DE102015202567A1 - Batteriesystem mit einer Batterie und mehreren Messeinheiten zum Messen einer mittels mindestens einer Batteriezelle der Batterie bereitgestellte Spannung und Verfahren zum Messen einer mittels mindestens einer Batteriezelle einer Batterie bereitgestellte Spannung - Google Patents

Batteriesystem mit einer Batterie und mehreren Messeinheiten zum Messen einer mittels mindestens einer Batteriezelle der Batterie bereitgestellte Spannung und Verfahren zum Messen einer mittels mindestens einer Batteriezelle einer Batterie bereitgestellte Spannung Download PDF

Info

Publication number
DE102015202567A1
DE102015202567A1 DE102015202567.5A DE102015202567A DE102015202567A1 DE 102015202567 A1 DE102015202567 A1 DE 102015202567A1 DE 102015202567 A DE102015202567 A DE 102015202567A DE 102015202567 A1 DE102015202567 A1 DE 102015202567A1
Authority
DE
Germany
Prior art keywords
battery cell
measuring
battery
inputs
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102015202567.5A
Other languages
English (en)
Inventor
Joerg Schneider
Chrysanthos Tzivanopoulos
Sven Bergmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102015202567.5A priority Critical patent/DE102015202567A1/de
Priority to PCT/EP2016/051861 priority patent/WO2016128230A1/de
Publication of DE102015202567A1 publication Critical patent/DE102015202567A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Batteriesystem (1) mit einer Batterie (20) mit mehreren in Reihe verbundenen Batteriezellen (21, 22), wobei zum Messen einer mittels mindestens einer Batteriezelle (21, 22) der mehreren Batteriezellen (21, 22) bereitgestellten Spannung in dem Batteriesystem (1; 10) mehrere insbesondere jeweils als Analog-Digital-Wandler ausgebildete Messeinheiten (100, 110) angeordnet sind. Die Messeinheiten (100, 110) sind jeweils zum Messen einer an der entsprechenden Messeinheit (100, 110) eingangsseitig anliegenden Spannung ausgebildet. Das Batteriesystem (1) umfasst eine Steuereinheit und eine mittels der Steuereinheit steuerbaren Schalteinheit (70) mit mehreren Schaltzuständen, wobei jeder Batteriezelle (21, 22) und/oder einer jeden aus mindestens zwei Batteriezellen (21, 22) der mehreren Batteriezellen (21, 22) ausgebildeten Batteriezellreihenschaltung jeweils mindestens einen Schaltzustand der mehreren Schaltzustände zugeordnet ist. Die Schalteinheit (70) ist dazu vorgesehen ist, in jedem Schaltzustand die diesem zugeordnete Batterie (21, 22) oder Batteriezellreihenschaltung einzeln an zwei Eingänge (102, 103, 112, 113) jeder Messeinheit (100, 110) anzuschließen. Die Steuereinheit ist dazu ausgebildet, jeweils eine Batteriezelle (21, 22) und/oder jeweils eine Batteriezellreihenschaltung auszuwählen und zum redundanten Messen einer von der ausgewählten Batteriezelle (21, 22) oder von der ausgewählten Batteriezellreihenschaltung bereitgestellten Spannung mittels der mehreren Messeinheiten (100, 110) die Schalteinheit (70; 170) in einem der ausgewählten Batteriezelle (21, 22) oder der ausgewählten Batteriezellreihenschaltung zugeordneten Schaltzustand der mehreren Schaltzustände zu versetzen.

Description

  • Die vorliegende Erfindung betrifft ein Batteriesystem mit einer Batterie mit mehreren in Reihe verbundenen Batteriezellen, wobei zum redundanten Messen einer mittels mindestens einer Batteriezelle der mehreren Batteriezellen bereitgestellten Spannung in dem Batteriesystem mehrere insbesondere jeweils als Analog-Digital-Wandler ausgebildete Messeinheiten angeordnet sind. Auch betrifft die Erfindung ein Verfahren zum Messen einer mittels mindestens einer Batteriezelle von mehreren in Reihe miteinander verbundenen Batteriezellen einer Batterie bereitgestellten Spannung, bei dem mehrere insbesondere jeweils als Analog-Digital-Wandler ausgebildete Messeinheiten verwendet werden.
  • Stand der Technik
  • Es zeichnet sich ab, dass in Zukunft sowohl bei stationären Anwendungen, wie zum Beispiel Windkraftanlagen, in Fahrzeugen, wie zum Beispiel in Hybrid- und Elektrofahrzeugen, als auch im Consumer-Bereich, wie zum Beispiel bei Laptops und Mobiltelefonen, vermehrt neue Batteriesysteme zum Einsatz kommen werden, an die sehr hohe Anforderungen bezüglich deren Zuverlässigkeit, Sicherheit, Leistungsfähigkeit und Lebensdauer gestellt werden. Für solche Aufgaben sind insbesondere Batterien mit Lithium-Ionen-Technologie geeignet. Sie zeichnen sich unter anderem durch hohe Energiedichte und eine geringe Selbstentladung aus.
  • An Batterien mit Lithium-Ionen-Technologie sind hohe Anforderungen bezüglich der funktionalen Sicherheit zu stellen. Ein nicht sachgemäßer Betrieb von Batteriezellen kann zu exothermen Reaktionen bis hin zum Brand und/oder zur Entgasung führen. Zur Vermeidung dieser unerwünschten Reaktionen ist unter anderem eine genaue Überwachung von Spannungen von Batteriezellen solcher Lithium-Ionen-Batterien notwendig. Die sichere Überwachung der Batteriezellspannungen setzt eine genaue Messdatenerfassung voraus, bei der sämtliche Fehler, welche eine Batteriezellspannungsmessung verfälschen könnten, über Diagnosefunktionen erkannt werden. Des Weiteren ist für eine optimale Ausnutzung von Batteriezellkapazitäten entscheidend, dass die Batteriezellen bis an eine oberen Batteriezellspannungsgrenze betrieben werden können. Ein Betrieb der Batteriezellspannungen bis an die obere Batteriezellspannungsgrenze setzt voraus, dass sämtliche Ungenauigkeiten der Messdatenerfassung und sämtliche Ungenauigkeiten entsprechender Diagnosefunktionen minimiert werden müssen.
  • Aus dem Dokument US 2013/0335095 A1 ist eine Spannungsüberwachungseinheit für eine Batterie mit mehreren Batteriezellen bekannt. Dabei sind mehrere Batteriezellanschlüsse der Batteriezellen jeweils mit einem zugeordneten Messeingang und einem Ladungszustandsausgleichseingang verbunden. Zum Messen einer mittels jeder Batteriezelle bereitgestellte Batteriezellspannung ist jeder Messeingang jeweils mit mindestens einem von zwei Eingängen eines Analog-Digital-Wandlers verbunden. Zum redundanten Messen der mittels jeder Batteriezelle bereitgestellte Batteriezellspannung ist auch jeder Ladezustandsausgleichsausgang jeweils mit mindestens einem der zwei Eingänge des Analog-Digital-Wandlers verbunden.
  • Aus dem Dokument US 2012/0203482 A1 ist eine Batterie mit mehreren Batteriezellen bekannt, wobei Batteriezelleanschlüsse der mehreren Batteriezellen mit zugeordneten Messeingängen verbunden sind. Über die mehreren Messeingänge werden von den mehreren Batteriezellen bereitgestellten Batteriezellspannungen einer Überwachungseinheit als Spannungssignale bereitgestellt. Die Überwachungseinheit umfasst zwei Analog-Digital-Wandler. Jeder Analog-Digital-Wandler wandelt über Messeingänge als Spannungssignale bereitgestellte Batteriezellspannungen bezüglich einer jeweils anderen Referenzspannung in entsprechende digitale Signale um.
  • Aus dem Dokument WO 2010/074290 A1 ist ein Überwachungssystem mit mindestens einer Überwachungseinheit bekannt, die jeweils zum Überwachen von mehreren diesen zugeordneten Batteriezellen einer Batterie ausgebildet sind. Die Überwachungseinheit umfasst einen Multiplexer und zwei Analog-Digital-Wandler. Der Multiplexer weist mehrere Eingänge auf, die mit Batteriezellanschlüssen der mehreren Batteriezelle verbunden sind. Dabei sind jeweils zwei mit einer Batteriezelle der mehreren Batteriezellen verbundenen Eingänge des Multiplexer aktivierbar. Der Multiplexer umfasst ferner zwei Ausgänge, die zum Übertragen einer von einer mit zwei aktivierten Eingängen verbundenen Batteriezelle bereitgestellten Spannung ausgebildet sind. Ferner umfassen die Analog-Digital-Wandler jeweils einen Eingang und einen diesem zugeordneten Ausgang zum Übertragen eines digitalen Signals, das durch Digitalisieren eines über den zugeordneten Eingang bereitgestellten analogen Signals erzeugt worden ist. Dabei sind die zwei Eingänge der zwei Annalog-Digital-Wandler mit einem jeweils anderen Ausgang des Multiplexers verbunden.
  • Offenbarung der Erfindung
  • Erfindungsgemäß wird ein Batteriesystem mit einer Batterie mit mehreren in Reihe verbundenen Batteriezellen bereitgestellt, wobei zum Messen einer mittels mindestens einer Batteriezelle der mehreren Batteriezellen bereitgestellten Spannung in dem Batteriesystem mehrere insbesondere jeweils als Analog-Digital-Wandler ausgebildeten Messeinheiten angeordnet sind. Die Messeinheiten sind jeweils zum Messen einer an der entsprechenden Messeinheit eingangsseitig anliegenden Spannung ausgebildet. Das Batteriesystem umfasst eine Steuereinheit und eine mittels der Steuereinheit steuerbare Schalteinheit mit mehreren Schaltzuständen, wobei jeder Batteriezelle und/oder einer jeden aus mindestens zwei Batteriezellen der mehreren Batteriezellen ausgebildete Batteriezellreihenschaltung jeweils mindestens ein Schaltzustand der Schaltzustände zugeordnet ist. Dabei ist die Schalteinheit dazu vorgesehen, in jedem Schaltzustand die diesem zugeordnete Batteriezelle oder Batteriezellreihenschaltung einzeln an zwei Eingänge jeder Messeinheit anzuschließen. Ferner ist die Steuereinheit dazu ausgebildet, jeweils eine Batteriezelle und/oder jeweils eine Batteriezellreihenschaltung auszuwählen und zum redundanten Messen einer von der ausgewählten Batteriezelle oder von der ausgewählten Batteriezellreihenschaltung bereitgestellten Spannung mittels der mehreren Messeinheit die Schalteinheit in einen der ausgewählten Batteriezelle oder der ausgewählten Batteriezellreihenschaltung zugeordneten Schaltzustand der mehreren Schaltzustände zu versetzen.
  • Erfindungsgemäß wird ferner ein Verfahren zum Messen einer mittels mindestens einer Batteriezelle von mehreren in Reihe miteinander verbundenen Batteriezellen einer Batterie bereitgestellten Spannung bereitgestellt. Bei dem Verfahren werden mehrere insbesondere jeweils als Analog-Digital-Wandler ausgebildete Messeinheiten verwendet, die jeweils zum Messen einer eingangsseitig an der entsprechenden Messeinheit anliegenden Spannung ausgebildet sind. Bei dem Verfahren wird eine Schalteinheit mit mehreren Schaltzuständen verwendet, wobei jeder Batteriezelle und/oder einer jeden aus mindestens zwei Batteriezellen der mehreren Batteriezellen ausgebildeten Batteriezellreihenschaltung jeweils mindestens ein Schaltzustand der Schaltzustände zugeordnet ist. Ferner sind jede Batteriezelle und/oder eine jede aus mindestens zwei Batteriezellen der mehreren Batteriezellen ausgebildete Batteriezellreihenschaltung jeweils auswählbar. Auch ist über die in jeden Schaltzustand versetzte Schalteinheit die diesem zugeordnete Batterie oder Batteriezellreihenschaltung einzeln an zwei Eingänge jeder Messeinheit anschließbar. Ferner werden jeweils eine Batteriezelle und/oder jeweils eine Batteriezellreihenschaltung ausgewählt. Auch wird zum redundanten Messen einer von der ausgewählten Batteriezelle oder von der ausgewählten Batteriezellreihenschaltung bereitgestellten Spannung mittels der mehreren Messeinheiten die Schalteinheit in einen der ausgewählten Batteriezelle oder der ausgewählten Batteriezellreihenschaltung zugeordneten Schaltzustand der mehreren Schaltzustände versetzt.
  • Die Unteransprüche zeigen bevorzugte Weiterbildungen der Erfindung.
  • Vorteilhaft bei der Erfindung ist, dass Batteriezellspannungen der mehreren Batteriezellen über mehrere redundante Batteriezellspannung-Erfassungspfade, die jeweils über eine jeweils andere der erfindungsgemäßen Messeinheiten verlaufen, gleichzeitig und dadurch genauer gemessen werden können.
  • Bevorzugt umfasst jede Messeinheit einen ersten Eingang der zwei Eingänge und einen zweiten Eingang der zwei Eingänge.
  • Bei einer vorteilhaften Ausführungsform der Erfindung sind die ersten Eingänge der mehreren Messeinheiten miteinander verbunden. Dabei sind auch die zweiten Eingänge der mehreren Messeinheiten miteinander verbunden.
  • Vorzugsweise weist jede Batteriezelle zwei Batteriezellanschlüsse auf.
  • Bei einer bevorzugten Ausführungsform der Erfindung umfasst die Batterie mehrere Messeingänge und/oder mehrere Ladezustandsausgleichseingänge. Dabei sind jeder Batteriezelle jeweils zwei Messeingänge der mehreren Messeingänge und/oder jeweils zwei Ladezustandsausgleichseingänge der mehreren Ladezustandsausgleichseingänge zugeordnet. Ferner sind die zwei Batteriezellanschlüsse jeder Batteriezelle jeweils mit einem anderen Messeingang der zwei dieser zugeordneten Messeingänge und/oder jeweils mit einem anderen Ladungszustandsausgleichseingang der zwei dieser zugeordneten Ladezustandsausgleichseingänge verbunden. Ferner weist die Schalteinheit für jede Batteriezelle und/oder für jede Batteriezellreihenschaltung jeweils einen dieser zugeordneten ersten Schaltzustand der mehreren Schaltzustände und/oder jeweils einen dieser zugeordneten zweiten Schaltzustand der mehreren Schaltzustände auf. Dabei ist in jedem ersten Schaltzustand die diesem zugeordnete Batteriezelle oder die diesem zugeordnete Batteriezellreihenschaltung über zwei entsprechende Messeingänge der mehreren Messeingängen jeweils einzeln an die zwei Eingänge jeder Messeinheit angeschlossen. Auch ist in jedem zweiten Schaltzustand die diesem zugeordnete Batteriezelle oder die diesem zugeordnete Batteriezellreihenschaltung über zwei Ladezustandsausgleichseingänge der mehreren Ladezustandsausgleichseingänge jeweils einzeln an die zwei Eingänge jeder Messeinheit angeschlossen.
  • Vorzugsweise weist die Schalteinheit für jede Batteriezelle und/oder für jede Batteriezellreihenschaltung mindestens einen weiteren dieser zugeordneten Schaltzustand der mehreren Schaltzustände auf. Dabei ist in jedem weiteren Schaltzustand die diesem zugeordnete Batteriezelle oder die diesem zugeordnete Batteriezellreihenschaltung über einen entsprechenden Messeingang der mehreren Messeingänge und über einen entsprechenden Ladzustandsausgleichseingang der mehreren Ladezustandsausgleichseingänge jeweils einzeln an die zwei Eingänge jeder Messeinheit angeschlossen.
  • Bei einer anderen bevorzugten Ausführungsform der Erfindung sind jeweils zwei direkt miteinander verbundene Batteriezellanschlüsse unterschiedlicher Batteriezellen der mehreren Batteriezellen mit einem und demselben Messeingang der mehreren Messeingänge und/oder mit einem und demselben Ladezustandsausgleichseingang der mehreren Ladezustandsausgleichseingänge verbunden.
  • Die zuvor genannte Ausführungsform der Erfindung, bei der die Batteriezellspannung-Erfassungspfade sowohl über die mehreren Messeingänge als auch über die Ladezustandsausgleichseingänge verlaufen können, ist sehr vorteilhaft, da eine von jeder Batteriezelle bereitgestellte Spannung auch in einem Fall, in dem beispielsweise die dieser zugeordneten Messeingänge defekt sind, weiterhin über die zwei dieser zugeordneten Ladezustandsausgleichseingänge gemessen werden kann.
  • Bevorzugt ist jeder Messeinheit jeweils ein Pegelwandler des Batteriesystems zugeordnet, der ausgangsseitig mit den zwei Eingängen der diesem zugeordneten Messeinheit verbunden ist. Dabei sind jede Batteriezelle und/oder jede Batteriezellreihenschaltung jeweils einzeln an die zwei Eingänge jeder Messeinheit über zwei Eingänge des dieser zugeordneten Pegelwandlers anschließbar.
  • Vorzugsweise umfasst die Schalteinheit eine erste Leitung und eine zweite Leitung. Dabei ist die erste Leitung mit dem ersten Eingang der zwei Eingänge jeder Messeinheit verbunden. Auch ist die zweite Leitung mit dem zweiten Eingang der zwei Eingänge jeder Messeinheit verbunden. Ferner ist die Schalteinheit dazu ausgebildet, zur Realisierung der mehreren Schaltzustände einen jeden Batteriezellanschluss der zwei Batteriezellanschlüsse jeder Batteriezelle mit der ersten Leitung und/oder mit der zweiten Leitung zu verbinden.
  • Bevorzugt ist die Schalteinheit dazu ausgebildet, jeden Batteriezellanschluss mit der ersten Leitung und/oder mit der zweiten Leitung über den mit diesem verbundenen Messeingang zu verbinden. Weiter bevorzugt ist die Schalteinheit dazu ausgebildet, jeden Batteriezellanschluss mit der ersten Leitung und/oder mit der zweiten Leitung über den mit diesem verbundenen Ladezustandsausgleichseingang zu verbinden.
  • Bevorzugt ist die erste Leitung mit dem ersten Eingang jeder Messeinheit über einen ersten Eingang der zwei Eingänge des dieser zugeordneten Pegelwandlers verbunden. Weiter bevorzugt ist die zweite Leitung mit dem zweiten Eingang jeder Messeinheit über einen zweiten Eingang der zwei Eingänge des dieser zugeordneten Pegelwandlers verbunden.
  • Bevorzugt umfasst das erfindungsgemäße Batteriesystem eine Diagnoseeinheit, die dazu ausgebildet ist, zum Bestimmen eines fehlerhaften Funktionszustandes jeder Messeinheit eine gemeinsame Referenzspannung an jeder Messeinheit insbesondere über einen der entsprechenden Messeinheit jeweils zugeordneten Pegelwandler eingangsseitig anzulegen und über die Messeinheiten erfasste Referenzspannungswerte der Referenzspannung untereinander zu vergleichen.
  • Weiter bevorzugt umfasst das erfindungsgemäße Batteriesystem eine insbesondere als weiterer Analog-Digital-Wandler ausgebildete weitere Messeinheit, die zum Messen einer eingangsseitig anliegenden Spannung ausgebildet ist. Dabei ist die Diagnoseeinheit dazu ausgebildet, zum Bestimmen eines fehlerhaften Funktionszustandes jeder Messeinheit die Referenzspannung auch an der weiteren Messeinheit eingangsseitig anzulegen und einen weiteren über die weitere Messeinheit erfassten Referenzspannungswert der Referenzspannung mit den über die mehreren Messeinheiten erfassten Referenzspannungswerten der Referenzspannung jeweils zu vergleichen
  • Dadurch, dass die über die mehreren Messeinheiten erfassten Referenzspannungswerten untereinander und insbesondere auch mit dem weiteren über die weitere Messeinheit erfassten Referenzspannungswert verglichen werden, können defekte Messeinheiten in einfacher Weise detektiert werden. Dabei kann eine redundante Messung der Batteriezellspannungen weiterhin über funktionsfähige Messeinheiten erfolgen.
  • Insbesondere ist die Schalteinheit und die insbesondere jeweils als Analog-Digital-Wandler ausgebildeten Messeinheiten in einer anwendungsspezifische integrierte Messschaltung angeordnet, die in diesem Fall auch als Mess-ASIC bezeichnet wird.
  • Gemäß der vorliegenden Erfindung werden Diagnosefunktionen mit verbesserter Diagnosequalität bereitgestellt, die auf eine redundante Messung der Batteriezellspannungen über mehrere Batteriezellspannung-Erfassungspfade und/oder einer redundant gemessenen Referenzspannung basieren. Diese Diagnosefunktionen erlauben eine sichere Erkennung von Fehlerbildern, die in einem analogen Teil des Mess-ASICs vorkommen, wodurch eine erhöhte Systemsicherheit erreicht wird. Diese Diagnosefunktionen wurden bezüglich ihrer Diagnosegenauigkeit optimiert und ermöglichen somit eine Erhöhung einer nutzbaren Kapazität der Batteriezellen, wodurch die Batteriezellen bis zum Erreichen einer jeweiligen Spannungsgrenze sicher betrieben werden können.
  • Vorzugsweise umfasst das erfindungsgemäße Verfahren alle funktionellen Merkmale des erfindungsgemäßen Batteriesystems einzeln oder in Kombination.
  • Ein weiterer Aspekt der Erfindung betrifft ein Fahrzeug mit einem erfindungsgemäßen Batteriesystem.
  • Kurze Beschreibung der Zeichnungen
  • Nachfolgend werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die begleitende Zeichnung im Detail beschrieben. In den Figuren wurden für gleiche Komponenten auch gleiche Bezugszeichen verwendet. Der Zeichnung zeigen:
  • 1 ein gemäß einer ersten Ausführungsform der Erfindung ausgebildetes Batteriesystem,
  • 2 ein gemäß einer zweiten Ausführungsform der Erfindung ausgebildetes Batteriesystem,
  • 3 eine in jedem der in den 1 und 2 dargestellten Batteriesysteme einsetzbare Diagnoseeinheit, und
  • 4 die eine weitere Funktionalität aufweisende Diagnoseeinheit aus der 3.
  • Ausführungsformen der Erfindung
  • 1 zeigt ein Batteriesystem 1 gemäß einer ersten Ausführungsform der Erfindung. Das Batteriesystem 1 umfasst eine Batterie 20 mit mehreren in Reihe geschalteten Batteriezellen 21, 22. Zur Vereinfachung der Darstellung sind in der 1 nur eine erste Batteriezellen 21 und eine zweite Batteriezelle 22 gezeigt. Die Batteriezellen 21, 22 weisen jeweils einen ersten Batteriezellanschluss 31, 33 und einen zweiten Batteriezellanschluss 32, 34 auf. Der zweite Batteriezellanschluss 32 der ersten Batteriezelle 21 und der erste Batteriezellanschluss 33 der zweiten Batteriezelle 22 sind über einen Verbindungspunkt 25 direkt miteinander verbunden. Die Batterie 20 umfasst ferner mehrere Messeingänge 61, 62, 63. Auch umfasst die Batterie 20 mehrere Widerstände 41, 42, 43 und mehrere Kondensatoren 51, 52, 53, die den Messeingängen 61, 62, 63 zugeordneten sind. Zur Vereinfachung der Darstellung wurden nur die den zwei Batteriezellen 21, 22 zugeordneten drei Messeingänge 61, 62, 63, die diesen zugeordneten drei Widerstände 41, 42, 43 und die diesen zugeordneten drei Kondensatoren 51, 52, 53 gezeigt.
  • Der erste Batteriezellanschluss 31 der ersten Batteriezelle 21 ist über einen ersten Widerstand 41 der drei Widerstände 41, 42, 43 mit einem ersten Messeingang 61 der drei Messeingänge 61, 62, 63 verbunden. Der Verbindungspunkt 25 ist über einen zweiten Widerstand 42 der drei Widerstände 41, 42, 43 mit einem zweiten Messeingang 62 der drei Messeingänge 61, 62, 63 verbunden. Der zweite Batteriezellanschluss 34 der zweiten Batteriezelle 22 ist über einen dritten Widerstand 43 der drei Widerstände 41, 42, 43 mit einem dritten Messeingang 63 der drei Messeingänge 61, 62, 63 verbunden. Der erste Widerstand 41 weist einen ersten Anschluss auf, der direkt mit dem ersten Messeingang 61 und einem ersten Kondensator 51 der drei Kondensatoren 51, 52, 53 verbunden ist. Der zweite Widerstand 42 weist einen zweiten Anschluss auf, der direkt mit dem zweiten Messeingang 62 und einem zweiten Kondensator 52 der drei Kondensatoren 51, 52, 53 verbunden ist. Der dritte Widerstand 43 weist einen dritten Anschluss auf, der direkt mit dem dritten Messeingang 63 und einem dritten Kondensator 53 der drei Kondensatoren 51, 52, 53 verbunden ist. Die Kondensatoren 51, 52, 53 sind ferner jeweils auch mit Masse verbunden. Zur Vereinfachung der Darstellung wurden die genannten Anschlüsse der drei Widerstände 41, 42, 43 und die genannte Masse nicht mit Bezugszeichen versehen.
  • Das Batteriesystem 1 umfasst ferner eine Steuereinheit (nicht dargestellt) und eine mittels der Steuereinheit steuerbare Schalteinheit 70 mit mehreren ersten Schaltzuständen.
  • Ferner umfasst das Batteriesystem 1 auch zwei Messeinheiten 100, 110, die jeweils als ein erster Analog-Digital-Wandler 100 und ein zweiter Analog-Digital-Wandler 110 ausgebildet sind. Der erste Analog-Digital-Wandler 100 weist einen ersten Eingang 102 und einen zweiten Eingang 103 auf. Der zweite analog-Digital-Wandler 110 weist einen ersten Eingang 112 und einen zweiten Eingang 113 auf. Die Analog-Digital-Wandler 110, 111 sind jeweils zum Messen einer zwischen dem zweiten Eingang 103, 113 und dem ersten Eingang 102, 112 jedes Analog-Digital-Wandlers 100, 110 anliegenden Spannung ausgebildet.
  • Gemäß der ersten Ausführungsform der Erfindung ist jeder Batteriezelle 21, 22 und/oder der aus den zwei Batteriezellen 21, 22 ausgebildeten Batteriezellreihenschaltung jeweils ein erster Schaltzustand der mehreren ersten Schaltzustände der Schalteinheit 70 zugeordnet. Dabei ist mittels der Steuereinheit die Schalteinheit 70 in jeden ersten Schaltzustand versetzbar.
  • Zur Realisierung der mehreren ersten Schaltzustände umfasst die Schalteinheit 70 mehrere mittels der Steuereinheit steuerbare und den drei Messeingängen 61, 62, 63 zugeordnete Schalter 71, 72, 73, 81, 82, 83.
  • Ferner umfasst die die Schalteinheit 70 eine erste Leitung 91, eine zweite Leitung 92, eine dritte Leitung 93 und eine vierte Leitung 94.
  • Dabei ist der erste Messeingang 61 über einen ersten Schalter 71 der mehreren Schalter 71, 72, 73, 81, 82, 83 mit der ersten Leitung 91 verbindbar. Ferner ist der zweite Messeingang 62 über einen zweiten Schalter 72 der mehreren Schalter 71, 72, 73, 81, 82, 83 mit der ersten Leitung 91 verbindbar. Auch ist der dritte Messeingang 63 über einen dritten Schalter 72 der mehreren Schalter 71, 72, 73, 81, 82, 83 mit der ersten Leitung 91 verbindbar. Die erste Leitung 91 ist ferner über einen ausgangsseitig mit den zwei Eingängen 102, 103 des ersten Analog-Digital-Wandlers 100 verbundenen ersten Pegelwandler 101 mit dem ersten Eingang 102 des ersten Analog-Digital-Wandlers 100 verbunden. Die erste Leitung 91 ist weiterhin über die dritte Leitung 93 und über einen ausgangsseitig mit den zwei Eingängen 112, 113 des zweiten Analog-Digital-Wandlers 110 verbundenen zweiten Pegelwandler 111 auch mit dem ersten Eingang 112 des zweiten Analog-Digital-Wandlers 110 verbunden. Zum Verbinden der ersten Leitung 91 mit dem ersten Eingang 102 des ersten Analog-Digital-Wandlers 100 ist die erste Leitung 91 mit einem ersten Eingang 104 des ersten Pegelwandlers 101 direkt verbunden. Zum Verbinden der ersten Leitung 91 mit dem ersten Eingang 112 des zweiten Analog-Digital-Wandlers 110 ist die erste Leitung 91 über die dritte Leitung 93 mit einem ersten Eingang 114 des zweiten Pegelwandlers 111 verbunden.
  • Weiterhin ist der erste Messeingang 61 über einen vierten Schalter 81 der mehreren Schalter 71, 72, 73, 81, 82, 83 mit der zweiten Leitung 92 verbindbar.
  • Ferner ist der zweite Messeingang 62 über einen fünften Schalter 82 der mehreren Schalter 71, 72, 73, 81, 82, 83 mit der zweiten Leitung 92 verbindbar. Auch ist der dritte Messeingang 63 über einen sechsten Schalter 83 der mehreren Schalter 71, 72, 73, 81, 82, 83 mit der zweiten Leitung 92 verbindbar. Die zweite Leitung 92 ist ferner über den ersten Pegelwandler 101 mit dem zweiten Eingang 103 des ersten Analog-Digital-Wandlers 100 verbunden und weiterhin über die vierte Leitung 94 und über den zweiten Pegelwandler 111 auch mit dem zweiten Eingang 113 des zweiten Analog-Digital-Wandlers 110 verbunden. Zum Verbinden der zweiten Leitung 92 mit dem zweiten Eingang 103 des ersten Analog-Digital-Wandlers 100 ist die zweite Leitung 92 mit einem zweiten Eingang 105 des ersten Pegelwandlers 101 direkt verbunden. Zum Verbinden der zweiten Leitung 92 mit dem zweiten Eingang 113 des zweiten Analog-Digital-Wandlers 110 ist die zweite Leitung 92 über die vierte Leitung 94 mit einem zweiten Eingang 115 des zweiten Pegelwandlers 111 verbunden.
  • Die Schalteinheit 70 ist dazu vorgesehen, in einem der ersten Batteriezelle 21 zugeordneten ersten Schaltzustand die erste Batteriezelle 21 über den ersten Messeingang 61 und den zweiten Messeingang 62 und über den geschlossenen ersten Schalter 71 und den geschlossenen fünften Schalter 82 einzeln an die zwei Eingänge 102, 103, 112, 113 jedes Analog-Digital-Wandlers 100, 110 anzuschließen. Auch ist die Schalteinheit 70 dazu vorgesehen, in einem der zweiten Batteriezelle 22 zugeordneten ersten Schaltzustand die zweite Batteriezelle 22 über den zweiten Messeingang 62 und den dritten Messeingang 63 und über den geschlossenen zweiten Schalter 72 und den geschlossenen sechsten Schalter 83 einzeln an die zwei Eingänge 102, 102, 112, 113 jedes Analog-Digital-Wandlers 100, 110 anzuschließen. Ferner ist die Schalteinheit 70 dazu vorgesehen, in einem der aus den Batteriezellen 21 und 22 ausgebildeten Batteriezellreihenschaltung zugeordneten ersten Schaltzustand diese Batteriezellreihenschaltung über den ersten Messeingang 61 und den dritten Messeingang 63 und über den ersten geschlossenen Schalter 71 und den sechsten geschlossenen Schalter 83 einzeln an zwei Eingänge 102, 103, 112, 113 jeder Messeinheit 100, 110 anzuschließen. Es ist ersichtlich, dass jedem ersten Schaltzustand der Schalteinheit 70 ein jeweils anderes Schaltmuster der den Messeingängen 61, 62, 63 zugeordneten Schalter 71, 72, 73, 81, 82, 83 zugeordnet ist.
  • Mittels der Steuereinheit können jede Batteriezelle 21, 22 und die aus den zwei Batteriezellen 21, 22 ausgebildete Batteriezellreihenschaltung jeweils einzeln auswählt werden. Mittels der Steuereinheit wird dabei die Schalteinheit 70 in denjenigen ersten Schaltzustand, der der ausgewählten Batteriezelle 21, 22 oder der ausgewählten Batteriezellreihenschaltung zugeordnet ist, versetzt. Dabei wird die ausgewählte Batteriezelle 21, 22 oder die ausgewählte Batteriezellreihenschaltung an die zwei Eingänge 102, 103 des Analog-Digital-Wandlers 100 und an die zwei Eingänge, 112, 113 des Analog-Digital-Wandlers 110 gleichzeitig angeschlossen, so dass mittels der zwei Analog-Digital-Wandler 100, 110 eine mittels der ausgewählten Batteriezelle 21, 22 oder der ausgewählten Batteriezellreihenschaltung bereitgestellte Spannung gleichzeitig gemessen werden kann.
  • Die Schalteinheit 70 kann in Form eines Multiplexers mit derselben Funktionalität ausgebildet sein, der eingangsseitig über die Messeingänge 61, 62, 63 mit den Batteriezellen 21, 22 und ausgangsseitig jeweils über den entsprechenden Pegelwandler 101, 111 mit den zwei Eingänge 102, 103, 112, 113 jedes Analos-Digital-Wandlers 100, 110 verbunden ist.
  • Ferner können die Schalteinheit 70, die Pegelwandler 101, 111 und die Analog-Digital-Wandler 100, 110 als eine anwendungsspezifische integrierte Messschaltung ausgebildet sein, die in diesem Fall auch als Mess-ASIC 120 bezeichnet wird.
  • Zur Batteriezellspannungserfassung werden gemäß der ersten Ausführungsform sämtliche Batteriezellspannungsleitungen über die Messeingänge 61, 62, 63 bevorzugt an den Mess-ASIC 120 geführt. Ferner werden die Messeingänge 61, 62, 63 dann über die bevorzugt als Multiplexer ausgebildete Schalteinheit 70 an die Pegelwandler 101, 111 und die Analog-Digital-Wandler 100, 110 geführt. Bis auf die bevorzugt als Multiplexer ausgebildete Schalteinheit 70 entsteht somit eine Redundanz in einem analogen Teil des Mess-ASICs 120.
  • 2 zeigt ein gemäß einer zweiten Ausführungsform der Erfindung ausgebildetes Batteriesystem 10. Das Batteriesystem 10 unterscheidet sich von dem Batteriesystem 1 gemäß der ersten Ausführungsform der Erfindung alleine dadurch, dass die Batterie 20 neben den Messeingängen 61, 62, 63 auch mehrere Ladungszustandsausgleichseingänge 65, 66, 67 umfasst, über die ein Ladungszustandsausgleich zwischen Ladezuständen der Batteriezellen 21, 22 durchführbar ist, und dass eine unterschiedlich ausgebildete Schalteinheit 170 vorhanden ist. Zur Vereinfachung der Darstellung sind nur drei Ladezustandsausgleichseingänge 65, 66, 67 gezeigt. Aus demselben Grund wurden die drei Widerstände, über die die Messeingänge 61, 62, 63 mit den Batteriezellen 21, 22 verbunden sind, die mit diesen drei Widerständen verbundenen drei Kondensatoren und die Masse, an die diese drei Kondensatoren geführt sind, nicht mit Bezugszeichen versehen.
  • Die Schalteinheit 170 weist auch hier mehrere erste Schaltzustände auf und ist mittels einer Steuereinheit des Batteriesystems 10 in jedem ersten Schaltzustand versetzbar. Auch hier ist jeder Batteriezelle 21, 22 und/oder der aus den zwei Batteriezellen 21, 22 ausgebildeten Batteriezellreihenschaltung jeweils ein erster Schaltzustand der mehreren ersten Schaltzustände der Schalteinheit 170 zugeordnet.
  • Zur Realisierung der mehreren ersten Schaltzustände umfasst die Schalteinheit 170 auch hier die den Messeingängen 61, 62, 63 zugeordneten Schalter, die zur Vereinfachung der Darstellung nicht mit Bezugszeichen versehen worden sind. Bei geeigneter Steuerung durch die Steuereinheit des Batteriesystems 10 kann die in die mehreren ersten Schaltzustände versetzbare Schalteinheit 170 die Messeingänge 61, 62, 63 über die diesen zugeordneten Schalter in gleicher Weise wie die Schalteinheit 70 des Batteriesystems 1 gemäß der ersten Ausführungsform der Erfindung über die Pegelwandler 101, 101 an die Analog-Digital-Wandler 100, 110 führen.
  • Bei geeigneter Steuerung durch die Steuereinheit des Batteriesystems 10 kann die in die mehreren ersten Schaltzustände versetzbare Schalteinheit 170 die Messeingänge 61, 62, 63 über die diesen zugeordneten Schalter in gleicher Weise wie die Schalteinheit 70 des Batteriesystems 1 gemäß der ersten Ausführungsform der Erfindung über die Pegelwandler 101, 101 an die Analog-Digital-Wandler 100, 110 führen.
  • Ferner ist einem ersten Ladezustandsausgleichseingang 65 der drei Ladezustandsausgleichseingänge 65, 66, 67 der erste Messeingang 61 zugeordnet. Auch ist einem zweiten Ladezustandsausgleichseingang 66 der drei Ladezustandsausgleichseingänge 65, 66, 67 der zweite Messeingang 66 zugeordnet. Weiterhin ist einem dritten Ladezustandsausgleichseingang 67 der drei Ladezustandsausgleichseingänge 65, 66, 67 der dritte Messeingang 67 zugeordnet. Dabei ist jeder Ladezustandsausgleichseingang 65, 66, 67 in gleicher Weise an die Batterie 20 geführt, wie der diesem zugeordnete Messeingang 61, 62, 63 mit der Batterie 20 geführt ist. Auch sind die drei Ladezustandsausgleichseingänge 65, 66, 67 über drei weitere Widerstände 45, 46, 47 und über drei weitere Kondensatoren 55, 56, 57 in gleicher Weise verschaltet, wie die drei Messeingänge 61, 62, 63 über die drei Widerstände 41, 42, 43 und die drei Kondensatoren 51, 52, 53 verschaltet sind. Ferner ist der erste Ladungszustandseingang 65 mit einem Drain-Anschluss eines selbstsperrenden p-Kanal-MOSFETs verbunden, der an einem Source-Anschluss mit dem zweiten Ladezustandsausgleichseingang 66 und mit einem Drain-Anschluss eines selbstsperrenden weiteren p-Kanal-MOSFETs verbunden ist. Dabei ist der dritte Ladezustandsausgleichseingang 67 mit einem Source-Anschluss des weiteren p-Kanal-MOSFETs verbunden. Zur Vereinfachung der Darstellung wurden diese zwei p-Kanal-MOSFETs nicht mit Bezugszeichen versehen.
  • Die Schalteinheit 170 weist weiterhin mehrere zweite Schaltzustände auf und ist mittels der Steuereinheit des Batteriesystems 10 in jedem zweiten Schaltzustand versetzbar. Ferner ist jeder Batteriezelle 21, 22 und/oder der aus den zwei Batteriezellen 21, 22 ausgebildeten Batteriezellreihenschaltung jeweils ein zweiter Schaltzustand der mehreren zweiten Schaltzustände der Schalteinheit 170 zugeordnet.
  • Zur Realisierung der mehreren zweiten Schaltzustände umfasst die Schalteinheit 170 ferner mehrere weitere den Ladungszustandsausgleichseingängen 65, 66, 67 zugeordnete Schalter 75, 76, 77, 85, 86, 87. Dabei sind die Ladungszustandsausgleichseingänge 65, 66, 67 über die diesen zugeordneten weiteren Schalter 75, 76, 77, 85, 86, 87 mit der ersten Leitung 91 und mit der zweiten Leitung 92 in gleicher Weise verbindbar, wie die Messeingänge 61, 62, 63 über die diesen zugeordneten Schalter mit der ersten Leitung 91 und mit der zweiten Leitung 92 verbindbar sind.
  • Bei geeigneter Steuerung durch die Steuereinheit des Batteriesystems 10 kann die in die mehreren zweiten Schaltzustände versetzbare Schalteinheit 170 die Ladezustandsausgleichseingänge 65, 66, 67 über die diesen zugeordneten weiteren Schalter 75, 76, 77, 85, 85, 87 und über die Pegelwandler 101, 111 an die Analog-Digital-Wandler 100, 110 in gleicher Weise führen, wie die Messeingänge 61, 62, 63 über die diesen zugeordneten Schalter und über die Pegelwandler 101, 101 an die Analog-Digital-Wandler 100, 110 geführt werden.
  • Die Ladezustandsausgleichseingänge 65, 66, 67 können als weitere redundante Messeingänge während einer Zeit verwendet werden, in der kein Ladezustandsausgleich der Ladezustände der Batteriezellen 21, 22 durchgeführt wird.
  • Die Schalteinheit 170 kann auch hier in Form eines Multiplexers mit derselben Funktionalität ausgebildet sein, der eingangsseitig über die Messeingänge 61, 62, 63 und über die Ladezustandsausgleichseingänge 65, 66, 67 mit den Batteriezellen 21, 22 und ausgangsseitig jeweils über den entsprechenden Pegelwandler 101, 111 mit den zwei Eingängen 102, 103, 112, 113 jedes Analos-Digital-Wandlers 100, 110 verbunden ist.
  • Ferner können die Schalteinheit 170, die Pegelwandler 101, 111 und die Analog-Digital-Wandler 100, 110 auch hier als eine anwendungsspezifische integrierte Messschaltung 121 ausgebildet sein, die in diesem Fall auch als Mess-ASIC 121 bezeichnet wird.
  • Ein solcher Mess-ASIC 121 zur Erfassung von Batteriezellspannungen der Batteriezellen 21, 22 kann eine Ladezustandsausgleich-Funktion aufweisen. Durch die aktivierte Ladezustandsausgleich-Funktion kann über die Ladezustandsausgleichseingänge 65, 66, 67 ein Ladungszustandsausgleich zwischen den Ladezuständen der Batteriezellen 21, 22 durchgeführt werden. Die Ladezustandsausgleichseingänge 65, 66, 67 können als redundante Messeingänge während einer Zeit, in der die Ladezustandsausgleich-Funktion nicht aktiviert ist, verwendet werden. Dazu werden, wie schon erwähnt, die Ladezustandsausgleichseingänge 65, 66, 67 über die bevorzugt als Multiplexer ausgebildete Schalteinheit 170 über die Pegelwandler 101, 111 an die Analog-Digital-Wandler 100, 110 geführt. Bis auf die bevorzugt als Multiplexer ausgebildete Schalteinheit 170 entstehen dadurch komplett redundante Batteriezellspannung-Erfassungspfade, die jeweils von einem Frontend eines analogen Teils des Mess-ASICs 121 über den analogen Teil des Mess-ASICs 121 bis hin zu einem digitalen Teil des Mess-ASICs 121 verlaufen.
  • Jedes gemäß der ersten oder der zweiten Ausführungsform der Erfindung ausgebildete Batteriesystem 1, 10 umfasst bevorzugt eine in der 3 dargestellte Diagnoseeinheit 130. Die Diagnoseeinheit 130 ist dazu ausgebildet, eine gemeinsame Referenzspannung UR über den ersten Pegelwandler 101 als eine erste Spannung UR1 an dem ersten Analog-Wandler 100 eingangsseitig und über den zweiten Pegelwandler 111 als eine zweite Spannung UR2 auch an dem zweiten Analog-Wandler 110 eingangsseitig anzulegen. Dabei wird zum Durchführen einer Diagnose der zwei Analog-Digital-Wandler 100, 110 die gemeinsame Referenzspannung UR sowohl über den ersten Pegelwandler 101 und den ersten Analog-Digital-Wandler 100 als auch über den zweiten Pegelwandler 111 und den zweiten Analog-Digital-Wandler 110 zurückgemessen. In einer weiteren Verarbeitung werden ein über den ersten Pegelwandler 101 und den ersten Analog-Digital-Wandler 100 gemessener erster Referenzspannungswert der gemeinsamen Referenzspannung UR mit einem über den zweiten Pegelwandler 111 und den zweiten Analog-Digital-Wandler 110 gemessenen zweiten Referenzspannungswert der gemeinsamen Referenzspannung UR miteinander verglichen. Es entsteht somit der Vorteil, dass sich eine Ungenauigkeit der Referenzspannung UR heraus kürzt und dadurch eine Durchführung einer sehr genauen Diagnose ermöglicht wird.
  • Jedes gemäß der ersten oder der zweiten Ausführungsform der Erfindung ausgebildete Batteriesystem 1, 10 umfasst bevorzugt auch eine weitere Messeinheit 140, die als weiterer Analog-Digital-Wandler 140 ausgebildet ist.
  • Die Diagnoseeinheit 130 ist ferner bevorzugt dazu ausgebildet, die gemeinsame Referenzspannung UR auch an den weiteren Analog-Digital-Wandler 140 eingangsseitig anzulegen. Dabei wird der über den ersten Pegelwandler 101 und den ersten Analog-Digital-Wandler 100 gemessene erste Referenzspannungswert der gemeinsamen Referenzspannung UR und der über den zweiten Pegelwandler 111 und den zweiten Analog-Digital-Wandler 110 gemessene zweite Referenzspannungswert der gemeinsamen Referenzspannung UR jeweils auch mit einem über den weiteren Analog-Digital-Wandler 140 gemessenen weiteren Referenzspannungswert der gemeinsamen Referenzspannung UR verglichen.
  • Der weitere Analog-Digital-Wandler 140 kann bevorzugt auch zur Erfassung weiterer Messgrößen ausgebildet sein.
  • Eine zusätzliche Erfassung der Referenzspannung UR über den weiteren dritten Analog-Digital-Wandler 140 erlaubt eine genaue Lokalisierung eines aufgetretenen Fehlers, das heißt, eine genaue Identifizierung eines defekten Analog-Digital-Wandlers der zwei Analog-Digital-Wandler 100, 110. In einem solchen Fall kann bei einem erkannten defekten ersten Analog-Digital-Wandler 100 oder zweiten Analog-Digital-Wandler 110 ein weiterer Betrieb über den funktionierenden zweiten Analog-Digital-Wandler 110 oder ersten Analog-Digital-Wandler 100 ermöglicht werden.
  • Die Diagnoseeinheit 130 und gegebenenfalls auch der weitere Analog-Digital-Wandler 140 sind bevorzugt jeweils in dem entsprechenden Mess-ASSIC 120, 121 des entsprechenden Batteriesystems 1, 10 integriert.
  • Neben der voranstehenden schriftlichen Offenbarung wird hiermit zur weiteren Offenbarung der Erfindung ergänzend auf die Darstellung in den 1 bis 4 Bezug genommen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 2013/0335095 A1 [0004]
    • US 2012/0203482 A1 [0005]
    • WO 2010/074290 A1 [0006]

Claims (14)

  1. Batteriesystem (1; 10) mit einer Batterie (20) mit mehreren in Reihe verbundenen Batteriezellen (21, 22), wobei zum Messen einer mittels mindestens einer Batteriezelle (21, 22) der mehreren Batteriezellen (21, 22) bereitgestellten Spannung in dem Batteriesystem (1; 10) mehrere insbesondere jeweils als Analog-Digital-Wandler ausgebildete Messeinheiten (100, 110) angeordnet sind, die jeweils zum Messen einer an der entsprechenden Messeinheit (100, 110) eingangsseitig anliegenden Spannung ausgebildet sind, gekennzeichnet durch eine Steuereinheit und eine mittels der Steuereinheit steuerbare Schalteinheit (70; 170) mit mehreren Schaltzuständen, wobei jeder Batteriezelle (21, 22) und/oder einer jeden aus mindestens zwei Batteriezellen (21, 22) der mehreren Batteriezellen (21, 22) ausgebildete Batteriezellreihenschaltung jeweils mindestens ein Schaltzustand der mehreren Schaltzustände zugeordnet ist, wobei die Schalteinheit (70; 170) dazu vorgesehen ist, in jedem Schaltzustand die diesem zugeordnete Batteriezelle (21, 22) oder Batteriezellreihenschaltung einzeln an zwei Eingänge (102, 103, 112, 113) jeder Messeinheit (100, 110) anzuschließen, wobei die Steuereinheit dazu ausgebildet ist, jeweils eine Batteriezelle (21, 22) und/oder jeweils eine Batteriezellreihenschaltung auszuwählen und zum redundanten Messen einer von der ausgewählten Batteriezelle (21, 22) oder von der ausgewählten Batteriezellreihenschaltung bereitgestellten Spannung mittels der mehreren Messeinheiten (100, 110) die Schalteinheit (70; 170) in einen der ausgewählten Batteriezelle (21, 22) oder der ausgewählten Batteriezellreihenschaltung zugeordneten Schaltzustand der mehreren Schaltzustände zu versetzen.
  2. Batteriesystem (1; 10) nach Anspruch 1, wobei die Batterie (20) mehrere Messeingänge (61, 62, 63) und/oder mehrere Ladezustandsausgleichseingänge (65, 66, 67) umfasst und jeder Batteriezelle (21, 22) jeweils zwei Messeingänge (61, 62, 62, 63) und/oder jeweils zwei Ladezustandsausgleichseingänge (65, 66, 66, 67) zugeordnet sind, wobei zwei Batteriezellanschlüsse (31, 32, 33, 34) jeder Batteriezelle (21, 22) jeweils mit einem anderen Messeingang (61, 62, 62, 63) der zwei dieser zugeordneten Messeingänge (61, 62, 62, 63) und/oder jeweils mit einem anderen Ladezustandsausgleicheingang (65, 66, 66, 67) der zwei dieser zugeordneten Ladezustandsausgleichseingänge (65, 66, 66, 67) verbunden sind, wobei die Schalteinheit (70; 170) für jede Batteriezelle (21, 22) und/oder für jede Batteriezellreihenschaltung jeweils einen dieser zugeordneten ersten Schaltzustand der mehreren Schaltzustände und/oder jeweils einen dieser zugeordneten zweiten Schaltzustand der mehreren Schaltzustände aufweist, wobei in jedem ersten Schaltzustand die diesem zugeordnete Batteriezelle (21, 22) oder die diesem zugeordnete Batteriezellreihenschaltung über zwei entsprechende Messeingänge (61, 62, 62, 63, 61, 63) jeweils einzeln an die zwei Eingänge (102, 103, 112, 113) jeder Messeinheit (100, 110) angeschlossen ist und/oder wobei in jedem zweiten Schaltzustand die diesem zugeordnete Batteriezelle (21, 22) oder die diesem zugeordnete Batteriezellreihenschaltung über zwei Ladezustandsausgleichseingänge (65, 66, 66, 67, 65, 67) jeweils einzeln an die zwei Eingänge (102, 103, 112, 113) jeder Messeinheit (100, 110) angeschlossen ist.
  3. Batteriesystem (10) nach Anspruch 2, wobei die Schalteinheit (170) für jede Batteriezelle (21, 22) und/oder für jede Batteriezellreihenschaltung mindestens einen weiteren dieser zugeordneten Schaltzustand der mehreren Schaltzustände aufweist, wobei in jedem weiteren Schaltzustand die diesem zugeordnete Batteriezelle (21, 22) oder die diesem zugeordnete Batteriezellreihenschaltung über einen entsprechenden Messeingang (61, 62, 63) und über einen entsprechenden Ladzustandsausgleichseingang (65, 66, 67) jeweils einzeln an die zwei Eingänge (102, 103, 112, 113) jeder Messeinheit (110, 111) angeschlossen ist.
  4. Batteriesystem (1; 10) nach einem der Ansprüche 2 oder 3, wobei jeweils zwei direkt miteinander verbundene Batteriezellanschlüsse (32, 33) unterschiedlicher Batteriezellen (21, 22) der mehreren Batteriezellen (21, 22) mit einem und demselben Messeingang (62) der mehreren Messeingänge (61, 62, 63) und/oder mit einem und demselben Ladezustandsausgleichseingang (66) der mehreren Ladezustandsausgleichseingänge (65, 66, 67) verbunden sind.
  5. Batteriesystem (1; 10) nach einem der vorangehenden Ansprüche, wobei jeder Messeinheit (100, 110) jeweils ein Pegelwandler (101, 111) des Batteriesystems (1; 10) zugeordnet ist, der ausgangsseitig mit den zwei Eingängen (102, 103, 112, 113) der diesem zugeordneten Messeinheit (100, 110) verbunden ist, wobei jede Batteriezelle (21, 22) und/oder jede Batteriezellreihenschaltung jeweils einzeln an die zwei Eingänge (102, 103, 112, 113) jeder Messeinheit (100, 110) über zwei Eingänge (104, 105, 114, 114) des dieser zugeordneten Pegelwandlers (101, 111) anschließbar sind.
  6. Batteriesystem (1; 10) nach einem der vorangehenden Ansprüche, wobei die Schalteinheit (70; 170) eine erste Leitung (91) und eine zweite Leitung (92) umfasst, wobei die erste Leitung (91) mit einem ersten Eingang (102, 112) der zwei Eingänge (102, 103, 112, 113) jeder Messeinheit (100, 110) und die zweite Leitung (92) mit einem zweiten Eingang (103, 113) der zwei Eingänge (102, 103, 112, 113) jeder Messeinheit (100, 110) verbunden ist, wobei die Schalteinheit (70; 170) dazu ausgebildet ist, zur Realisierung der mehreren Schaltzustände einen jeden Batteriezellanschluss (31, 32, 33, 34) von zwei Batteriezellanschlüssen (31, 32, 33, 34) jeder Batteriezelle (21, 22) mit der ersten Leitung (91) und/oder mit der zweiten Leitung (92) zu verbinden.
  7. Batteriesystem (1; 10) nach Anspruch 6, wobei die Schalteinheit (70; 170) dazu ausgebildet ist, jeden Batteriezellanschluss (31, 32, 33, 34) mit der ersten Leitung (91) und/oder mit der zweiten Leitung (92) über den mit diesem verbundenen Messeingang (61, 62, 63) zu verbinden und/oder jeden Batteriezellanschluss (31, 32, 33, 34) mit der ersten Leitung (91) und/oder mit der zweiten Leitung (92) über den mit diesem verbundenen Ladezustandsausgleichseingang (65, 66, 67) zu verbinden.
  8. Batteriesystem (1; 10) nach einem der vorangehenden Ansprüche, aufweisend eine Diagnoseeinheit (130), die dazu ausgebildet ist, zum Bestimmen eines fehlerhaften Funktionszustandes jeder Messeinheit (100, 110) eine gemeinsame Referenzspannung (UR) an jeder Messeinheit (100, 110) insbesondere über einen der entsprechenden Messeinheit (100, 110) jeweils zugeordneten Pegelwandler (101, 111) eingangsseitig anzulegen und über die Messeinheiten (100, 110) erfasste Referenzspannungswerte der Referenzspannung (UR) untereinander zu vergleichen.
  9. Batteriesystem (1; 10) nach Anspruch 8, aufweisend eine insbesondere als weiterer Analog-Digital-Wandler ausgebildete weitere Messeinheit (140), die zum Messen einer eingangsseitig anliegenden Spannung ausgebildet ist, wobei die Diagnoseeinheit (130) dazu ausgebildet ist, zum Bestimmen eines fehlerhaften Funktionszustandes jeder Messeinheit (100, 110) die Referenzspannung (UR) auch an der weiteren Messeinheit (140) eingangsseitig anzulegen und einen weiteren über die weitere Messeinheit (140) erfassten Referenzspannungswert der Referenzspannung (UR) mit jedem über die Messeinheiten (100, 110) erfassten Referenzspannungswert der Referenzspannung (UR) jeweils zu vergleichen.
  10. Verfahren zum Messen einer mittels mindestens einer Batteriezelle (21, 22) von mehreren in Reihe miteinander verbundenen Batteriezellen (21, 22) einer Batterie (20) bereitgestellten Spannung, bei dem mehrere insbesondere jeweils als Analog-Digital-Wandler ausgebildete Messeinheiten (100, 10) verwendet werden, die jeweils zum Messen einer eingangsseitig an der entsprechenden Messeinheit (100, 110) anliegenden Spannung ausgebildet sind, dadurch gekennzeichnet, dass eine Schalteinheit (70; 170) mit mehreren Schaltzuständen verwendet wird, wobei jeder Batteriezelle (21, 22) und/oder einer jeden aus mindestens zwei Batteriezellen (21, 22) der mehreren Batteriezellen (21, 22) ausgebildeten Batteriezellreihenschaltung jeweils mindestens ein Schaltzustand der mehrere Schaltzustände zugeordnet ist, wobei über die in jeden Schaltzustand versetzte Schalteinheit (70, 170) die diesem zugeordnete Batteriezelle (21, 22) oder Batteriezellreihenschaltung einzeln an zwei Eingänge (102, 103, 112, 113) jeder Messeinheit (100, 110) anschließbar ist, wobei jeweils eine Batteriezelle (21, 22) und/oder jeweils eine Batteriezellreihenschaltung ausgewählt wird und zum redundanten Messen einer von der ausgewählten Batteriezelle (21, 22) oder von der ausgewählten Batteriezellreihenschaltung bereitgestellten Spannung mittels der mehreren Messeinheiten (100, 110) die Schalteinheit (70, 170) in einen der ausgewählten Batteriezelle (21, 22) oder der ausgewählten Batteriezellreihenschaltung zugeordneten Schaltzustand der mehreren Schaltzustände versetzt wird.
  11. Verfahren nach Anspruch 10, wobei die Batterie (20) mehrere Messeingänge (61, 62, 63) und/oder mehrere Ladezustandsausgleichseingänge (65, 66, 67) umfasst und jeder Batteriezelle (21, 22) jeweils zwei Messeingänge (61, 62, 62, 63) und/oder jeweils zwei Ladezustandsausgleichseingänge (65, 66, 67) zugeordnet sind, wobei zwei Batteriezellanschlüsse (31, 32, 33, 34) jeder Batteriezelle (21, 22) jeweils mit einem anderen Messeingang (61, 62, 62, 63) der zwei dieser zugeordneten Messeingänge (61, 62, 62, 63) und/oder jeweils mit einem anderen Ladezustandsausgleicheingang (65, 66, 66, 67) der zwei dieser zugeordneten Ladezustandsausgleichseingänge (65, 66, 66, 67) verbunden sind, wobei die Schalteinheit (70; 170) für jede Batteriezelle (21, 22) und/oder für jede Batteriezellreihenschaltung jeweils einen dieser zugeordneten ersten Schaltzustand der mehreren Schaltzustände und/oder jeweils einen dieser zugeordneten zweiten Schaltzustand der Schaltzustände aufweist, wobei in jedem ersten Schaltzustand die diesem zugeordnete Batteriezelle (21, 22) oder die diesem zugeordnete Batteriezellreihenschaltung über zwei entsprechende Messeingänge (61, 62, 62, 63, 61, 63) jeweils einzeln an die zwei Eingänge (102, 103, 112, 113) jeder Messeinheit (100, 110) angeschlossen ist und/oder wobei in jedem zweiten Schaltzustand die diesem zugeordnete Batteriezelle (21, 22) oder die diesem zugeordnete Batteriezellreihenschaltung über zwei entsprechende Ladezustandsausgleichseingänge (65, 66, 66, 67, 65, 67) jeweils einzeln an die zwei Eingänge (102, 103, 112, 113) jeder Messeinheit (100, 110) angeschlossen ist.
  12. Verfahren nach Anspruch 11, wobei die Schalteinheit (170) für jede Batteriezelle (21, 22) und/oder für jede Batteriezellreihenschaltung mindestens einen weiteren dieser zugeordneten Schaltzustand der mehreren Schaltzustände aufweist, wobei in jedem weiteren Schaltzustand die diesem zugeordnete Batteriezelle (21, 22) oder die diesem zugeordnete Batteriezellreihenschaltung über einen entsprechenden Messeingang (61, 62, 63) und über einen entsprechenden Ladzustandsausgleichseingang (65, 66, 67) jeweils einzeln an die zwei Eingänge (102, 103, 112, 113) jeder Messeinheit (100, 110) angeschlossen ist.
  13. Verfahren nach einem der Ansprüche 10 bis 12, wobei zum Bestimmen eines fehlerhaften Funktionszustandes jeder Messeinheit (100, 110) eine gemeinsame Referenzspannung (UR) insbesondere über einen der entsprechenden Messeinheit (100, 110) jeweils zugeordneten Pegelwandler (101, 111) an jeder Messeinheit (100, 110) eingangsseitig angelegt wird und über die Messeinheiten (100, 110) erfasste Referenzspannungswerte der Referenzspannung (UR) untereinander verglichen werden.
  14. Verfahren nach Anspruch 13, wobei zum Bestimmen eines fehlerhaften Funktionszustandes jeder Messeinheit (100, 110) eine insbesondere als weiterer Analog-Digital-Wandler ausgebildete weitere Messeinheit (140) verwendet wird, die zum Messen einer eingangsseitig anliegenden Spannung ausgebildet ist, wobei die Referenzspannung (UR) eingangsseitig auch an der weiteren Messeinheit (140) angelegt wird und ein weiterer über die weitere Messeinheit (140) erfasster Referenzspannungswert der Referenzspannung (UR) mit jedem über die Messeinheiten (100, 110) erfassten Referenzspannungswert der Referenzspannung (UR) jeweils verglichen wird.
DE102015202567.5A 2015-02-12 2015-02-12 Batteriesystem mit einer Batterie und mehreren Messeinheiten zum Messen einer mittels mindestens einer Batteriezelle der Batterie bereitgestellte Spannung und Verfahren zum Messen einer mittels mindestens einer Batteriezelle einer Batterie bereitgestellte Spannung Pending DE102015202567A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102015202567.5A DE102015202567A1 (de) 2015-02-12 2015-02-12 Batteriesystem mit einer Batterie und mehreren Messeinheiten zum Messen einer mittels mindestens einer Batteriezelle der Batterie bereitgestellte Spannung und Verfahren zum Messen einer mittels mindestens einer Batteriezelle einer Batterie bereitgestellte Spannung
PCT/EP2016/051861 WO2016128230A1 (de) 2015-02-12 2016-01-29 Batteriesystem mit einer batterie und mehreren messeinheiten zum messen einer mittels mindestens einer batteriezelle der batterie bereitgestellte spannung und verfahren zum messen einer mittels mindestens einer batteriezelle einer batterie bereitgestellte spannung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015202567.5A DE102015202567A1 (de) 2015-02-12 2015-02-12 Batteriesystem mit einer Batterie und mehreren Messeinheiten zum Messen einer mittels mindestens einer Batteriezelle der Batterie bereitgestellte Spannung und Verfahren zum Messen einer mittels mindestens einer Batteriezelle einer Batterie bereitgestellte Spannung

Publications (1)

Publication Number Publication Date
DE102015202567A1 true DE102015202567A1 (de) 2016-08-18

Family

ID=55272477

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015202567.5A Pending DE102015202567A1 (de) 2015-02-12 2015-02-12 Batteriesystem mit einer Batterie und mehreren Messeinheiten zum Messen einer mittels mindestens einer Batteriezelle der Batterie bereitgestellte Spannung und Verfahren zum Messen einer mittels mindestens einer Batteriezelle einer Batterie bereitgestellte Spannung

Country Status (2)

Country Link
DE (1) DE102015202567A1 (de)
WO (1) WO2016128230A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3358361A1 (de) 2017-02-07 2018-08-08 Robert Bosch GmbH Batteriesystem und verfahren zur messung von messspannungen in einem batteriesystem
DE102017204551A1 (de) 2017-03-20 2018-09-20 Robert Bosch Gmbh Messschaltung für ein Batteriemodul, Verfahren zur Herstellung einer Messschaltung und Batteriemodul
CN109661745A (zh) * 2016-09-09 2019-04-19 黑拉有限责任两合公司 双电压电池及其安装方法
DE102018209900A1 (de) 2018-06-19 2019-12-19 Robert Bosch Gmbh Elektrisches Energiespeichersystem, Vorrichtung und/oder Fahrzeug und Verfahren zum Betreiben eines elektrischen Energiespeichersystems
WO2024037876A1 (de) * 2022-08-17 2024-02-22 Vitesco Technologies GmbH Schaltungsanordnung zur überwachung einer akkumulatorzelle
WO2024079050A1 (de) * 2022-10-11 2024-04-18 Vitesco Technologies Germany Gmbh Verfahren und schaltungsanordnung zur überwachung einer akkumulatorzelle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11835584B2 (en) 2020-08-19 2023-12-05 Analog Devices International Unlimited Company Battery SOH determination circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009047856A1 (de) * 2008-10-20 2010-04-29 GM Global Technology Operations, Inc., Detroit System und Verfahren zur Identifikation von Problemen bei Strom- und Spannungsmessung
WO2010074290A1 (ja) 2008-12-28 2010-07-01 株式会社ソリトンシステムズ 集積回路及びそれを用いた電池監視装置
US20110196632A1 (en) * 2010-02-11 2011-08-11 Denso Corporation Battery pack monitoring apparatus
US20120203482A1 (en) 2011-02-07 2012-08-09 Analog Devices, Inc. Diagnostic method to monitor battery cells of safety-critical systems
US20130335095A1 (en) 2011-03-31 2013-12-19 Renessas Electronics Corporation Voltage monitoring module and voltage monitoring system
EP2700965A2 (de) * 2012-08-24 2014-02-26 Renesas Electronics Corporation Halbleiterbauelement und Batteriespannungsüberwachungsvorrichtung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935893B2 (ja) * 2009-12-24 2012-05-23 株式会社デンソー 電池異常判定装置
KR101174893B1 (ko) * 2010-08-06 2012-08-17 삼성에스디아이 주식회사 배터리 팩 및 이의 제어 방법
DE102011004980A1 (de) * 2011-03-02 2012-09-06 Sb Limotive Co., Ltd. Batteriemodul und Batterie mit redundanter Zellspannungserfassung
US9958507B2 (en) * 2011-05-09 2018-05-01 Analog Devices, Inc. Channel verification of multiple channels on one chip
JP5787997B2 (ja) * 2011-05-31 2015-09-30 日立オートモティブシステムズ株式会社 電池システム監視装置
JP6051542B2 (ja) * 2012-03-07 2016-12-27 ミツミ電機株式会社 電池電圧監視回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009047856A1 (de) * 2008-10-20 2010-04-29 GM Global Technology Operations, Inc., Detroit System und Verfahren zur Identifikation von Problemen bei Strom- und Spannungsmessung
WO2010074290A1 (ja) 2008-12-28 2010-07-01 株式会社ソリトンシステムズ 集積回路及びそれを用いた電池監視装置
US20110196632A1 (en) * 2010-02-11 2011-08-11 Denso Corporation Battery pack monitoring apparatus
US20120203482A1 (en) 2011-02-07 2012-08-09 Analog Devices, Inc. Diagnostic method to monitor battery cells of safety-critical systems
US20130335095A1 (en) 2011-03-31 2013-12-19 Renessas Electronics Corporation Voltage monitoring module and voltage monitoring system
EP2700965A2 (de) * 2012-08-24 2014-02-26 Renesas Electronics Corporation Halbleiterbauelement und Batteriespannungsüberwachungsvorrichtung

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109661745A (zh) * 2016-09-09 2019-04-19 黑拉有限责任两合公司 双电压电池及其安装方法
EP3358361A1 (de) 2017-02-07 2018-08-08 Robert Bosch GmbH Batteriesystem und verfahren zur messung von messspannungen in einem batteriesystem
DE102017201912A1 (de) 2017-02-07 2018-08-09 Robert Bosch Gmbh Batteriesystem und Verfahren zur Messung von Messspannungen in einem Batteriesystem
DE102017204551A1 (de) 2017-03-20 2018-09-20 Robert Bosch Gmbh Messschaltung für ein Batteriemodul, Verfahren zur Herstellung einer Messschaltung und Batteriemodul
WO2018171955A1 (de) 2017-03-20 2018-09-27 Robert Bosch Gmbh Messschaltung für ein batteriemodul, verfahren zur herstellung einer messschaltung und batteriemodul
DE102018209900A1 (de) 2018-06-19 2019-12-19 Robert Bosch Gmbh Elektrisches Energiespeichersystem, Vorrichtung und/oder Fahrzeug und Verfahren zum Betreiben eines elektrischen Energiespeichersystems
WO2024037876A1 (de) * 2022-08-17 2024-02-22 Vitesco Technologies GmbH Schaltungsanordnung zur überwachung einer akkumulatorzelle
WO2024079050A1 (de) * 2022-10-11 2024-04-18 Vitesco Technologies Germany Gmbh Verfahren und schaltungsanordnung zur überwachung einer akkumulatorzelle

Also Published As

Publication number Publication date
WO2016128230A1 (de) 2016-08-18

Similar Documents

Publication Publication Date Title
DE102015202567A1 (de) Batteriesystem mit einer Batterie und mehreren Messeinheiten zum Messen einer mittels mindestens einer Batteriezelle der Batterie bereitgestellte Spannung und Verfahren zum Messen einer mittels mindestens einer Batteriezelle einer Batterie bereitgestellte Spannung
EP3503343B1 (de) Elektrisches system und verfahren zur diagnose der funktionsfähigkeit von leistungsrelais in einem elektrischen system
EP3420626B1 (de) Batteriesystem mit einer spannungsausgleichsschaltung, verfahren zum erkennen eines fehlerhaften zustandes der spannungsausgleichsschaltung und der zellspannungsmessung
DE102014222676B4 (de) Überwachen der spannung eines batteriesatzes in einem elektrofahrzeug
DE102018214609A1 (de) Akkupack sowie Ladeverfahren für ein Akkupack
DE102012222749B4 (de) Verfahren und System zur Kalibrierung von Batteriestrom-Messung
DE102012213159A1 (de) Batteriesystem mit Batterieschützen und einer Diagnosevorrichtung zum Überwachen des Funktionszustandes der Schütze sowie dazugehöriges Diagnoseverfahren
DE102017211639A1 (de) Batterieüberwachungssystem
DE102015108024B4 (de) Kontinuierliche leckdetektionsschaltung mit integrierter robustheitsprüfung und symmetrischer fehlerdetektion
DE102014202626A1 (de) Batteriemanagementsystem für eine Batterie mit mehreren Batteriezellen und Verfahren
EP2619844B1 (de) Batteriesystem und verfahren zur bestimmung von batteriemodulspannungen
EP2617095A1 (de) Batteriesystem mit zellspannungserfassungseinheiten
DE102014216419A1 (de) Verfahren zur Überprüfung mindestens einer Messeinrichtung zur Messung eines durch einen Strompfad fließenden elektrischen Stromes
DE102009000396A1 (de) Spannungserfassung von Batteriezellen
DE102016220958B4 (de) Spannungserkennungsvorrichtung
WO2016050403A1 (de) Batteriemanagementsystem und verfahren zur kalibrierung eines sensors eines batteriemanagementsystems
DE102005025616B4 (de) Verfahren zur Überwachung und/oder Steuerung oder Regelung der Spannung einzelner Zellen in einem Zellstapel
DE102020104825A1 (de) System zum messen von spannungsunterschieden zwischen batteriezellen und zum erlangen von batteriezellenspannungen unter verwendung der spannungsunterschiede
WO2012123286A1 (de) Elektrische batterie und verfahren zur messung der zellspannungen in einer elektrischen batterie
DE102010041053A1 (de) Batteriesystem zur Messung von Batteriemodulspannungen
DE102012107090A1 (de) Mehrleitermessvorrichtung zum Erfassen eines fehlerhaften, temperaturabhängigen Widerstandssensors
DE102011079360A1 (de) Vorrichtung und Verfahren zur Messung einer maximalen Zellspannung
EP3825700A1 (de) Verfahren und vorrichtung zum überprüfen einer funktionsfähigkeit eines als systemwiderstand dienenden widerstands eines batteriesystems
DE102012215619A1 (de) Batteriesystem mit Messeinrichtung zum Messen des Isolationswiderstands einer galvanischen Trennung und Verfahren zum Messen des Isolationswiderstands einer galvanischen Trennung
DE102011006304A1 (de) Batterie mit sicherem Stromsensor

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed