DE102015204073B4 - Linearer Stellantrieb - Google Patents

Linearer Stellantrieb Download PDF

Info

Publication number
DE102015204073B4
DE102015204073B4 DE102015204073.9A DE102015204073A DE102015204073B4 DE 102015204073 B4 DE102015204073 B4 DE 102015204073B4 DE 102015204073 A DE102015204073 A DE 102015204073A DE 102015204073 B4 DE102015204073 B4 DE 102015204073B4
Authority
DE
Germany
Prior art keywords
housing
components
current
subspace
spindle drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102015204073.9A
Other languages
English (en)
Other versions
DE102015204073A1 (de
Inventor
Patrick Daniel
Peter Heipt
Bettina Rudy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Priority to DE102015204073.9A priority Critical patent/DE102015204073B4/de
Priority to PCT/DE2016/200119 priority patent/WO2016141939A1/de
Priority to CN201680013632.9A priority patent/CN107429807B/zh
Priority to US15/552,110 priority patent/US10094463B2/en
Publication of DE102015204073A1 publication Critical patent/DE102015204073A1/de
Application granted granted Critical
Publication of DE102015204073B4 publication Critical patent/DE102015204073B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/027Gearboxes; Mounting gearing therein characterised by means for venting gearboxes, e.g. air breathers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/2015Means specially adapted for stopping actuators in the end position; Position sensing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H35/00Gearings or mechanisms with other special functional features
    • F16H35/18Turning devices for rotatable members, e.g. shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/031Gearboxes; Mounting gearing therein characterised by covers or lids for gearboxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0497Screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/12Arrangements for adjusting or for taking-up backlash not provided for elsewhere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2031Actuator casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2031Actuator casings
    • F16H2025/2034Extruded frame casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/2075Coaxial drive motors

Abstract

Linearer Stellantrieb, mit einem Gehäuse (2) sowie mit mehreren in dem Gehäuse (2) angeordneten Komponenten, nämlich – mindestens einer stromführenden Komponente (6, 19, 37, 38), – einer Gruppe mechanischer, nicht stromführender Komponenten, welche Komponenten eines Spindeltriebs (7) umfassen, – mindestens einer zur Lagerung von Komponenten des Spindeltriebs (7) im Gehäuse (2) ausgebildeten Lagerung (12), wobei die mindestens eine stromführende Komponente (6, 19, 37, 38) von der Gruppe mechanischer, nicht stromführender Komponenten durch mindestens eine Dichtung (9, 11) derart getrennt ist, dass innerhalb des Gehäuses (2) zwei voneinander getrennte, gegeneinander abgedichtete Räume (4, 5) gebildet sind, dadurch gekennzeichnet, dass das einteilig ausgeführte säulenförmige Gehäuse (2) mit seiner durchgehenden Gehäusewandung (3) die beiden Räume (4, 5) umschließt, wobei der die stromführenden Komponenten (6, 19, 37, 38) aufweisende Raum (4) in zwei Teilräume (17, 18) unterteilt ist, und wobei ein Elektromotor (6) in dem einen Teilraum (17) und eine Sensorikkomponente (19) in dem anderen Teilraum (18) angeordnet sind.

Description

  • Die Erfindung betrifft einen linearen Stellantrieb, insbesondere mit elektrischem Antrieb. Innerhalb des linearen Stellantriebs befinden sich sowohl stromführende Komponenten, wobei es sich um Antriebskomponenten oder messtechnische Komponenten handeln kann, als auch mechanische, nicht stromführende Komponenten, die Komponenten eines Spindeltriebs und Lagerkomponenten umfassen.
  • Ein Spindelantrieb mit einem integrierten Antriebsmotor ist beispielsweise aus der DE 20 2010 004 265 U1 bekannt. Ein solcher Spindelantrieb ist beispielsweise zum Verstellen von Fotovoltaikmodulen oder Parabolantennen verwendbar. Der Spindelantrieb weist ein Mantelrohr auf, welches eine Spindel umgibt. Mit einer Spindel des bekannten Spindelantriebs sind ein Schubrohr sowie eine Schutzhülle verbunden, wobei die Schutzhülle auf dem Mantelrohr axial verschiebbar ist. Damit soll ein guter Schutz auch unter extremen klimatischen Bedingungen gegeben sein.
  • Ein weiterer linearer Stellantrieb mit motorischem Antrieb ist beispielsweise aus der US 2011/0061481 A1 bekannt. Innerhalb dieses Stellantriebs befindet sich ein Axiallager, welches als Wälzlager ausgebildet ist.
  • Aus DE 10 2008 033 602 A1 ist ein linearer Stellantrieb mit mehrteiligem Gehäuse bekannt geworden, deren axial hintereinander angeordnete Gehäuseteile dicht miteinander verbunden sind. Vorzugsweise ist an jeder Verbindungsschnittstelle ein O-Ring angeordnet um Dichtheit zu gewährleisten. Der Montageaufwand ist durch die Vielzahl von Einzelteilen erhöht. Wenn die Verbindungsschnittstellen der Witterung ausgesetzt sind, ist ein erheblicher Aufwand erforderlich, eine ausreichende Dichtheit zu gewährleisten, um beispielsweise stromführende Komponenten vor eindringender Feuschtigkeit zu schützten.
  • Der Erfindung liegt die Aufgabe zugrunde, einen linearen Stellantrieb gegenüber dem genannten Stand der Technik insbesondere hinsichtlich eines günstigen Verhältnisses zwischen Fertigungsaufwand und Dauerhaltbarkeit, auch unter ungünstigen Umweltbedingungen, weiterzuentwickeln.
  • Diese Aufgabe wird erfindungsgemäß gelöst durch einen Stellantrieb mit den Merkmalen des Anspruchs 1.
  • Der Stellantrieb weist ein durchgehendes Gehäuse auf, welches durch mindestens eine Dichtung, insbesondere jeweils mindestens eine statische sowie eine dynamische Dichtung, in mehrere voneinander getrennte Räume aufgeteilt ist. Bei den Räumen handelt es sich um eine sogenannte Elektrokammer sowie um eine sogenannte Mechanikkammer.
  • Stromführende Komponenten des linearen Stellantriebs, worunter ein Elektroantrieb ebenso wie Komponenten der Datenverarbeitung und -leitung fallen können, sind ausschließlich im ersten Raum, das heißt der Elektrokammer des Stellantriebs, angeordnet. Als Winkelstellungen und/oder Drehbewegungen aufnehmender Sensor kann beispielsweise mindestens ein Hallsensor in der Elektrokammer angeordnet sein. Erfindungsgemäß ist der erste Raum in zwei Teilräume unterteilt, in dessen einem Teilraum ein Elektromotor und in dessen anderem Teilraum eine Sensorikkomponente angeordnet sind.
  • Im zweiten Raum, das heißt der Mechanikkammer, befindet sich ein Spindeltrieb samt zugehöriger Lagerung. Der Spindeltrieb kann beispielsweise als Kugelgewindetrieb, als einfaches Bewegungsgewinde, oder als Planeten-Wälz-Getriebe gestaltet sein. Zur Lagerung der Spindel des Spindeltriebs ist vorzugsweise ein Wälzlager, insbesondere ein in beide Axialrichtungen abstützendes Axialkugellager, Axialrollenlager oder Axialnadellager, vorgesehen, welches innerhalb der Mechanikkammer angeordnet ist. Der Elektromotor, welcher die Spindel antreibt, kann entweder eine eigene Lagerung aufweisen oder als Direktantrieb mit Rotor ohne eigene Lagerung ausgebildet sein. Im letztgenannten Fall ist der Rotor des Elektromotors starr mit der Spindel des Spindeltriebs verbunden, während im ersten Fall optional eine Ausgleichskupplung zwischen den Elektromotor und die Spindel geschaltet ist. In beiden Fällen ist der Rotor des Elektromotors innerhalb der von der Mechanikkammer in abgedichteter Weise abgetrennten Elektrokammer angeordnet. Im Unterschied zur beschriebenen, als Axial-Wälzlager ausgebildeten Lagerung der ist zur Lagerung eines mittels der zugehörigen Spindelmutter verschiebbaren, aus dem Gehäuse ausfahrbaren Schubrohres vorzugsweise eine Gleitlagerung vorgesehen. Hierbei kann ein in das Gehäuse eingesetztes Gleitlagerelement unmittelbar an einen das Gehäuse stirnseitig abschließenden, gegenüber dem Schubrohr dynamisch abgedichteten Deckel anschließen.
  • Eine durchgehende, vorzugsweise durch ein Metallprofil gebildete Gehäusewandung umschließt erfindungsgemäß sowohl die Elektrokammer als auch die Mechanikkammer des Stellantriebs. Abgesehen von Abdeckungen an den Stirnseiten ist das Gehäuse des Stellantriebs einteilig mit durchgehender Gehäusewandung ausgeführt. Das Gehäuse weist insgesamt eine Säulenform auf. Die stirnseitigen Abdeckungen können aus Metall, beispielsweise aus Stahlblech oder einem urgeformten und/oder spanend bearbeiteten metallischen Werkstoff, oder aus Kunststoff gefertigt sein.
  • Das Gehäuse des Stellantriebs ist beispielsweise kippbar in einer Anschlusskonstruktion gelagert. Zu diesem Zweck können sich Lagerzapfen am Gehäuse befinden, die Komponenten einer Gleitlagerung bilden. Ebenso ist es – je nach Dimensionierung und Anwendungsfall – möglich, das Gehäuse des Stellantriebs starr in eine Anschlusskonstruktion einzubauen. In beiden Fällen kann sich am Ende der Schubstange des Spindeltriebs ein Anschlussgewinde, beispielsweise für ein Gelenkauge zur schwenkbaren Verbindung mit einem weiteren Konstruktionselement, befinden.
  • Der in der Elektrokammer befindliche Antriebsmotor des Stellantriebs kann mit einem Getriebe zu einem Getriebemotor zusammengefasst sein. Bei dem Getriebe handelt es sich beispielsweise um ein Planetengetriebe, was eine koaxiale Anordnung von Antriebsmotor und Spindeltrieb und damit insgesamt eine schlanke Gestaltung des Stellantriebs ermöglicht. Sowohl bei Ausgestaltungen mit direktem elektrischem Antrieb der Spindel als auch bei Ausgestaltungen mit zwischengeschaltetem Getriebe ist eine Wellendurchführung zwischen Elektrokammer und Mechanikkammer die einzige Stelle, an welcher die Elektrokammer nicht lediglich statisch, sondern dynamisch abzudichten ist.
  • Sämtliche Komponenten des Stellantriebs, die sich in der Elektrokammer befinden, sind in vorteilhafter Ausgestaltung wartungsfrei ausgelegt. Ein Schmieranschluss oder eine Mehrzahl an Schmieranschlüssen befindet sich dementsprechend höchstens am zweiten Raum des Stellantriebs. Aufgrund der Tatsache, dass mindestens eine Komponente des Spindeltriebs, insbesondere ein Schubrohr, aus der Mechanikkammer des Stellantriebs ausfahrbar ist, ist das luftgefüllte Volumen innerhalb der Mechanikkammer variabel. Eine Be- und Entlüftungsvorrichtung der Mechanikkammer kann beispielsweise ein Diaphragma oder ein Doppel-Membranventil umfassen. Die Be- und Entlüftungsvorrichtung ist in einen das Gehäuse stirnseitig abschließenden Deckel, insbesondere Kunststoffdeckel, integrierbar, wobei es von der aus der Mechanikkammer ausfahrbaren Komponente, das heißt Schubstange, des Stellantriebs radial beabstandet und damit asymmetrisch zum Spindeltrieb angeordnet ist.
  • Eine vergleichbare Entlüftungsvorrichtung ist an der Elektrokammer des Stellantriebs in bevorzugter Ausgestaltung nicht vorgesehen. Die dynamische Dichtung zwischen Elektrokammer und Mechanikkammer lässt geringe Druckdifferenzen zwischen den beiden Kammern von beispielsweise bis zu einigen Millibar zu. Um einer zu starken Erhitzung der Elektrokammer entgegen zu wirken, kann das Gehäuse des Stellantriebs als Stranggussprofil, beispielsweise aus einer Leichtmetalllegierung, gestaltet sein, dessen Profilrippen auch als Kühlrippen fungieren. Im Übrigen sind die Rippen des Stranggussprofils auch zur Anbindung mechanischer Bauteile an den Stellantrieb nutzbar. Innerhalb der Elektrokammer können sich diverse mechanische Anschlusskonturen, beispielsweise eine Zentrieraufnahme für einen Endschalter, sowie eine Aufnahme für eine Platine, befinden. Für Fixierungen mittels solcher Aufnahmen und Anschlusskonturen, insbesondere mit T-Nuten, sind beispielsweise Senkschrauben gemäß DIN 605 geeignet.
  • Eine bevorzugte Ausgestaltung sieht eine Zweiteilung der Elektrokammer in einen Hauptelektroraum, in welchem sich der Elektromotor befindet, sowie einen Nebenelektroraum, in welchem sich mindestens eine Sensorikkomponente, insbesondere ein Positionssensor, befindet, vor. Hierbei ist der Hauptelektroraum als erster Teilraum in linearer Verlängerung des Spindeltriebs angeordnet, während ein zweiter Teilraum, nämlich der Nebenelektroraum, parallel zur Mittelachse des Spindeltriebs, sich über den größten Teil der Länge des Gehäuses, beispielsweise mehr als 80% oder mehr als 90% der Länge des Gehäuses, erstreckend, angeordnet ist.
  • Die Querschnittskonturen beider Teilräume der Elektrokammer sind bevorzugt direkt aus dem Stranggussprofil gebildet, welches die Hauptkomponente des Gehäuses darstellt. Hierbei gibt es – im Querschnitt des Gehäuses, mit Blickrichtung längs der Spindelachse, betrachtet – vorzugsweise keine Überschneidungen zwischen den beiden Teilräumen des Elektroraums. Eine parallel zur Mittelachse des Spindeltriebs verlaufende Zwischenwandung des Gehäuses grenzt hierbei den zweiten Teilraum sowohl vom ersten Teilraum als auch von der Mechanikkammer ab.
  • Die in axialer Richtung des Spindeltriebs und damit des gesamten Stellantriebs gemessene Länge des Nebenelektroraums entspricht vorzugsweise der Gesamtlänge des Gehäuses. Dies hat den Vorteil, dass der Nebenelektroraum ausreichend Raum sowohl für die Aufnahme von den Elektromotor ansteuernden Elektronikkomponenten als auch von die Einstellung des Spindeltriebs detektierenden Positionssensoren, beispielsweise Endschaltern, bietet, wobei der Mechanikraum frei von jeglichen elektrischen Komponenten bleibt. Im Nebenelektroraum kann sich auch die komplette Sensorik eines linearen, inkrementellen oder absoluten Messsystems befinden, welches zur Detektion der Stellung und/oder Bewegung der Schubstange des Stellantriebs ausgebildet ist. Optional ist die Sensorik Teil einer Wegregelung des Stellantriebs.
  • Der Vorteil der Erfindung liegt insbesondere darin, dass eine durch ein Metallprofil gebildete, nahtlose Wandung des Gehäuses des Stellantriebs verschiedene Räume und Teilräume begrenzt, welche in einem Fall ausschließlich mechanische Komponenten und in einem anderen Fall elektrische Komponenten sowie Elektronikkomponenten aufnehmen. Im letztgenannten Fall befindet sich eine elektrische Komponente, nämlich ein Elektromotor, in einem ersten Teilraum, während sich zugehörige elektronische Komponenten einschließlich Sensoren in einem zweiten Teilraum befinden. Die Sensoren wirken hierbei mit Strukturen nicht bestromter Teile in einem von den beiden Teilräumen getrennten, insbesondere durch mehrere Dichtungen flüssigkeitsdicht abgetrennten, Raum zusammen.
  • Der Stellantrieb ist insbesondere zur Verwendung im Freien, beispielsweise als Komponente zur Verstellung eines Solarmoduls, geeignet. Durch die Aufteilung des Gehäuseinnenraums in Räume, welche in unterschiedlichem Maße und auf die jeweils eingebauten Komponenten abgestimmter Weise einen Ein- und Austritt von Medien zulassen, ist der Stellantrieb auch unter ungünstigen Witterungseinflüssen wie Niederschlägen aller Art oder Sandstürmen verschleißarm betreibbar. Entsprechendes gilt beim Einsatz des Stellantriebes in Meeresnähe. Auch für mobile Anwendungen ist der lineare Stellantrieb geeignet.
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Hierin zeigen:
  • 1 einen linearen Stellantrieb in einer Schnittdarstellung,
  • 2 bis 4 Details des Stellantriebs in Ansichten gemäß 1,
  • 5 und 6 jeweils einen Querschnitt des linearen Stellantriebs.
  • Die Figuren zeigen einen elektrisch betriebenen, insgesamt mit dem Bezugszeichen 1 gekennzeichneten linearen Stellantrieb, hinsichtlich dessen prinzipieller Funktion auf den eingangs zitierten Stand der Technik verwiesen wird.
  • Der Stellantrieb 1 weist ein Gehäuse 2 mit einer durchgehenden, durch ein Metallprofil gebildeten Gehäusewand 3 auf, welche sich annähernd über die gesamte Länge des Stellantriebs 1 erstreckt. Innerhalb des Gehäuses 2 befinden sich zwei voneinander getrennte Räume 4, 5, nämlich eine Elektrokammer 4, auch als erster Raum bezeichnet, und eine Mechanikkammer 5, auch als zweiter Raum bezeichnet. In der Elektrokammer 4 sind stromführende Komponenten, unter anderem ein Elektromotor 6, aufgenommen. Ein vom Elektromotor 6 angetriebener Spindeltrieb 7 befindet sich in der Mechanikkammer 5.
  • An der Schnittstelle zwischen der Elektrokammer 4 und der Mechanikkammer 5 ist eine Lagereinheit 8 im Gehäuse 2 angeordnet, welche durch eine statische Dichtung 9 gegenüber der Gehäusewand 3 abgedichtet ist. Die Lagereinheit 8 wird durchdrungen von einer Verbindungswelle 10, die den Elektromotor 6 mit dem Spindeltrieb 7 verbindet und durch eine dynamische Dichtung 11 gegenüber der Lagereinheit 8 abgedichtet ist. In der Lagereinheit 8 ist die Verbindungswelle 10 mittels eines Wälzlagers, nämlich eines zweireihigen Axialkugellagers 12, gelagert. Die dynamische Dichtung 11 ist dem zweireihigen Axialkugellager 12 direkt benachbart, wobei sie auf der der Elektrokammer 4 zugewandten Seite des zweireihigen Axialkugellagers 12 angeordnet ist, so dass sich das zweireihige Axialkugellager 12 innerhalb der Mechanikkammer 5 befindet. Zur Nachschmierung des zweireihigen Axialkugellagers 12 ist eine Schmiermittelzuführung 13 in Form eines Schmiernippels vorgesehen. Die Schmiermittelzuführung 13 befindet sich, in axialer Richtung des Spindeltriebs 7 betrachtet, zwischen den beiden Wälzkörperreihen des Axialkugellagers 12.
  • Eine Nachschmierung von Komponenten innerhalb der Elektrokammer 4 ist dagegen nicht vorgesehen. Dies gilt auch in Fällen, in denen der Elektromotor 6 die Verbindungswelle 10 und damit den Spindeltrieb 7 über ein Getriebe, beispielsweise ein Planetengetriebe, antreibt. Der Spindeltrieb 7 umfasst eine fest mit der Verbindungswelle 10 verbundene Spindel 14 sowie eine Spindelmutter 15. Mit der Spindelmutter 15 ist ein auch als Schubrohr bezeichnetes Hüllrohr 16 verbunden, welches eine aus dem Gehäuse 2 ausfahrbare Komponente des Spindeltriebs 7 darstellt.
  • Die Elektrokammer 4 ist unterteilt in zwei Teilräume 17, 18, nämlich einen Hauptelektroraum 17 und einen Nebenelektroraum 18. Der ohne Beschränkung der Allgemeinheit auch als oberer Elektroraum bezeichnete Hauptelektroraum 17 weist den gleichen Querschnitt wie die Mechanikkammer 5 auf und ist – in Axialrichtung des Spindeltriebs 7 betrachtet – der Mechanikkammer 5 vorgelagert. Im Unterschied hierzu ist der Nebenelektroraum 18, welcher auch als unterer Elektroraum bezeichnet wird, in Axialrichtung ausgedehnter als der Hauptelektroraum 17, so dass eine Überlappung zwischen der Mechanikkammer 5 und dem Nebenelektroraum 18 gegeben ist. Anders ausgedrückt: Es existiert mindestens eine zur Längsachse des Spindeltriebs 7 normale Ebene, welche sowohl die Mechanikkammer 5 als auch den Nebenelektroraum 18 schneidet. Insbesondere schneidet eine solche Ebene einen im Nebenelektroraum 18 angeordneten Endschalter 19, allgemein als Sensorikkomponente bezeichnet, welcher als kontaktloser, induktiver Sensor ausgebildet ist und mit der Spindelmutter 15 oder einem fest mit der Spindelmutter 15 verbundenen Teil zusammenwirkt.
  • Im dargestellten Ausführungsbeispiel erstreckt sich der Nebenelektroraum 18 über die gesamte Länge des Gehäuses 2. Dies ermöglicht insbesondere den Einbau mehrerer entsprechend dem Endschalter 19 aufgebauter Sensoren, welche die Position der Spindelmutter 15 detektieren. Zugehörige elektrische Leitungen sind ebenfalls im Nebenelektroraum 18 verlegt. An derjenigen Stirnseite des Stellantriebs 1, an welcher sich der Elektromotor 6 befindet, ist der Hauptelektroraum 17 mit dem Nebenelektroraum 18 durch einen Kabeldurchlass 21 verbunden. Der Kabeldurchlass 21 befindet sich im Ausführungsbeispiel in einer Zwischenwandung 22, die den Nebenelektroraum 18 sowohl von der Mechanikkammer 5 als auch vom Hauptelektroraum 17 trennt. Die Zwischenwandung 22 ist ebenso wie die Gehäusewand 3 unmittelbar aus dem Metallprofil gebildet, aus welchem das Gehäuse 2 gefertigt ist.
  • Abweichend hiervon könnte sich der Kabeldurchlass 21 auch in einem Deckel 23 befinden, welcher die Elektrokammer 4 an der in 2 sichtbaren, motorseitigen Stirnseite des Stellantriebs 1 abdeckt. Der aus Kunststoff gefertigte Deckel 23 ist gegenüber der metallischen Gehäusewand 3 durch eine Dichtung 24 abgedichtet. Zusätzlich bildet der Deckel 23, indem er mit der Gehäusewand 3 überlappt, eine Spaltdichtung, die die Dichtung 24 schützt, insbesondere einen Schutz der Dichtung 24 vor grobem Schmutz und Alterung durch UV-Strahlung darstellt. Weiter ist am Deckel 23 eine mit 25 bezeichnete Kabelverschraubung erkennbar.
  • Diejenige Stirnseite des Stellantriebs 1, an welcher das Hüllrohr 16, auch als Schubrohr bezeichnet, aus dem Gehäuse 2 ragt, ist in 4 dargestellt. An dieser Stirnseite ist das Gehäuse 2 durch einen Deckel, in diesem Fall mit 26 bezeichnet, verschlossen, wobei das Hüllrohr 16 gegenüber dem Deckel 26 durch zwei hintereinander geschaltete Dichtungen 27 abgedichtet ist. Der Deckel 26 schließt sowohl die Mechanikkammer 5 als auch den Nebenelektroraum 18 ab. Zwischen den Nebenelektroraum 18 und den Deckel 26 ist eine statische Flachdichtung 28 eingesetzt. Der Deckel 26 ist – vergleichbar mit der Gestaltung des Deckels 23 auf der Seite des Hauptelektroraums 7 – derart geformt, dass er die Flachdichtung 28 vor grobem Schmutz und UV-Strahlung schützt.
  • Zur Führung des Hüllrohres 16 ist an der mit Hilfe des Deckels 26 sowie der dynamischen Dichtungen 27 und der statischen Flachdichtung 28 verschlossenen Stirnseite des Gehäuses 2 ein Gleitlagerelement 29 vorgesehen, welches unmittelbar mit dem Hüllrohr 16 zusammenwirkt. Das Hüllrohr 16 ist an seinem aus den Gehäuse 2 ragenden Ende durch ein Anschlusselement 30 verschlossen, an welches beispielsweise ein Gelenkauge anschließbar ist.
  • Zur Nachschmierung des Spindeltriebs 7 ist im Bereich des Gleitlagerelements 29 eine Schmiermittelzuführung 31 vorgesehen, welche entsprechend der Schmiermittelzuführung 13 am Wälzlager 12 gestaltet ist und das Gehäuse 2 sowie das Gleitlagerelement 29 durchdringt. Das Gleitlagerelement 29 schließt, wie insbesondere aus 4 hervorgeht, direkt an den Deckel 26 an.
  • Zur Be- und Entlüftung der Mechanikkammer 5 ist in dem Deckel 26 eine Be- und Entlüftungsvorrichtung, kurz als Lüftungselement 32 bezeichnet, integriert. Das Lüftungselement 32 ist in linearer Verlängerung des Nebenelektroraums 18 angeordnet und über einen im Deckel 26 ausgebildeten Lüftungskanal 33 mit der Mechanikkammer 5 verbunden. Der Nebenelektroraum 18 dagegen ist auf der Seite des Deckels 26, anders als auf der Seite des motorseitigen, mit der Kabelverschraubung 25 versehenen Deckels 23, komplett verschlossen, wobei der Verschluss durch den Deckel 26 hergestellt ist.
  • Die 5 und 6 zeigen zwei Schnitte durch den Stellantrieb 1, in denen jeweils die Mechanikkammer 5 sowie der unter dieser liegende Nebenelektroraum 18 erkennbar ist. Lagerzapfen, mit welchen der Stellantrieb 1 insgesamt lagerbar ist, sind mit 20 bezeichnet. Wie aus 5 hervorgeht, ist der im Nebenelektroraum 18 angeordnete Endschalter 19 durch eine von außen zugängliche Befestigungsschraube 34 zentriert. Mit dem Bezugszeichen 35 ist die entsprechende Zentrieraufnahme für den Endschalter 19 im Gehäuse 2 gekennzeichnet.
  • Eine weitere Befestigungsschraube 34 ist, wie aus 6 hervorgeht, zur Fixierung einer Platine 36, auf welcher sich diverse Bauelemente 37, 38 befinden, innerhalb des Nebenelektroraums 18 vorgesehen. Seitlich greift die Platine 36 in Führungsnuten 39, allgemein als Aufnahme bezeichnet, ein, welche in die Gehäusewand 3 eingeformt sind. Das Gehäuse 2 erfüllt damit gleichzeitig vielfältige Funktionen, welche die Lagerung des Spindeltriebs 7, des Elektromotors 6, sowie der weiteren stromführenden Komponenten 19, 37, 38 einschließen.
  • Bezugszeichenliste
  • 1
    Stellantrieb
    2
    Gehäuse
    3
    Gehäusewand
    4
    erster Raum, Elektrokammer
    5
    zweiter Raum, Mechanikkammer
    6
    Elektromotor
    7
    Spindeltrieb
    8
    Lagereinheit
    9
    statische Dichtung
    10
    Verbindungswelle
    11
    dynamische Dichtung
    12
    Wälzlager, zweireihiges Axialkugellager
    13
    Schmiermittelzuführung
    14
    Spindel
    15
    Spindelmutter
    16
    Hüllrohr
    17
    Teilraum, Hauptelektroraum
    18
    Teilraum, Nebenelektroraum
    19
    Endschalter
    20
    Lagerzapfen
    21
    Kabeldurchlass
    22
    Zwischenwandung
    23
    Deckel
    24
    Dichtung
    25
    Kabelverschraubung
    26
    Deckel
    27
    Dichtung
    28
    statische Flachdichtung
    29
    Gleitlagerelement
    30
    Anschlusselement
    31
    Schmiermittelzuführung
    32
    Lüftungselement
    33
    Lüftungskanal
    34
    Befestigungsschraube
    35
    Zentrieraufnahme
    36
    Platine
    37
    Bauelement
    38
    Bauelement
    39
    Führungsnut, Aufnahme

Claims (10)

  1. Linearer Stellantrieb, mit einem Gehäuse (2) sowie mit mehreren in dem Gehäuse (2) angeordneten Komponenten, nämlich – mindestens einer stromführenden Komponente (6, 19, 37, 38), – einer Gruppe mechanischer, nicht stromführender Komponenten, welche Komponenten eines Spindeltriebs (7) umfassen, – mindestens einer zur Lagerung von Komponenten des Spindeltriebs (7) im Gehäuse (2) ausgebildeten Lagerung (12), wobei die mindestens eine stromführende Komponente (6, 19, 37, 38) von der Gruppe mechanischer, nicht stromführender Komponenten durch mindestens eine Dichtung (9, 11) derart getrennt ist, dass innerhalb des Gehäuses (2) zwei voneinander getrennte, gegeneinander abgedichtete Räume (4, 5) gebildet sind, dadurch gekennzeichnet, dass das einteilig ausgeführte säulenförmige Gehäuse (2) mit seiner durchgehenden Gehäusewandung (3) die beiden Räume (4, 5) umschließt, wobei der die stromführenden Komponenten (6, 19, 37, 38) aufweisende Raum (4) in zwei Teilräume (17, 18) unterteilt ist, und wobei ein Elektromotor (6) in dem einen Teilraum (17) und eine Sensorikkomponente (19) in dem anderen Teilraum (18) angeordnet sind.
  2. Stellantrieb nach Anspruch 1, dadurch gekennzeichnet, dass das Gehäuse (2) eine durch ein Metallprofil gebildete, beide Räume (4, 5) begrenzende Gehäusewand (3) aufweist.
  3. Stellantrieb nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in demjenigen Raum (5), in welchem sich die Gruppe mechanischer, nicht stromführender Komponenten einschließlich einer aus dem Raum (5) ausfahrbaren Komponente (16) befindet, ein Lüftungselement (32) angeordnet ist.
  4. Stellantrieb nach Anspruch 3, dadurch gekennzeichnet, dass das Lüftungselement (32) aus der Gruppe an Lüftungselementen ausgewählt ist, welche ein Diaphragma sowie ein Doppel-Membranventil umfasst.
  5. Stellantrieb nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Lüftungselement (32) in einen das Gehäuse (2) stirnseitig abschließenden Deckel (26) integriert ist, wobei es von der aus dem Raum (5) ausfahrbaren Komponente (16) radial beabstandet ist.
  6. Stellantrieb nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ausschließlich derjenige Raum (5), in welchem sich die Gruppe mechanischer, nicht stromführender Komponenten befindet, mindestens eine Schmiermittelzuführung (13, 31) aufweist.
  7. Stellantrieb nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass derjenige Raum (4), in welchem sich die mindestens eine stromführende Komponente befindet, in zwei Teilräume (17, 18) unterschiedlichen Querschnitts sowie unterschiedlicher, in axialer Richtung des Spindeltriebs (7) gemessener Länge unterteilt ist.
  8. Stellantrieb nach Anspruch 7, dadurch gekennzeichnet, dass ein erster Teilraum (17), in welchem sich ein Elektromotor (6) befindet, in linearer Verlängerung des Spindeltriebs (7) angeordnet ist, und ein zweiter Teilraum (18), in welchem sich mindestens eine mit dem Spindeltrieb (7) zusammenwirkende Sensorikkomponente (19) befindet, parallel zur Mittelachse des Spindeltriebs (7), sich über den größten Teil der Länge des Gehäuses (2) erstreckend, angeordnet ist, wobei eine Zwischenwandung (22) des Gehäuses (2) den zweiten Teilraum (18) sowohl vom ersten Teilraum (17) als auch von dem Raum (5), in welchem sich die Gruppe mechanischer, nicht stromführender Komponenten befindet, abgrenzt.
  9. Stellantrieb nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass in dem in axialer Richtung längeren Teilraum (18) des Raumes (4), in welchem sich die stromführende Komponente (6, 19, 37, 38) befindet, eine Zentrieraufnahme (35) für einen Endschalter (19) angeordnet ist.
  10. Stellantrieb nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass in dem in axialer Richtung längeren Teilraum (18) des Raumes (4), in welchem sich die stromführende Komponente (6, 19, 37, 38) befindet, eine Aufnahme (39) für eine Platine (36) angeordnet ist.
DE102015204073.9A 2015-03-06 2015-03-06 Linearer Stellantrieb Active DE102015204073B4 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102015204073.9A DE102015204073B4 (de) 2015-03-06 2015-03-06 Linearer Stellantrieb
PCT/DE2016/200119 WO2016141939A1 (de) 2015-03-06 2016-03-04 Linearer stellantrieb
CN201680013632.9A CN107429807B (zh) 2015-03-06 2016-03-04 线性的执行机构
US15/552,110 US10094463B2 (en) 2015-03-06 2016-03-04 Linear actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015204073.9A DE102015204073B4 (de) 2015-03-06 2015-03-06 Linearer Stellantrieb

Publications (2)

Publication Number Publication Date
DE102015204073A1 DE102015204073A1 (de) 2016-09-08
DE102015204073B4 true DE102015204073B4 (de) 2017-07-06

Family

ID=55860668

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015204073.9A Active DE102015204073B4 (de) 2015-03-06 2015-03-06 Linearer Stellantrieb

Country Status (4)

Country Link
US (1) US10094463B2 (de)
CN (1) CN107429807B (de)
DE (1) DE102015204073B4 (de)
WO (1) WO2016141939A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016223733A1 (de) * 2016-11-30 2018-05-30 Aktiebolaget Skf Baueinheit mit wenigstens einem Gehäuseteil und zumindest einem Sensor und Verfahren
EP3333348A1 (de) * 2016-12-06 2018-06-13 ASSA ABLOY Entrance Systems AB Stellantrieb für motorisierte schwenktüren
DE102017212823A1 (de) * 2017-07-26 2019-01-31 Stabilus Gmbh Spindelantriebseinrichtung
CN110247507B (zh) * 2018-03-07 2021-08-10 绍兴市思力珂传动科技有限公司 一种新型电动推杆
JP7451371B2 (ja) 2020-09-29 2024-03-18 ニデックインスツルメンツ株式会社 直線駆動装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10063743C2 (de) * 2000-12-21 2002-11-07 Geze Gmbh Antrieb
DE102008033602A1 (de) * 2007-08-16 2009-02-26 Sew-Eurodrive Gmbh & Co. Kg Spindelmotor
DE202010004265U1 (de) * 2010-03-29 2010-08-12 Zimmermann, Jürgen Spindelantrieb
US20110061481A1 (en) * 2009-09-11 2011-03-17 Jurgen Zimmermann Positioning device for positioning a load

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4034650B2 (ja) * 2000-10-03 2008-01-16 リナック エー/エス リニアアクチュエータ
CN2653769Y (zh) * 2003-05-21 2004-11-03 程卫东 过扭矩式电动推杆
DE102005025748B4 (de) * 2005-06-02 2011-07-28 Andreas Grasl Elektrolinearantrieb mit Endabschaltung
US8024987B2 (en) * 2005-09-28 2011-09-27 Mitsuba Corporation Linear actuator
DE102008025072A1 (de) 2008-05-26 2009-12-10 Sew-Eurodrive Gmbh & Co. Kg Spindelmotor
US8251091B2 (en) 2009-09-17 2012-08-28 Hitachi Metals, Ltd. Temperature insensitive mass flow controller
JP5535602B2 (ja) * 2009-12-01 2014-07-02 株式会社ミツバ リニアアクチュエータ
DE102011078646A1 (de) 2011-07-05 2013-01-10 Schaeffler Technologies AG & Co. KG Schiffausstattungsmechanik
DE102012211062A1 (de) 2012-06-27 2014-01-02 Stabilus Gmbh Antriebseinrichtung und Baukasten für eine derartige Antriebseinrichtung
WO2014115648A1 (ja) * 2013-01-25 2014-07-31 株式会社アイエイアイ アクチュエータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10063743C2 (de) * 2000-12-21 2002-11-07 Geze Gmbh Antrieb
DE102008033602A1 (de) * 2007-08-16 2009-02-26 Sew-Eurodrive Gmbh & Co. Kg Spindelmotor
US20110061481A1 (en) * 2009-09-11 2011-03-17 Jurgen Zimmermann Positioning device for positioning a load
DE202010004265U1 (de) * 2010-03-29 2010-08-12 Zimmermann, Jürgen Spindelantrieb

Also Published As

Publication number Publication date
US20180038472A1 (en) 2018-02-08
WO2016141939A1 (de) 2016-09-15
CN107429807B (zh) 2020-07-28
DE102015204073A1 (de) 2016-09-08
US10094463B2 (en) 2018-10-09
CN107429807A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
DE102015204073B4 (de) Linearer Stellantrieb
EP3384567B1 (de) Rahmengestell für eine schaltschrankanordnung
EP1441431B1 (de) Motorgehäuse für einen Elektromotor
DE102015014579A1 (de) Rotationswärmetauschereinrichtung
DE102015204074B4 (de) Linearer Stellantrieb und Verfahren zur Montage eines Stellantriebs
EP2218928A1 (de) Linearbewegungsvorrichtung mit kompakter Motoranordnung
EP3647599B1 (de) Vakuumpumpe, scrollpumpe und herstellungsverfahren für solche
EP2915961B1 (de) Baueinheit zur anordnung an einem hydraulikfluidtank eines strahltriebwerks
DE102008059771A1 (de) Elektrisches Stellglied
EP2221492A1 (de) Linearbewegungsvorrichtung mit absatzfreiem Rücklaufdurchgang
EP2221491A1 (de) Linearbewegungsvorrichtung mit absatzfreiem Rücklaufdurchgang
DE202004003810U1 (de) Schutzeinrichtung, insbesondere Lichtgitter
DE10251387B4 (de) Elektrische Preßvorrichtung
DE102014227029A1 (de) Vorrichtung zur Bohrwiderstandsmessung in einem zu untersuchenden Material
DE102017206584A1 (de) Linearbewegungsvorrichtung mit Sensorhalter
DE202008016972U1 (de) Tasteinheit
EP2218926A1 (de) Linearbewegungsvorrichtung mit einer Umlenkbaugruppe mit einem einzigen Umlenkdurchgang
DE102015204071B4 (de) Linearer Stellantrieb und Verfahren zur Montage eines Stellantriebs
EP2518345B1 (de) Abdeckung zur aufnahme eines profilschienenwagens eines linearlagers
DE102015204069B4 (de) Spindelmutter
EP1740911B1 (de) Flachprofil mit befestigungsnuten
DE102004062968A1 (de) Wegmess-Vorrichtung
DE102015204068A1 (de) Linearer Stellantrieb und Verfahren zur Montage eines Stellantriebs
DE102012108246B4 (de) Stabilisatorvorrichtung für ein Fahrzeug
EP3719352A1 (de) Getriebegehäuse, sensormontagekit und getriebe

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final