisieren. So ein Verbrennungsmotor ist besonders für Fahrzeuge geeignet.
  • Ausführungsbeispiele der Erfindung werden nun beispielhaft und unter Bezugnahme auf die beigefügte Zeichnung beschrieben. Darin zeigt:
  • 1 schematisch ein Motorsystem mit einem erfindungsgemäßen Steuergerät;
  • 2 eine schematische Darstellung von Input- und Output-Größen, sowie der Informationsverarbeitung eines erfindungsgemäßen Steuergeräts;
  • 3 ein Diagramm, in dem Ruß- und NOx-Emissionen in Abhängigkeit der AGR-Rate dargestellt sind;
  • 4 pareto-optimale Arbeitspunkte, für die eine bestimmte Rußemission und eine bestimmte NOx-Emission gilt;
  • 5 Auswahl einer Führungsgröße durch eine Indifferenzkurve basierend auf dem Zusammenhang von Rußemissionen und NOx-Emissionen bei einer bestimmten (erhöhten) kumulierten NOx-Emission;
  • 6 die in 5 dargestellte Auswahl für eine niedrigere kumulierte NOx-Emission;
  • 7 die in 5 dargestellte Auswahl für eine überhöhte kumulierte NOx-Emission;
  • 8 die in 5 dargestellte Auswahl basierend auf dem Zusammenhang von CO2- und NOx-Emissionen;
  • 9 die in 5 dargestellte Auswahl durch eine nichtlineare Indifferenzkurve;
  • In 1 ist ein Motorschema dargestellt, welches über ein erfindungsgemäßes Steuergerät 1 geregelt bzw. gesteuert wird. Dargestellt ist ein als Hubkolbenmotor 2 (Diesel- oder Otto-Motor), ausgebildeter Verbrennungsmotor, der über Ventile 3 und über einen Ladeluftstrang 4 befüllt wird und über einen Abgasstrang 5 entleert wird. Die Zuluft gelangt durch einen Luftfilter 6 und einen Abgasturbolader 7 mit verstellbarer Turbinengeometrie durch einen Zwischenkühler 8 über ein Einlassventil 3 in den Zylinder, wo gegebenenfalls über ein Einspritzsystem Kraftstoff zugeführt wird. Nach der Verdichtung und Verbrennung des Luft-Kraftstoffgemischs wird das entstandene Abgas durch ein Auslassventil 3 über den Abgasstrang abgeführt.
  • Das verdichtete Abgas passiert dabei den Abgasturbolader 7, treibt diesen an und verdichtet so die Ladeluft. Anschließend passiert es einen Stickstoffspeicherkatalysator 10 sowie einen Dieselpartikelfilter 11 und gelangt schließlich durch eine Abgasklappe 12 in den Auspuff 13.
  • Die Ventile 3 werden über eine verstellbare Nockenwelle 14 angetrieben. Die Verstellung erfolgt über eine Nockenwellenverstelleinrichtung 15, die vom Steuergerät 1 ansteuerbar ist.
  • Ein Teil des Abgases kann über ein Hochdruck-Abgasrückführventil 16 in den Ladeluftstrang 4 eingeleitet werden. Ein abgasbehandelter Teilstrom kann im Niederdruckbereich nach dem Abgasturbolader 7 über eine entsprechende Abgaskühlung 17 und ein Abgasrückführungs-Niederdruckventil 18 in den Ladeluftstrang 4 geführt werden. Die Turbinengeometrie des Abgasturboladers 7 ist über eine Stelleinrichtung 19 einstellbar. Die Ladeluftzufuhr („Gas“) wird über die Hauptdrosselklappe 20 geregelt.
  • Über das Steuergerät 1 sind u.A. das Abgasrückführungs-Niederdruckventil 18, die Stelleinrichtung 19, die Hauptdrosselklappe 20, das Abgasrückführungs-Hochdruckventil 16, die Nockenwellenverstelleinrichtung 15 sowie die Abgasklappe 12 ansteuerbar (durchgezogene Linien).
  • Weiterhin wird das Steuergerät 1 über Sensoren und Sollwertgeber beispielsweise mit Temperaturinformationen (Zwischenkühler 8, Abgaskühlung 17) und mit Ist-Emissionswerten (z.B. aus einem Sensor oder physikalischen/empirischen Modell) versorgt.
  • Dazu können noch weitere Betriebszustandsinformationen kommen wie: Fahrpedalstellung, Drosselklappenstellung, Luftmasse, Batteriespannung, Motortemperatur, Kurbelwellendrehzahl und oberer Totpunkt, Getriebestufe, Fahrzeuggeschwindigkeit.
  • Es besteht also ein komplexes Steuer- und Regelsystem, welches den Motorbetrieb in unterschiedlichsten Betriebszuständen hinsichtlich unterschiedlicher Zielgrößen einstellen, regeln und möglichst optimieren soll.
  • Die nachfolgenden Ausführungsbeispiele beziehen sich dabei auf die Steuerung und Regelung von Emissionswerten in Abhängigkeit von vorgegebenen Emissionsobergrenzen und kumulierten Ist-Werten.
  • Ein solches Grundsystem ist in 2 dargestellt. Dabei bestimmt das Steuergerät 1 eine oder mehrere zur Beeinflussung der Emissionen erforderliche und wirksame Führungsgrößen x(t).
  • Daraus werden Stellgrößen abgeleitet, die im Verbrennungsmotor 2 bzw. dessen Komponenten (zum Beispiel Stellung der Hauptdrosselklappe 20, Nockenwelleneinstellung, Einstellung der Turbinengeometrie des Abgasturboladers 7, Einstellung der Abgasklappe 12, etc.) die Emissionen (zum Beispiel NOx, HC, CO, Ruß) des Verbrennungsmotors beeinflussen. Diese werden als Massenströme (Emissionsraten) EmDS erfasst (zum Beispiel Masse pro Zeit [mg/s]). Aus diesen Emissionen werden kumulierte Ist-Werte EmK der Emissionen abgeleitet (Integration der Emissionsraten über die Zeit).
  • Aus diesen kumulierten Ist-Werten EmK werden im Steuergerät 1 zusammen mit der verstrichenen Betriebszeit t bzw. der zurückgelegten Strecke s, bekannten bzw. vorgegebenen Emissionsobergrenzen EmG und Informationen über den Fahrerwunsch FW (z.B. Beschleunigung: aSoll; Drehmoment: MSoll) und sonstige Betriebsbedingungen SB (z.B. Geschwindigkeit: v; Drehzahl: n) des Verbrennungsmotors 2 die Führungsgröße(n) x(t) bestimmt.
  • 3 zeigt beispielhaft den Zusammenhang zwischen NOx-Emissionen und Rußemissionen in Abhängigkeit von der Abgasrückführrate (AGR), die hier eine Führungsgröße x(t) bildet. Das Diagramm zeigt, dass durch Erhöhung der AGR die NOx-Emissionen zwar gesenkt werden können, dabei aber die Rußemissionen ansteigen.
  • 4 zeigt ein Diagramm mit Führungsgrößenkombinationen von bestimmten Rußemissionen, die über bestimmte NOx-Emissionen aufgetragen sind. Besteht nun z.B. die Aufgabe, in einem (beliebigen) Betriebszustand die Rußemissionen zu minimieren/zu senken, dabei aber einen (kumulierten) NOx-Grenzwert einzuhalten, muss die Emissionshistorie (kumulierte Ist-Werte EmG) für zurückliegende (ggf. beliebige, in zufälliger Reihenfolge eingestellte, unterschiedliche Betriebszustände) berücksichtigt werden.
  • Pareto-optimale Zielgrößenkombinationen, bei denen der Ruß-Ausstoß nur weiter gesenkt werden kann, wenn die NOx-Emission erhöht wird, sind durch die Punkte x gekennzeichnet Alle pareto-optimalen Zielgrößenkombinationen bilden die sogenannte Paretofront, welche die Punkte x miteinander verbindet. Bei einem Minimierungsproblem sind Punkte links unterhalb der Pareto-Front (schraffierter Bereich) nicht realisierbar und alle rechts oberhalb vorgesehenen Zielgrößenkombinationen nicht pareto-optimal, da es jeweils Kombinationen (Punkte x) gibt, die sowohl hinsichtlich Ruß-Emission als auch der NOx-Emission günstiger auf der Paretofront realisiert werden können.
  • Die Auswahl aus pareto-optimalen Zielgrößenkombinationen von zwei Zielgrößen (NOx-Emissionen und Rußemissionen) zeigt die Darstellung in 5. In der rechten Säule ist als Emissionsobergrenze EmG ein NOx-Grenzwert NOx-G (gestrichelte Linie) angegeben und die darunter dargestellte Säule zeigt im schraffierten Bereich als kumulierten Ist-Wert EmK die bisherigen kumulierten NOx-Emissionen NOx-K1. Da die kumulierten NOx-Emissionen NOx-K1 bereits relativ nah am NOx-Grenzwert NOx-G sind, ist hier ein relativ hohes Austauschverhältnis zwischen den Zielgrößen Rußemissionen und NOx-Emissionen gewählt (erhöhte Rußemissionen, zugunsten von geringen NOx), um den NOx-Grenzwert NOx-G nicht zu überschreiten. Diese hier gewünschte Austauschrate wird durch die Indifferenzkurve I angegeben, die hier relativ steil abfallend dargestellt ist, und dann an die nächstliegende Zielgrößenkombination verschoben wird, in dem für diesen Betriebspunkt eine bestimmte Rußemission und eine bestimmte NOx-Emission realisierbar ist. Dieser Zielgrößenkombination wird dann mit Hilfe der im Diagramm aus 3 bekannten Informationen eine AGR als geeignete pareto-optimierte Führungsgröße x(t) zugeordnet.
  • 6 zeigt ein Beispiel, bei dem die kumulierten NOx-Emissionen (NOx-K2) weiter unter dem NOx-Grenzwert NOx-G liegen. Hier ist das Austauschverhältnis der Indifferenzkurve I kleiner (die Gerade fällt flacher ab). Hier kann also eine höhere NOx-Emission in Kauf genommen werden, ohne dass Gefahr bestünde, dass der NOx-Grenzwert NOx-G überschritten wird. Damit kann die Rußemission geringer gehalten werden. Die flacher verlaufende Gerade wird an die nächste Zielgrößenkombination verschoben, an dem eine bestimmte NOx-Emission und eine entsprechende Rußemission mit einer zugehörigen Führungsgröße x(t) (hier die entsprechende AGR aus 3) realisierbar ist.
  • 7 zeigt ein Beispiel, bei dem die kumulierten NOx-Emissionen (NOx-K3) den NOx-Grenzwert NOx-G überschritten haben. Hier ist das Austauschverhältnis der Geraden I (senkrechte Indifferenzkurve) quasi unendlich. Ungeachtet der Höhe der Rußemissionen wird die Führungsgröße x(t) für minimale NOx-Emission ausgewählt.
  • 8 zeigt analog zu 5 ein Beispiel, bei dem in Abhängigkeit der kumulierten NOx-Emissionen CO2 minimiert werden soll.
  • 9 zeigt analog zu 5 ein Beispiel, bei dem die Indifferenzkurve nicht linear verläuft.
  • Mit dem dargestellten Ansatz lassen sich im Betrieb und in Abhängigkeit von sich ändernden Randbedingungen die Emissionswerte (Zielfunktionen) verbessern. Neben den hier dargestellten Problemen, bei denen Emissionsgrößen paarweise berücksichtigt wurden, kann das Verfahren auch auf mehrdimensionale Probleme ausgedehnt werden. So ist es zum Beispiel möglich, pareto-optimierte Führungsgrößen x(t) für Mehrfach-Kombinationen (z.B. für CO2-Ausstoß, Rußemission und NOx-Emission) zu bestimmen. Es können auch in Ergänzung zur Führungsgröße AGR noch andere Führungsgrößen x(t) pareto-optimiert zur Regelung bestimmt werden (z.B. VTG-Stellung oder Raildruck).
  • Bezugszeichenliste
  • 1
    Steuergerät
    2
    Hubkolbenmotor
    2a
    Getriebe
    3
    Ventile
    4
    Ladeluftstrang
    5
    Abgasstrang
    6
    Luftfilter
    7
    Abgasturbolader
    8
    Zwischenkühler
    9
    Zylinder
    10
    NOx-Speicherkatalysator
    11
    Dieselpartikelfilter
    12
    Abgasklappe
    13
    Auspuff
    14
    Nockenwelle
    15
    Nockenwellen-Verstelleinrichtung
    16
    AGR-Hochdruckventil
    17
    Abgaskühlung
    18
    AGR-Niederdruckventil
    19
    Stelleinrichtung
    20
    Hauptdrossel
    x(t)
    Führungsgröße
    NOx-G
    Grenzwert
    NOx-K1
    kumulierter Ist-Wert
    FW
    Fahrerwunsch
    SB
    Sonstige Betriebsbedingungen
    EMG
    Emissionsobergrenze
    EMK
    kumulierte Emissionswerte
    EMDS
    Emissionsdurchsätze
    I
    Indifferenzkurve
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Nicht-Patentliteratur
    • Heiko Sequenz: Emission Modelling and Model-Based Optimisation of the Engine Control, D17 Darmstädter Dissertationen 2012 [0007]

Claims (9)

  1. Steuergerät (1) für einen Verbrennungsmotor (2), mit einer Funktion, die unter Berücksichtigung einer Betriebszustandsinformation (FW, SB) – einer Obergrenze und – einer kumulierten Ist-Größe eine Führungsgröße (x(t)) bestimmt, die einen Betriebszustand des Verbrennungsmotors (2) so beeinflusst, so dass mehrere Ist-Größen so eingestellt werden, dass kumulierte Ist-Größen in einem Betriebszeitraum mit einer Zusammenstellung aus beliebigen, in zufälliger Reihenfolge eingestellten, unterschiedlichen Betriebszuständen des Verbrennungsmotors (2) Obergrenzen für diesen Betriebszeitraum nicht überschreiten, wobei eine Zielfunktion minimiert wird, indem die Führungsgröße (x(t)) mittels einer Indifferenzkurve (I) aus pareto-optimalen Alternativen ausgewählt wird.
  2. Steuergerät nach Anspruch 1, wobei die Zielfunktion eine Ist Emissionsgröße (EmDS), einen Kraftstoffverbrauch und/oder eine CO2-Emission umfasst.
  3. Steuergerät (1) nach Anspruch 1 oder 2, wobei die Betriebszustandsinformation (SB, FW) eine Drehzahl (n(t)) und ein Solldrehmoment (MSoll(t)) umfasst.
  4. Steuergerät (1) nach Anspruch 1, 2 oder 3, wobei der Betriebszeitraum und die unterschiedlichen Betriebszustände einer Fahrt bekannt sind.
  5. Steuergerät (1) nach Anspruch 1, 2, 3 oder 4, wobei die Ist-Emissionsgrößen (EmDS) wenigstens zwei der folgenden Größen umfassen: NOx-Ausstoß, HC-Ausstoß, CO-Ausstoß, CO2-Ausstoß, kombinierter HC- und NOx-Ausstoß, Rußpartikelanzahl, Rußpartikelmasse, AdBlue-Verbrauch.
  6. Steuergerät (1) nach Anspruch 1, 2, 3, 4 oder 5 wobei die Führungsgröße (x(t)) wenigstens eine der folgenden Größen umfasst: AGR-Rate, AGR-Aufteilung, Füllung, Ladedruck, Einspritzzeitpunkt, Zündzeitpunkt, Raildruck.
  7. Steuergerät (1) nach Anspruch 1, 2, 3, 4, 5 oder 6, wobei wenigstens zwei Ist-Emissionsgrößen (EmDS), insbesondere NOx-Ausstoß und Rußausstoß, betrachtet werden.
  8. Verbrennungsmotor (2) mit einem Steuergerät (1) nach Anspruch 7.
  9. Fahrzeug mit einem Verbrennungsmotor (2) nach Anspruch 8.
DE102015222684.0A 2014-11-17 2015-11-17 Steuergerät für einen Verbrennungsmotor Active DE102015222684B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014116748 2014-11-17
DE102014116748.1 2014-11-17

Publications (2)

Publication Number Publication Date
DE102015222684A1 true DE102015222684A1 (de) 2016-05-19
DE102015222684B4 DE102015222684B4 (de) 2019-11-07

Family

ID=54548175

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015222684.0A Active DE102015222684B4 (de) 2014-11-17 2015-11-17 Steuergerät für einen Verbrennungsmotor

Country Status (6)

Country Link
US (1) US10690075B2 (de)
EP (1) EP3221573B1 (de)
KR (1) KR101836787B1 (de)
CN (1) CN107002576B (de)
DE (1) DE102015222684B4 (de)
WO (1) WO2016079132A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017202716A1 (de) * 2016-05-23 2017-11-30 Technische Universität Dresden Verfahren zum betreiben einer in einem fahrzeug installierten verbrennungskraftmaschine
DE102016208236A1 (de) * 2016-05-12 2017-11-30 Volkswagen Ag Steuerungsverfahren für einen Verbrennungsmotor, Steuergerät und Verbrennungsmotor
DE102017215251A1 (de) 2017-08-31 2019-02-28 Volkswagen Aktiengesellschaft Verfahren und Steuergerät zur Emissionsregelung einer Verbrennungskraftmaschine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE542561C2 (en) 2018-06-11 2020-06-09 Scania Cv Ab Method and system determining a reference value with regard to exhaust emissions
GB2578155B (en) * 2018-10-19 2021-01-13 Delphi Automotive Systems Lux Method of controlling vehicle emissions
CN112282949B (zh) * 2020-09-23 2021-07-16 北汽福田汽车股份有限公司 电控汽油机起燃工况控制参数优化方法、装置以及车辆
IT202100020744A1 (it) * 2021-08-02 2023-02-02 Fpt Motorenforschung Ag Metodo di modellamento di un gruppo propulsore e di controllo del gruppo propulsore modellato
JP7364000B1 (ja) 2022-09-12 2023-10-18 いすゞ自動車株式会社 NOx発生量制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417852B2 (en) * 2000-03-09 2002-07-09 Vladimir Sevastyanov Method of visualization and graphical analysis for multidimensional functions
DE10104150A1 (de) * 2001-01-30 2002-09-05 Alstom Switzerland Ltd Brenneranlage und Verfahren zu ihrem Betrieb
DE10104151A1 (de) * 2001-01-30 2002-09-05 Alstom Switzerland Ltd Verfahren zur Herstellung einer Brenneranlage
US7398257B2 (en) * 2003-12-24 2008-07-08 Yamaha Hatsudoki Kabushiki Kaisha Multiobjective optimization apparatus, multiobjective optimization method and multiobjective optimization program
DE102006007122A1 (de) * 2006-02-16 2007-08-23 Daimlerchrysler Ag Verfahren zum Betreiben eines Verbrennungsmotors und einer daran angeschlossenen Abgasnachbehandlungseinrichtung
US7921371B1 (en) * 2006-03-22 2011-04-05 Versata Development Group, Inc. System and method of interactive, multi-objective visualization
JP2008234439A (ja) * 2007-03-22 2008-10-02 Toyota Motor Corp 自動適合装置及び方法
JP4928484B2 (ja) * 2008-02-29 2012-05-09 株式会社小野測器 エンジンの設計変数を計算する方法、コンピュータ、及びプログラム
US20110264353A1 (en) * 2010-04-22 2011-10-27 Atkinson Christopher M Model-based optimized engine control
JP5565295B2 (ja) 2010-12-21 2014-08-06 ダイヤモンド電機株式会社 内燃機関の排気ガス再循環制御装置
AT510328A2 (de) * 2011-12-12 2012-03-15 Avl List Gmbh Verfahren zur auswertung der lösung eines multikriteriellen optimierungsproblems
US10082778B2 (en) * 2014-06-20 2018-09-25 Veritone Alpha, Inc. Managing coordinated control by multiple decision modules

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Heiko Sequenz: Emission Modelling and Model-Based Optimisation of the Engine Control, D17 Darmstädter Dissertationen 2012

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016208236A1 (de) * 2016-05-12 2017-11-30 Volkswagen Ag Steuerungsverfahren für einen Verbrennungsmotor, Steuergerät und Verbrennungsmotor
WO2017202716A1 (de) * 2016-05-23 2017-11-30 Technische Universität Dresden Verfahren zum betreiben einer in einem fahrzeug installierten verbrennungskraftmaschine
CN110073093A (zh) * 2016-05-23 2019-07-30 德累斯顿工业大学 用于操作安装在车辆内的内燃机的方法
US11078822B2 (en) 2016-05-23 2021-08-03 Technische Universitat Dresden Method for operating an internal combustion engine installed in a vehicle
CN110073093B (zh) * 2016-05-23 2022-05-13 德累斯顿工业大学 用于操作安装在车辆内的内燃机的方法
DE102017215251A1 (de) 2017-08-31 2019-02-28 Volkswagen Aktiengesellschaft Verfahren und Steuergerät zur Emissionsregelung einer Verbrennungskraftmaschine
DE102017215251B4 (de) 2017-08-31 2019-04-18 Volkswagen Aktiengesellschaft Verfahren und Steuergerät zur Emissionsregelung einer Verbrennungskraftmaschine

Also Published As

Publication number Publication date
CN107002576B (zh) 2020-10-23
EP3221573A1 (de) 2017-09-27
EP3221573B1 (de) 2020-04-22
US20170248091A1 (en) 2017-08-31
CN107002576A (zh) 2017-08-01
KR101836787B1 (ko) 2018-04-19
US10690075B2 (en) 2020-06-23
WO2016079132A1 (de) 2016-05-26
DE102015222684B4 (de) 2019-11-07
KR20170067890A (ko) 2017-06-16

Similar Documents

Publication Publication Date Title
DE102015222684B4 (de) Steuergerät für einen Verbrennungsmotor
EP3455114B1 (de) Steuerungsverfahren für einen hybridantrieb, steuergerät und hybridantrieb
DE102007045817B4 (de) Verfahren und Vorrichtung zum Steuern des Motorbetriebs während der Regeneration eines Abgasnachbehandlungssystems
WO2014198360A1 (de) Verfahren zum betrieb einer abgasnachbehandlung und einrichtung zum steuern einer abgasnachbehandlung sowie abgasnachbehandlung, motorsteuergerät und brennkraftmaschine mit einer abgasnachbehandlung
DE102007012604A1 (de) Verfahren zum Regeln einer Einspritzung eines Injektors einer direkteinspritzenden Verbrennungskraftmaschine und direkteinspritzende Verbrennungskraftmaschine
EP3253959B1 (de) Steuerungsverfahren und steuerung für einen verbrennungsmotor
DE102017215251B4 (de) Verfahren und Steuergerät zur Emissionsregelung einer Verbrennungskraftmaschine
WO2017108652A1 (de) Verfahren und vorrichtung zum betreiben eines kraftfahrzeugs mit einem hybridantrieb
DE102012222107A1 (de) Verfahren zum Steuern einer Abgasrückführung
DE102016212945A1 (de) Verfahren und Vorrichtung zum Steuern eines Verbrennungsmotors mit einem Abgasturbolader
DE102007000479A1 (de) Ladedrucksteuerung
WO2013068140A1 (de) Verfahren zur steuerung der abgastemperatur einer direkteinspritzenden brennkraftmaschine
WO2019081130A1 (de) Steuereinrichtung zum ansteuern eines verbrennungsmotors und verfahren zum erwärmen einer abgasreinigungseinrichtung
DE102015016966B4 (de) Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
EP3244046B1 (de) Steuerungsverfahren für einen verbrennungsmotor, steuergerät und verbrennungsmotor
DE102014001672A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine sowie entsprechende Brennkraftmaschine
WO2018046212A1 (de) Verfahren und vorrichtung zur steuerung der nach einem gaswechselvorgang im zylinder einer brennkraftmaschine verbleibenden restgasmasse und/oder der während eines gaswechselvorgangs in den abgaskrümmer der brennkraftmaschine gespülten spülluftmasse
DE102018220485B4 (de) Verfahren zur Regelung eines Verbrennungsmotors, mit dem ein Kraftstoffverbrauch und eine Schadstoffemission an Einflussgrößen angepasst werden
DE102009028617A1 (de) Funktion zur Berechnung des bankspezifischen Abgasmassenstroms bei mehrflutig ausgeführten Abgasanlagen aufgeladener Brennkraftmaschinen
DE102017203445B3 (de) Verfahren und Vorrichtung zur Steuerung eines von einem Abgasturbolader aufgeladenen Verbrennungsmotors
DE102009035579A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors
DE102014220400A1 (de) Verfahren zur Ermittlung einer Drehmomentreserve
DE102013209815B3 (de) Verfahren und System zur Steuerung einer Brennkraftmaschine
DE102009018735A1 (de) Abgasrückführung
DE202014007675U1 (de) Verbrennungsmotor

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R018 Grant decision by examination section/examining division
R020 Patent grant now final