-
Einleitung
-
Die Erfindung betrifft eine Methode zur Ansteuerung der Statorspulen eines bürstenlosen Motors mit einer Erregung, die auf einem im Rotor befindlichen Permanentmagneten basiert. Ein solcher Motor umfasst typischerweise einen Rotor, der selbst einen Permanentmagneten mit mindestens zwei Magnetpolen enthält. Dabei sollte die geradzahlige Zahl von Magnetpolen symmetrisch um die Rotationsachse des Motors verteilt sein, was in der Realität nur annähernd der Fall ist. Der Rotor ist dabei drehbar in einem durch Statorspulen außerhalb des Rotors erzeugten Magnetfeld gelagert. Auch das durch die Statorspulen erzeugte Magnetfeld weist in der Regel nur eine annähernde Rotationssymmetrie um die Rotorachse auf. Dieses Magnetfeld wird durch die Superposition der Felder der mehreren, verschiedenen Statorspulen erzeugt, die typischerweise symmetrisch um die Drehachse des besagten Rotors herumgruppiert werden, was in der Realität ebenfalls nur annähernd gelingt. Diese Statorspulen erzeugen bei geeigneter Ansteuerung ein magnetisches Drehfeld mit einer Magnetfeld bezogenen Rotationsachse, die wieder nur annähernd der mechanischen Rotationsachse des Rotors entspricht. Diesem rotierenden magnetischen Drehfeld folgt dann der Rotor aufgrund seiner permanenten Magnetisierung mit seinen Magnetpolen. Bei der Ansteuerung der Statorspulen solcher Elektromotoren mit Rotoren mit einem durch einen oder mehrere Permanentmagneten erregten Magnetfeld, den bereits erwähnten BLDC-Motoren, kann eine Blockkommutierung verwendet werden. Um ein fortschreitendes Magnetfeld zu erzeugen, sind vorzugsweise mindestens drei Statorspulen notwendig. Die Ansteuerung der mindestens drei Statorspulen erfolgt durch mindestens drei zugehörige Halbbrücken, die jeweils einen oberen und einen unteren Leistungsschalter, vorzugsweise jeweils einen Leistungstransistor enthalten. Diese Ansteuerung der Leistungstransistoren erfolgt möglichst synchron zur Winkelposition des Rotors bezogen auf die Lage der Statorspulen, um den Wirkungsgrad zu maximieren. Die Rotorposition kann entsprechend dem Stand der Technik mit Hilfe von Sensoren detektiert werden oder auf Basis der in den Statorspulen des Motors induzierten elektromotorischen Kraft. Hierzu sei auf 1 bereits hier verwiesen, die ein solches System entsprechend dem Stand der Technik (SdT) zeigt. Die Statorspulen eines solchen Motors (M) weisen vorzugsweise drei Motoranschlüsse, hier mit U, V und W bezeichnet, auf. Hierbei sei U der erste Motoranschluss, V der zweite Motoranschluss und W der dritte Motoranschluss. Ein Ansteuerblock (St) legt die Versorgungsspannungen in vorgegebenen Kommutierungsintervallen (Φ1 bis Φ6, 2) an die jeweiligen Motoranschlüsse (U, V, W) oder lässt die Motoranschlüsse (U, V, W) in einigen der vorgegebenen Kommutierungsintervallen (Φ1 bis Φ6, 2) gar unbestromt, wodurch an den betreffenden Motoranschlüssen (U, V, W) in den betreffenden Kommutierungsintervallen (Φ1 bis Φ6, 2) die elektromotorische Kraft (EMK) einen messbaren Spannungsverlauf hervorruft. Wie bereits beschrieben, weist jede Halbbrücke einen oberen Schalter zur Verbindung des jeweiligen Motoranschlusses (U, V, W) gegen eine positive Versorgungsspannung und einen unteren Schalter zur Verbindung des jeweiligen Motoranschlusses (U, V, W) gegen eine negative Versorgungsspannung auf. Hierdurch kann eine nicht in 1 gezeichnete Steuerung, die typischerweise innerhalb des Ansteuerblocks (St) lokalisiert ist, den jeweiligen Motoranschluss (U, V, W) mit der oberen oder unteren Versorgungsspannung verbinden. Die oberen und unteren Schalter können nun unabhängig voneinander geschaltet werden. Dabei sind nur drei der vier möglichen Schaltzustände der oberen und unteren Schalter einer einzelnen Halbbrücke jeweils erlaubt.
- • In einem ersten Zustand ist der obere Schalter geschlossen, wodurch der betreffende Motoranschluss mit der positiven Versorgungsspannung verbunden wird.
- • In einem zweiten Zustand ist der untere Schalter geschlossen wodurch der betreffende Motoranschluss mit der unteren Versorgungsspannung verbunden wird.
- • In einem dritten erlaubten Anschluss sind beide Schalter geöffnet, wodurch der zugeordnete Motoranschluss (U,V,W) nicht bestromt ist. Die betreffende Halbbrücke des Ansteuerblocks (St) ist passiv.
- • Das gleichzeitige Schließen beider Schalter ist als vierter, nicht zulässiger Schaltzustand verriegelt, um Querströme durch den oberen und unteren Schalter in Form eines Kurzschlusses auszuschließen.
-
Aufgrund des Ansteuerverfahrens, der Blockkommutierung, befindet sich eine der drei Halbbrücken zur Ansteuerung der betreffenden Motoranschlüsse immer im passiven Zustand, der dem beschriebenen dritten Zustand entspricht, in dem der betreffende Motoranschluss nicht aktiv bestromt wird. Während dieses dritten Zustands wird an dem betreffenden Motoranschluss (U, V, W) der Verlauf der EMK als Phasenspannung gegen ein Bezugspotenzial, beispielsweise Masse, sichtbar. Dieser dritte Zustand liegt bei Blockkommutierung immer an einem der drei Motoranschlüsse (U, V, W) während jeder der sechs zyklisch wiederholten Kommutierungsintervalle (Φ1 bis Φ6, 2) vor. Der erste Zustand liegt bei Blockkommutierung ebenso immer an einem anderen der drei Motoranschlüsse (U, V, W) während jeder der sechs zyklisch wiederholten Kommutierungsintervallen (Φ1 bis Φ6, 2) vor, der nicht im dritten Zustand ist. Auch der zweite Zustand liegt bei Blockkommutierung immer an einem anderen der drei Motoranschlüsse (U, V, W) während jeder der sechs zyklisch wiederholten Kommutierungsintervallen (Φ1 bis Φ6, 2) vor, der nicht im ersten oder dritten Zustand ist. Die Phasenspannung an dem Motoranschluss (U,V,W) der sich in einem Kommutierungsintervall (Φ1 bis Φ6, 2) gerade im dritten hochohmigen Zustand von Seiten der ansteuernden Halbbrücke befindet, kann, wie aus dem Stand der Technik bekannt ist, für die Positionsbestimmung des Rotors genutzt werden. 2 zeigt die entsprechenden Spannungen an den drei Motoranschlüssen (U, V, W) in den sechs zyklisch wiederholten Kommutierungsintervallen (Φ1 bis Φ6, 2).
-
Die folgende Tabelle gibt die Zustände (Zustände 1-3) der Halbbrücken in den verschiedenen Kommutierungsintervallen (Φ
1 bis Φ
6,
2) in diesem Beispiel aus dem Stand der Technik wieder.
| U | V | W |
Φ1 | 1 | 3 | 2 |
Φ2 | 1 | 2 | 3 |
Φ3 | 3 | 2 | 1 |
Φ4 | 2 | 3 | 1 |
Φ5 | 2 | 1 | 3 |
Φ6 | 3 | 1 | 2 |
-
Somit kann im Stand der Technik die EMK bei einem beispielhaften Motor mit drei Phasen durch sechs verschiedene Messkonstellationen
- • in dem ersten Kommutierungsintervall (Φ1) am zweiten Motoranschluss (V) gemessen werden und
- • in dem zweiten Kommutierungsintervall (Φ2) am dritten Motoranschluss (W) gemessen werden und
- • in dem dritten Kommutierungsintervall (Φ3) am ersten Motoranschluss (U) gemessen werden und
- • in dem vierten Kommutierungsintervall (Φ4) am zweiten Motoranschluss (V) gemessen werden und
- • in dem fünften Kommutierungsintervall (Φ5) am dritten Motoranschluss (W) gemessen werden und
- • in dem sechsten Kommutierungsintervall (Φ6) am ersten Motoranschluss (U) gemessen werden.
-
Häufig wird während dieser Messung der sogenannte Nulldurchgang der EMK genutzt, bei dem diese ihr Vorzeichen bezogen auf ein Bezugspotenzial wechselt. Die interne Zeitbasis für die Durchführung der Kommutierung wird dabei so geregelt, dass dieser Nulldurchgang genau in die Mitte des Kommutierungsintervalls an demjenigen Motoranschluss (U, V, W) erfolgt, der sich gerade im dritten Zustand befindet.
-
Hier sei kurz erwähnt, dass die Spannung am Motoranschluss (U, V, W) auch als Phasenspannung bezeichnet wird.
-
Alternativ kann im dritten Zustand der Verlauf der EMK selbst, also der Verlauf der Spannung am Motoranschluss (U, V, W), für die Bestimmung des Kommutierungszeitpunktes genutzt werden. Da die Geschwindigkeit des Rotors lediglich die Amplitude der EMK beeinflusst, diese im Übrigen aber eine Funktion des Verlaufs des magnetischen Flusses über die Winkelposition ist, stellt das Integral der EMK über die Zeit vom Nulldurchgang bis zum folgenden Kommutierungszeitpunkt eine Motorkonstante dar. Durch Vorgabe einer oberen Grenze für das Integral lässt sich umgekehrt so ein Kommutierungszeitpunkt mit einem festen Winkelabstand zum Nulldurchgang direkt d.h. ohne den Umweg über eine Zeitbasis festlegen.
-
Diese Messung der EMK erfolgt dabei durch eine EMK-Auswertevorrichtung (EMKA), die in 1 eingezeichnet ist. Diese misst in den sechs Kommutierungsintervallen (Φ1 bis Φ6, 2) entsprechend der jeweiligen dem aktuellen Kommutierungsintervall (Φ1 bis Φ6, 2) zugehörigen Messkonstellation die EMK und erzeugt hieraus für jeden der Motoranschlüsse (U, V, W) jeweils ein separates Kommutierungssignal (A1, A2, A3). Die Kommutierungssignale (A1, A2, A3) sind in 2 grob eingezeichnet. Ebenso ist die Rotorposition als Parameter der X-Achse aufgetragen.
-
Mit jedem Flankenwechsel auf einem Kommutierungssignal (A1, A2, A3) ändert eine Steuerungslogik innerhalb des Ansteuerblocks (St) ihren Zustand. Alternativ ist es möglich, entsprechend 2 das Kommutierungsintervall (Φ1 bis Φ6) durch eine statische Logik aus den Kommutierungssignalen (A1, A2, A3) abzuleiten. Beispielsweise lässt sich die erste Phase als Und-Verknüpfung des negierten ersten Kommutierungssignals (A1) mit dem negierten zweiten Kommutierungssignal (A2) und dem dritten Kommutierungssignal (A3) darstellen. Analog können die anderen Phasen ermittelt werden. Es hat sich jedoch gezeigt, dass vorzugsweise zwischen den Kommutierungsintervallen (Φ1 bis Φ6) kurzzeitig und asynchron nach jedem Kommutierungsintervall (Φi mit 0<i<7) ein diesem Kommutierungsintervall (Φi mit 0<i<7) zugehöriges Kommutierungszwischenintervall (Φi' mit 0<i<7) eingefügt wird, in dem die Schalter der Halbbrücken, die ihren Schaltungszustand ändern, abgeschaltet sind, um Querströme sicher auszuschließen. Insofern ist es sinnvoll, wenn die Gesamtzahl der wirklich durchlaufenen Zustände eines endlichen Automaten im Steuerblock (St) zwölf statt sechs beträgt.
-
3 zeigt eine beispielhafte Teilvorrichtung aus dem Stand der Technik (SdT) zur Ermittlung des ersten Kommutierungssignals (A1) für die Kommutierung am beispielhaften ersten Motoranschluss (U). Diese ist Teil der EMK-Auswertevorrichtung (EMKA). Im Folgenden wird beispielhaft schwerpunktmäßig auf diesen ersten Zweig in der Beschreibung fokussiert. Dem Fachmann wird es aber ein leichtes sein, das geschriebene auf die beiden korrespondierenden Zweige für den zweiten Motoranschluss (V) mit dem zugehörigen zweiten Kommutierungssignal (A2) und für den dritten Motoranschluss (W) mit dem zugehörigen dritten Kommutierungssignal (A3), die parallel angeordnet sind, zu übertragen. In einer ersten Stufe wird mittels einer Sternschaltung aus drei Spannungsteilern (SpT1, SpT2, SpT3) aus den drei Spannungen der drei Motoranschlüsse (U, V, W) ein virtuelles Sternpunktsignal (SpS) erzeugt. Dieses repräsentiert den Mittelwert der Spannungen an den drei Motoranschlüssen (U, V, W) und wird daher von der Spannung am ersten Motoranschluss (U) mittels eines zweiten Summierers (SU2U) abgezogen. Das so erhaltene erste korrigierte Spannungssignal (Ukorr) des ersten Motoranschlusses (U) ist die Differenz aus der Phasenspannung am ersten Motoranschluss (U) und dem Mittelwert der drei Phasenspannungen der drei Motoranschlüsse (U, V, W) und wird in einem ersten Integrator (Int1U) integriert. Ggf. kann der Integrator auch als Filter ausgelegt werden. Man erhält das erste Schwellwertsignal (S1U). Ein Vergleicher, genauer ein erster Komparator (CMP1U), vergleicht diesen Wert dieses ersten Schwellwertsignals (S1U) mit einem Wert des ersten Vorgabewerts (VrefU) für die Kommutierung und erzeugt hieraus das erste Kommutierungssignal (A1), das wie beschrieben in dem besagten Ansteuerblock (St) für die winkelgerechte Kommutierung der ersten Halbbrücke, die den ersten Motoranschluss (U) bestromt, genutzt wird.
-
4 entspricht der 3 mit dem Unterschied, dass nicht das korrigierte Spannungssignal (Ukorr) des ersten Motoranschlusses (U) für die Integration zum ersten Schellwertsignal (S1U) verwendet wird, sondern nur eine Polarität dieses Signals. 4 ist aus dem Stand der Technik (SdT) bekannt. Hierzu wird ein erster Begrenzer (BU) verwendet. Der erste Begrenzer (BU) erzeugt das begrenzte korrigierte Spannungssignal (U'korr) des ersten Motoranschlusses (U) aus dem korrigierten Spannungssignal (Ukorr) des ersten Motoranschlusses (U). Dabei setzt er das begrenzte korrigierte Spannungssignal (U'korr) des ersten Motoranschlusses (U) zu Null, wenn das korrigierte Spannungssignal (Ukorr) des ersten Motoranschlusses (U) negativ ist. Diese Begrenzung kann bei geeigneter Vorzeichenwahl aller Komponenten des Systems auch invertiert erfolgen. Wesentlich ist daher, dass der Begrenzer nur eine Polarität des korrigierten Spannungssignals (Ukorr) des ersten Motoranschlusses (U) passieren lässt und die andere Polarität zu Null abbildet.
-
Aus der
DE 100 54 594 A1 ist beispielsweise ein System zur optimalen Kommutierung bekannt. In der
3 der
DE 100 54 594 A1 sind drei Regelungszweige gezeichnet, die im Wesentlichen der
3 dieser Offenbarung entsprechen. Der erste Vorgabewert (V
refU), der zweite Vorgabewert (V
refV) und der dritte Vorgabewert (V
refW) dieser Offenbarung, die ggf. als gemeinsamer Vorgabewert (V
ref) übereinstimmen können, sind nicht eingezeichnet, aber für den Fachmann durch die Bezeichnung „Komparator“ implizit erkennbar. Wie oben beschrieben müssen diese für das Verfahren der
DE 100 54 594 A1 richtig vorab parametrisiert werden, weshalb das Verfahren der
DE 100 54 594 A1 das beschriebene Problem nicht löst.
-
Aus der
US 2008/0252240 A1 ist eine Vorrichtung bekannt, die einen optimierten Kommutierungszeitpunkt durch Auswertung der EMK ermittelt.
5 der
US20080252240A1 zeigt im oberen Teil den zeitlichen Verlauf einer Phasenspannung (Bezugszeichen Vu der
US 2008/0252240 A1 Diese Phasenspannung (Bezugszeichen Vu der
US 2008/0252240 A1 zeigt immer dann die EMK (Bezugszeichen Vu' der
US 2008/0252240 A1 wenn der zugehörige Treiber hochohmig ist. In dem unteren Teil der
3 der
US 2008/0252240 A1 ist die Bestromung der beiden anderen Phasen zeitlich dargestellt, wobei die Bestromung der betrachten Phase immer dann erfolgt, wenn das Signal (Bezugszeichen Spwm der
US 2008/0252240 A1 auf dem unteren Wert ist. Ist die betrachtete Phase hochohmig, so werden die beiden anderen Phasen bestromt und die EMK ist an der betrachteten Phase messbar.
-
Die EMK ist an der betrachteten Phasenspannung (Bezugszeichen Vu der
US 2008/0252240 A1 also immer nur dann messbar, wenn die beiden anderen Phasen bestromt sind.
-
In einer Vorrichtung oder einem Verfahren gemäß der
US 2008/0252240 A1 wird nun nach dem Nulldurchgang der EMK gesucht, um daraus den optimalen Kommutierungszeitpunkt zu bestimmen. Diese Bestimmung des Kommutierungszeitpunktes geschieht, falls dieser sich zeitlich nicht in einer hochohmigen Zeitperiode des Treibers befindet, durch lineare Interpolation von einem ersten Zeitpunkt aus durch eine geeignete zeitliche Verzögerung. Die Offenbarung der
US 2008/0252240 A1 beschreibt die Bestimmung dieser zeitlichen Verzögerung.
-
- Gemäß der US 2008/0252240 A1 wird zu beobachtbaren Zeitpunkten immer eine Messung der interessierenden Phasenspannung (Bezugszeichen Vu der US 2008/0252240 A1 genommen. Dadurch entsteht ein stufenförmiges Signal (Bezugszeichen Sdiff der US 2008/0252240 A1 in 5 der US 2008/0252240 A1 Gleichzeitig wird die zeitliche Steigung der Phasenspannung (Bezugszeichen Vu der US20080252240A1 ) zu diesen Messzeitpunkten auf der Basis zweier vergangener Messungen erfasst und eine Sägezahnkurve (Bezugszeichen Sramp der US 2008/0252240 A1 ) mit dieser Steigung erzeugt. Hierdurch kann der Nulldurchgang durch einfache vorzeichenrichtige Addition dieser Signale (Bezugszeichen Sdiff und Sramp der US 2008/0252240 A1 linear in den Zeitraum hinein interpoliert werden, zu dem die EMK am interessierenden Phasenanschluss nicht messbar ist, da dieser bestromt wird.
-
Es handelt sich also um ein Verfahren, das den Nulldurchgang der EMK direkt bewertet und den Nulldurchgang durch zeitliche lineare Interpolation ermittelt. Dies hat folgende Nachteile.
- 1. Das Verfahren der US 2008/0252240 A1 ist störanfällig, weil Störungen auf der EMK, also der interessierenden Phasenspannung (Bezugszeichen Vu der US 2008/0252240 A1 ) zu Ungenauigkeiten in der Berechnung des Nulldurchgangs führen. Damit ist das Verfahren der US 2008/0252240 A1 insbesondere bei niedrigen Drehzahlen mit geringer EMK besonders anfällig gegen Störungen, wie beispielsweise EMV.
- 2. Der eigentliche Kommutierungszeitpunkt muss durch Addition einer linear interpolierten Zeitspanne ermittelt werden. Die Linearität beruht auf der Bildung der ersten zeitlichen Ableitung in Form des Sägezahnsignals (Bezugszeichen Sramp der US 2008/0252240 A1 ). Diese lineare Interpolation setzt einen nicht beschleunigten Motor voraus. Somit funktioniert das Verfahren der US 20080/252240 A1 nur bei geringen Beschleunigungen. Eine solche Regelung, wie die der US 2008/0252240 A1 ist daher nicht geeignet, hohe Lastdynamiken abzufangen.
-
5 dieser Offenbarung zeigt die Spannung am ersten Motoranschluss (U) bei einer optimalen Kommutierung für eine geringe, eine mittlere und eine hohe Winkelgeschwindigkeit. Das dem ersten Motoranschluss (U) zugeordnete erste Schwellwertsignal (S1U), das entsprechend der vorausgehenden Beschreibung und der 3 oder der 4 erzeugt wird, steigt im Wesentlichen quadratisch an, bis es gleich dem ersten Vorgabewert (VrefU) für die Kommutierung ist. Daraufhin schaltet das nicht gezeichnete, erste Kommutierungssignal (A1) und die Halbbrücke, die dem ersten Motoranschluss (U) zugeordnet ist, wird kommutiert. Hierbei ist es vollkommen irrelevant, ob die Winkelgeschwindigkeit hoch oder niedrig ist.
-
6 zeigt die Spannung am ersten Motoranschluss (U) bei einer zu frühen Kommutierung, einer zu späten Kommutierung und einer optimalen Kommutierung. Das dem ersten Motoranschluss (U) zugeordnete erste Schwellwertsignal (S1U) steigt wieder im Wesentlichen quadratisch an, bis es gleich dem ersten Vorgabewert (VrefU) für die Kommutierung ist. Daraufhin schaltet das nicht gezeichnete erste Kommutierungssignal (A1) und die Halbbrücke, die dem ersten Motoranschluss (U) zugeordnet ist, wird kommutiert. Dies geschieht in der linken Teilfigur der 6 zu früh in der mittleren Teilfigur zu spät und in der rechten Teilfigur zu einem optimalen Zeitpunkt. Es soll deutlich werden, dass eine Lage des Nulldurchgangs in der Mitte des jeweiligen Kommutierungsintervalls optimal ist.
-
Neben dem bis hierhin beschrieben Zweig innerhalb der EMK-Auswertung (EMKA) für den ersten Motoranschluss (U) existieren typischerweise ein zweiter Zweig für den zweiten Motoranschluss (V) mit zugehörigen individuellen Elementen (SU2V, INT1V,CMP1V) und Signalen (Vkorr, S1V, VrefV) und ein dritter Zweig für den dritten Motoranschluss (W) mit zugehörigen individuellen Elementen (SU2W, INT1W,CMP1W) und Signalen (Wkorr, S1W, VrefW).
-
Um nun bei unterschiedlichen Motoren eine Kommutierung zur gleichen Winkelposition des Rotors zu erzielen, müssen die jeweiligen Vorgabewerte (VrefU, VrefV, VrefW) jeweils angepasst werden. Da der Verlauf des magnetischen Flusses in Beziehung zur Winkelposition des Rotors meist jedoch nicht bekannt und auch aus dem Datenblatt des Motors nicht bestimmt werden kann, müssen die jeweiligen Vorgabewerte (VrefU, VrefV, VrefW) zunächst experimentell bestimmt werden. Dabei müssen die jeweiligen Vorgabewerte (VrefU, VrefV, VrefW) im laufenden Betrieb so lange variiert werden bis die Kommutierung zum gewünschten Zeitpunkt durchgeführt wird. Typischerweise sind die Vorgabewerte jedoch gleich (VrefU=VrefV=VrefW=Vref).
-
Dem Fachmann ist dabei klar, dass die zuvor im Raummultiplex beschriebene Vorrichtung auch im Zeitmultiplex genutzt werden kann, dass also nur ein Zweig in der EMK-Auswertung (EMKA) realisiert werden muss, wenn die Werte eines Motoranschlusses (U, V, W) in den Kommutierungsintervallen (Φ1 bis Φ6, 2), in denen die zugehörige Halbbrücke sich in den Zuständen eins oder zwei befindet, zwischengespeichert werden können und die Werte in den entsprechenden Zweig geladen werden können, die dem Motoranschluss (U, V, W) zugeordnet sind, der in den Kommutierungsintervallen (Φ1 bis Φ6, 2) eine zugehörige Halbbrücke aufweist, die sich in dem betreffenden Kommutierungsintervall (Φ1 bis Φ6, 2) gerade im dritten Zustand befindet. Daher ist es sinnvoll, wenn Teile der Vorrichtung in ihrer Funktion mittels eines Mikrokontrollers oder Signalprozessors oder anderen Rechners realisiert werden. Insofern können die verschiedenen zuvor beschriebenen Elemente auch zu einem oder wenigen Elementen zusammengefasst werden.
-
-
Aufgabe der Erfindung
-
Es ist die Aufgabe der Erfindung eine automatische Ermittlung der jeweiligen Vorgabewerte für die jeweiligen Motoranschlüsse (U, V, W) zu ermöglichen und somit den Entfall der Charakterisierung der einzelnen konkreten BLDC-Motoren in der Fertigung zu ermöglichen. Hierbei sollen die im Stand der Technik erkannten Mängel vermieden werden. Dies betrifft insbesondere eine Vermeidung der manuellen Parametrisierung wie bei einem Verfahren entsprechend der
DE 10 054 594 A1 und die Drehzahlabhängigkeit, wie bei einem Verfahren der
US 2008/0252240 A1
-
Diese Aufgabe wird durch Vorrichtungen und Verfahren mit den Merkmalen der jeweiligen unabhängigen Ansprüche gelöst. Bevorzugte Ausführungsformen sind Gegenstand der abhängigen Ansprüche und der Beschreibung.
-
Beschreibung der Erfindung
-
Die erfindungsgemäße vollautomatische Ermittlung eines oder mehrerer Vorgabewerte (V
refU, V
refV, V
refW, V
ref) erfolgt im Gegensatz zum Verfahren der
US 2008/0252240 A1 mittels Integration der EMK. Hierdurch handelt es sich um ein Fluss basiertes Verfahren, das damit unabhängig von der Drehzahl und damit auch unabhängig von der Beschleunigung ist, was einen entscheidenden Vorteil gegenüber dem Verfahren der
US 2008/0252240 A1 darstellt.
-
Die Ermittlung des Vorgabewertes Vref kann dabei einerseits im aktiven Betrieb erfolgen und andererseits erfolgen, wenn der Rotor durch eine externe Kraft in eine Drehbewegung versetzt wird. Eine konstante Drehzahl ist im Gegensatz zur U5 2008/0252240 A1 somit nicht notwendig. Typischerweise wird ein gemeinsamer Vorgabewert (Vref) für alle drei Motoranschlüsse (U, V, W) ermittelt. Die Ermittlung von Motoranschluss spezifischen Vorgabewerten (VrefU, VRefV, VrefW) an Stelle eines gemeinsamen Vorgabewertes (Vref) ist zum Zwecke einer noch präziseren Korrektur der Motor-Asymmetrien jedoch ausdrücklich möglich.
-
Figurenliste
-
- 1 zeigt eine schematische Verschaltung einer Ansteuerungseinrichtung aus dem Stand der Technik und wurde bereits in der Einleitung als dem Stand der Technik zugehörig beschrieben.
- 2 zeigt die beispielhaft drei Kommutierungssignale (A1, A2, A3) und die zugehörigen Spannungsverläufe an den Motoranschlüssen (U, V, W) in schematischer Weise für mehrere Kommutierungsintervalle (Φ1bis Φ6) und wurde bereits in der Einleitung als dem Stand der Technik zugehörig beschrieben.
- 3 zeigt einen beispielhaften Zweig innerhalb der EMK-Auswertung (EMKA) für den ersten Motoranschluss (U) zur Erzeugung des dem ersten Motoranschluss (U) zugeordneten ersten Kommutierungssignals (A1) und wurde bereits in der Einleitung als dem Stand der Technik zugehörig beschrieben.
- 4 zeigt einen beispielhaften Zweig innerhalb der EMK-Auswertung (EMKA) für den ersten Motoranschluss (U) zur Erzeugung des dem ersten Motoranschluss (U) zugeordneten ersten Kommutierungssignals (A1) und wurde bereits in der Einleitung als dem Stand der Technik zugehörig beschrieben.
- 5 zeigt den quadratischen Anstieg des ersten Schwellwertsignals (S1U) und die Spannung am ersten Motoranschluss (U) wenn die zugehörige Halbbrücke des Ansteuerblockes (St) sich im hochohmigen dritten Zustand befindet, für verschiedene Winkelgeschwindigkeiten und wurde bereits in der Einleitung als dem Stand der Technik zugehörig beschrieben.
- 6 zeigt die Spannung am ersten Motoranschluss (U) wenn die zugehörige Halbbrücke des Ansteuerblockes (St) sich im hochohmigen dritten Zustand befindet, für verschiedene Werte des erfindungsgemäßen ersten Vorgabewertes (Vu) sowie den Spannungsverlauf des ersten Schwellwertsignals (S1U) und wurde bereits in der Einleitung als dem Stand der Technik zugehörig beschrieben.
- 7 zeigt eine Realisierung des Integrationsverfahrens, bei dem ein zusätzlicher Integrator (Int2) hinzugefügt wurde
-
Im Folgenden wird die Erfindung anhand der Figuren ab der 5 einschließlich, die nicht dem Stand der Technik entsprechen, näher erläutert. Hinsichtlich des beanspruchten Umfangs dieser Offenlegung sind einzig die Ansprüche maßgeblich.
-
7 zeigt eine beispielhafte erfindungsgemäße Teilvorrichtung zur Ermittlung des ersten Kommutierungssignals (A1) für die Kommutierung am ersten Motoranschluss (U). Es handelt sich dabei um einen ersten Zweig (ZW1) der EMK-Auswertung (EMKA) der 1 und 12. Insofern wird die in 4 beschriebene Teilvorrichtung durch diese neue erfindungsgemäße Teilvorrichtung in zumindest einem Zweig der EMK-Auswertung (EMKA), die ja typischerweise für jeden Motoranschluss (U, V, W) je einen solchen Zweig enthält, ersetzt. In einer ersten Stufe der erfindungsgemäßen Teilvorrichtung wird wieder mittels der bereits bekannten und unveränderten Sternschaltung aus drei Spannungsteilern (SpT1, SpT2, SpT3) aus den drei Spannungen der drei Motoranschlüsse (U, V, W) ein virtuelles Sternpunktsignal (SpS) erzeugt. Diese virtuelle Sternpunktspannung (SpS) wird wieder, wie zuvor, von der Spannung am ersten Motoranschluss (U) mittels des bekannten zweiten Summierers (SU2U) abgezogen. Das so wieder erhaltene korrigierte Spannungssignal (Ukorr) des ersten Motoranschlusses (U) wird in einem ersten Integrator (Int1U) wieder zu einem ersten Schwellwertsignal (S1U) integriert. Ggf. kann in einer speziellen Ausprägung der Erfindung der erste Integrator (Intl1U) auch hier als Filter ausgelegt werden. Bevorzugt integriert dabei der erste Integrator (Int1U) nur positive Werte des korrigierten Spannungssignals (Ukorr) des ersten Motoranschlusses (U) in den Kommutierungsintervallen (Φ1 bis (Φ6), in denen die zugehörige Halbbrücke des ersten Motoranschlusses (U) hochohmig ist. Dies sind in dem hier beschrieben Beispiel das dritte Kommutierungsintervall (Φ3) und das sechste Kommutierungsintervall (Φ6). Der erste Integrator (Int1U) wird typischerweise unmittelbar vor oder zu Beginn eines solchen Kommutierungsintervalls (Φ3, Φ6) beispielsweise durch den Ansteuerungsblock (St) oder eine andere Steuerung zurückgesetzt. Um nur die positiven Werte des korrigierten Spannungssignals (Ukorr) des ersten Motoranschlusses (U) aufzuintegrieren bestehen beispielsweise zwei Möglichkeiten:
-
Zum ersten ist es möglich, mit Hilfe eines ersten Begrenzers (BU) nur positive Signalanteile des korrigierten Spannungssignals (Ukorr) des ersten Motoranschlusses (U) zum ersten Integrator (Int1U) als begrenztes, korrigiertes Spannungssignal (Ukorr') des ersten Motoranschlusses (U) durchzuschalten und ansonsten dem ersten Integrator (Int1U) durch den ersten Begrenzer (BU) einen Null-Wert liefern zu lassen. Dies ist in 7 dargestellt.
-
Zum zweiten ist es möglich, mit Hilfe eines vierten Integrators (lnt2U) das korrigierte Spannungssignal (Ukorr) des ersten Motoranschlusses (U) zu einem vierten Schwellwertsignal (S2U) zu integrieren.
-
Ansonsten stimmt die 7 mit der 4 überein.
-
Versuche haben gezeigt, dass die Verwendung des ersten Begrenzers (BU) besonders zu bevorzugen ist.
-
8 zeigt die Verläufe des korrigierten Spannungssignals (Ukorr), des ersten Schwellwertsignals (S1U) am Ausgang des ersten Integrators (int1U), sowie des vierten Schwellwertsignals (S2U) am Ausgang des vierten Integrators (lnt2U) der 7 für eine zu frühe Kommutierung (a), eine zu späte Kommutierung (b) sowie eine korrekte Kommutierung (c) des angeschlossenen Motors (M).
-
Erfindungsgemäß wurde erkannt, dass bei korrekter Kommutierung das vierte Schwellwertsignal (S2U) am Ausgang des vierten Integrators (Int2U) genau zum Zeitpunkt der Kommutierung seinen Nulldurchgang erreicht. Ebenso wurde erfindungsgemäß erkannt, dass es sinnvoll ist, diesen Nulldurchgang des vierten Schwellwertsignals (S2U) am Ausgang des vierten Integrators (Int2U) auch zur Kommutierung des Motors (M) zu benutzen.
-
Analysiert man das Systemverhalten genauer, so stellt man fest, dass im Fall der korrekten Kommutierung die einzustellende Schwelle VrefU der 7 exakt mit dem Maximalwert übereinstimmt, der am Ausgang des zusätzlichen vierten Integrators (Int2U) messbar ist. Dieses Verhalten macht sich die hier vorgestellte Erfindung zu Nutze. Das zugehörige Verfahren ist in 9 dargestellt. Das Maximum des Ausgangssignals des zusätzlichen vierten Integrators (Int2U), das Maximum des vierten Schwellwertsignal (S2U), wird in Form eines ersten Maximumssignals (S2Umax) gemessen und als Referenzschwelle für die Integrationsmethode zum Vergleich mit dem ersten Schwellwertsignal (S1U) genutzt.
-
Das Verfahren wird hier als Einschritt Parametrierung bezeichnet, da es im Gegensatz zum Stand der Technik (SdT) und anderen Verfahren keinerlei Iteration benötigt. Die zu setzende Schwelle wird praktisch im selben Kommutierungsintervall vor der eigentlichen Kommutierung ermittelt.
-
10 zeigt eine vorzugsweise Realisierung der Einschritt-Parametrierung in Form des schematischen Blockschaltbilds einer entsprechenden Vorrichtung. Der erste Maximalwertdetektor (min/maxU) detektiert das Maximum des vierten Schwellwertsignals (S2U), das das Ausgangssignal des vierten Integrators (Int2U) ist, und stellt es als erstes Maximumssignal (S2Umax) für die erste Motorphase (U) dem ersten Komparator (CMP1U) zur Verfügung
-
Das erste Maximumssignal (S2Umax) kann entweder nach jeder Kommutierung zurückgesetzt werden, oder auch nach der automatischen Ermittlung des Wertes des Maximumssignals (S2Umax) „eingefroren“ werden, so dass der Wert des Maximumssignals (S2Umax) nach seiner ersten Ermittlung konstant bleibt. Es ist auch möglich, dass entweder ein solcher Zweig im Multiplexbetrieb für alle drei Anschlüsse (U, V, W) des Motors (M) genutzt wird. Weiterhin ist es auch möglich, dass sich alle Zweige einen einzelnen Zweig zur Ermittlung des Werts des Maximumssignals (S2Umax) teilen. Dies ist in dargestellt.
-
12 zeigt 1 mit den drei Zweigen (ZW1, ZW2, ZW3). Der Ansteuerblock (St) oder eine andere Steuerung aktivieren dabei die Integration in den Integratoren des Zweiges, dessen zugehörige Halbbrücke am zugehörigen Motoranschluss (U, V, W) sich in dem betreffenden Kommutierungsintervall (Φ1 bis Φ6) jeweils gerade in der hochohmigen Phase befindet. Wie zuvor erläutert, spiegeln die Zustände der Kommutierungssignale (A1, A2, A3) dabei das aktuelle Kommutierungsintervall (Φ1 bis Φ6) in Form eines hier beispielhaft dreidimensionalen binären logischen Vektors wieder.
-
Dem Fachmann ist es offensichtlich, dass das Verfahren und die zugehörige Vorrichtung auch für mehr als drei Motorphasen (u, V, W) analog verwendbar ist.
-
Die 13 bezieht sich auf die zweite Motorphase (V). Sie entspricht in Funktion und Struktur der 10. Die 13 stellt mögliche Realisierungen für einen zweiten Zweig (ZW2) innerhalb der EMK-Auswertung (EMKA) dar, der sich auf die zweite Motorphase (V) bezieht. Da die Funktion der einzelnen Komponenten analog zu der der Komponenten in der 10 ist, wird diese Beschreibung hier nicht extra wiederholt.
-
Die 14 bezieht sich auf die dritte Motorphase (W). Sie entspricht in Funktion und Struktur der 10. Die 14 stellt mögliche Realisierungen für einen dritten Zweig (ZW3) innerhalb der EMK-Auswertung (EMKA) dar, der sich auf die dritte Motorphase (W) bezieht. Da die Funktion der einzelnen Komponenten analog zu der der Komponenten in der 10 ist, wird diese Beschreibung hier nicht extra wiederholt.
-
Um weitere Blöcke einzusparen ist es auch möglich, ein und denselben ersten Integrator(lnt1U) sowohl für die Parametrierung als auch für die Kommutierung zu verwenden. Dies ist in dargestellt.
-
Die in 15 dargestellten Schalterstellungen des ersten Schalters (S1) und des zweiten Schalters (S2) entsprechen der Stellung „Parametrierung“. In dieser Stellung wird der Maximalwert des Ausgangssignals des ersten Integrators (S1U) ermittelt. Diese automatische Parametrierung kann z.B. am Bandende in der Fertigung erfolgen. Für eine solche Parametrisierung in der Fertigung reicht das einmalige Aktivieren des dargestellten Zweiges und ein anschließendes z.B. manuell induziertes Drehen des angeschlossenen Motors aus. Dieser kann dabei sogar mechanisch angetrieben werden, ohne ihn elektrisch ansteuern zu müssen. Der dann ermittelte Maximalwert wird im ersten Maximalwertdetektor (min/maxU) gespeichert. Im Falle der Parametrierung am Bandende wird dazu typischerweise ein nichtflüchtiger Speicher verwendet. Erfolgt die Parametrierung automatisch beispielsweise jedes Mal beim Start der Vorrichtung, so kann auch ein flüchtiger Speicher verwendet werden.
-
Nach erfolgter automatischer Parametrierung werden beide Schalter, der erste Schalter (S1) und der zweite Schalter (S2), umgelegt und die normale Kommutierung entsprechend 3 kann erfolgen. Das Ausgangssignal (VrefU=S2Umax) des ersten Maximalwertdetektors (min/maxU) bleibt dabei typischerweise für die Dauer des weiteren Betriebes konstant.
-
Für den Fachmann ist es ein Leichtes, statt einer Speicherung in dem ersten Maximalwertdetektor (min/maxU) auch einen externen Speicher zu benutzen, der das Ausgangssignal des ersten Maximalwertdetektor (min/maxU) speichert.
-
Vorteile der Erfindung
-
Durch die Erfindung wird eine experimentelle Bestimmung der Kommutierungszeitpunkte durch Integration der EMK vermieden. Das Verfahren ist somit in der Lage, sich selbst an verschiedene Motoren anzupassen. Dies ermöglicht auch eine automatisierte Einstellung des Parameters bei der Herstellung von darauf aufbauenden Produkten.
-
Durch die Realisierungen ab 10 entfällt die Bestimmung des Parameters komplett. Das Verfahren justiert sich so ein, dass sich der rechte Fall in 6 ergibt. Damit gibt es hier weder einen Einschwingvorgang noch einen Parameter, der langsam sich einem Zielwert nähert. Es gibt auch keinen Abgleichvorgang. Das Verfahren läuft somit direkt von Anfang an korrekt ohne Einschwing- und Einregelvorgänge.
-
So können beispielsweise Serienstreuungen beim zu verwendenden Motor ausgeglichen werden. Auch eine Realisierung unterschiedlicher Produkte, die sich nur bezüglich des verwendeten Motors unterscheiden, ist ohne zusätzlichen Einstellungsaufwand möglich.
-
Die Erfindung ist für die Ansteuerung von BLDC-Motoren mittels Blockkommutierung im sensorlosen Betrieb auf Basis der Auswertung des magnetischen Flusses verwendbar. Bei der Verwendung des magnetischen Flusses als Integral der EMK entfällt im Gegensatz zur Kommutierung auf Basis der Nulldurchgänge der EMK der Abgleich zwischen Winkelposition und interner Zeitbasis. Die Zeitbasis ist somit nicht mehr nötig. Vielmehr erfolgt eine Kommutierung hier ohne weitere Berechnungsschritte direkt auf Basis des Verlaufs der EMK. Das Verfahren bietet damit eine höhere Stabilität und eine bessere Reaktion auf dynamische Änderungen der Winkelgeschwindigkeit des Rotors.
-
Bezugszeichenliste
-
- A1
- erstes Kommutierungssignal für den Ansteuerblock (St). Das erste Kommutierungssignal wird durch die EMK-Auswertung (EMKA) erzeugt. Das erste Kommutierungssignal legt den Zeitpunkt der nächsten Spannungskommutierung durch den Ansteuerblock (St) fest. Die Spannungskommutierung betrifft dabei die Halbbrücke des Ansteuerblocks, deren oberer und unterer Schalter mit dem ersten Motoranschluss (U) verbunden sind. Das Signal ist dem ersten Motoranschluss (U) zugeordnet. Das erste Kommutierungssignal wird nur dann mittels der ersten UND-Verknüpfung (ANDU) aus dem ersten Kommutierungsereignissignal (A1') erzeugt, wenn der erste Speicherausgang (ENU) des ersten Speichers (RSFFV) gesetzt ist.
- A2
- zweites Kommutierungssignal für den Ansteuerblock (St). Das zweite Kommutierungssignal wird durch die EMK-Auswertung (EMKA) erzeugt. Das zweite Kommutierungssignal legt den Zeitpunkt der nächsten Spannungskommutierung durch den Ansteuerblock (St) fest. Die Spannungskommutierung betrifft dabei die Halbbrücke des Ansteuerblocks, deren oberer und unterer Schalter mit dem zweiten Motoranschluss (V) verbunden sind. Das Signal ist dem zweiten Motoranschluss (V) zugeordnet. Das zweite Kommutierungssignal wird nur dann mittels der zweiten UND-Verknüpfung (ANDV) aus dem zweiten Kommutierungsereignissignal (A2') erzeugt, wenn der zweite Speicherausgang (ENV) des zweiten Speichers (RSFFV) gesetzt ist.
- A3
- drittes Kommutierungssignal für den Ansteuerblock (St). Das dritte Kommutierungssignal wird durch die EMK-Auswertung (EMKA) erzeugt. Das dritte Kommutierungssignal legt den Zeitpunkt der nächsten Spannungskommutierung durch den Ansteuerblock (St) fest. Die Spannungskommutierung betrifft dabei die Halbbrücke des Ansteuerblocks, deren oberer und unterer Schalter mit dem dritten Motoranschluss (W) verbunden sind. Das Signal ist dem dritten Motoranschluss (V) zugeordnet. Das dritte Kommutierungssignal wird nur dann mittels der dritten UND-Verknüpfung (ANDW) aus dem drittes Kommutierungsereignissignal (A3') erzeugt, wenn der dritte Speicherausgang (ENw) des dritten Speichers (RSFFW) gesetzt ist.
- BU
- erster Begrenzer. Der erste Begrenzer erzeugt das begrenzte korrigierte Spannungssignal (U'korr) des ersten Motoranschlusses (U) aus dem korrigierten Spannungssignal (Ukorr) des ersten Motoranschlusses (U). Dabei setzt er das begrenzte korrigierte Spannungssignal (U'korr) des ersten Motoranschlusses (U) zu Null, wenn das korrigierte Spannungssignal (Ukorr) des ersten Motoranschlusses (U) negativ ist. Diese Begrenzung kann bei geeigneter Vorzeichenwahl aller Komponenten des Systems auch invertiert erfolgen. Wesentlich ist daher, dass der Begrenzer nur eine Polarität des korrigierten Spannungssignals (Ukorr) des ersten Motoranschlusses (U) passieren lässt und die andere Polarität zu Null abbildet. Dieser Vorrichtungsteil ist dem ersten Motoranschluss (U) zugeordnet.
- BV
- zweiter Begrenzer. Der zweite Begrenzer erzeugt das begrenzte korrigierte Spannungssignal (V'korr) des zweiten Motoranschlusses (V) aus dem korrigierten Spannungssignal (Vkorr) des zweiten Motoranschlusses (V). Dabei setzt er das begrenzte korrigierte Spannungssignal (V'korr) des zweiten Motoranschlusses (V) zu Null, wenn das korrigierte Spannungssignal (Vkorr) des zweiten Motoranschlusses (V) negativ ist. Diese Begrenzung kann bei geeigneter Vorzeichenwahl aller Komponenten des Systems auch invertiert erfolgen. Wesentlich ist daher, dass der zweite Begrenzer nur eine Polarität des korrigierten Spannungssignals (Vkorr) des zweiten Motoranschlusses (V) passieren lässt und die andere Polarität zu Null abbildet. Dieser Vorrichtungsteil ist dem zweiten Motoranschluss (V) zugeordnet.
- BW
- dritter Begrenzer. Der dritte Begrenzer erzeugt das begrenzte korrigierte Spannungssignal (W'korr) des dritten Motoranschlusses (W) aus dem korrigierten Spannungssignal (Wkorr) des dritten Motoranschlusses (W). Dabei setzt er das begrenzte korrigierte Spannungssignal (W'korr) des dritten Motoranschlusses (W) zu Null, wenn das korrigierte Spannungssignal (Wkorr) des dritten Motoranschlusses (W) negativ ist. Diese Begrenzung kann bei geeigneter Vorzeichenwahl aller Komponenten des Systems auch invertiert erfolgen. Wesentlich ist daher, dass der dritte Begrenzer nur eine Polarität des korrigierten Spannungssignals (Wkorr) des dritten Motoranschlusses (W) passieren lässt und die andere Polarität zu Null abbildet. Dieser Vorrichtungsteil ist dem dritten Motoranschluss (W) zugeordnet.
- CMP1U
- Der erste Komparator vergleicht das erste Schwellwertsignal (S1U) mit einem Bezugspotenzial (0) für die Kommutierung und erzeugt hieraus ein erstes Kommutierungsereignissignal (A1'), das die Kommutierung der Halbbrücke des Ansteuerungsblocks (St) steuert, die mit dem ersten Motoranschluss (U) verbunden ist. Dieser Vorrichtungsteil ist dem ersten Motoranschluss (U) zugeordnet.
- CMP1V
- Der zweite Komparator vergleicht das zweite Schwellwertsignal (S1V) mit einem Bezugspotenzial (0) für die Kommutierung und erzeugt hieraus ein zweites Kommutierungsereignissignal (A2'), das die Kommutierung der Halbbrücke des Ansteuerungsblocks (St) steuert, die mit dem zweiten Motoranschluss (V) verbunden ist. Dieser Vorrichtungsteil ist dem zweiten Motoranschluss (V) zugeordnet.
- CMP1W
- Der dritte Komparator vergleicht das dritte Schwellwertsignal (S1W) mit mit einem Bezugspotenzial (0) für die Kommutierung und erzeugt hieraus ein drittes Kommutierungsereignissignal (A3'), das die Kommutierung der Halbbrücke des Ansteuerungsblocks (St) steuert, die mit dem dritten Motoranschluss (W) verbunden ist. Dieser Vorrichtungsteil ist dem dritten Motoranschluss (W) zugeordnet.
- CMP2U
- Der vierte Komparator vergleicht das vierte Schwellwertsignal (S2W) mit dem Referenzsignal (VRef2) für die Kommutierung und erzeugt hieraus das erste Setzsignal (SU). Dieser Vorrichtungsteil ist dem dritten Motoranschluss (W) zugeordnet.
- CMP2V
- Der fünfte Komparator vergleicht das fünfte Schwellwertsignal (S2V) mit dem Referenzsignal (VRef2) für die Kommutierung und erzeugt hieraus das zweite Setzsignal (SV). Dieser Vorrichtungsteil ist dem zweiten Motoranschluss (V) zugeordnet.
- CMP2W
- Der sechste Komparator vergleicht das sechste Schwellwertsignal (S2W) mit dem Referenzsignal (VRef2) für die Kommutierung und erzeugt hieraus das dritte Setzsignal (SW). Dieser Vorrichtungsteil ist dem dritten Motoranschluss (W) zugeordnet.
- EMKA
- EMK-Auswertung. Die EMK-Auswertung erzeugt die Kommutierungssignale (A1, A2, A3) für die Steuerung des Kommutierungszeitpunktes der Halbbrücken der Ansteuerschaltung (St). Diese Erzeugung der Kommutierungssignale (A1, A2, A3) erfolgt in Abhängigkeit von den Spannungen an den Motoranschlüssen (U, V, W) und den Kommutierungsintervallen (Φ1 bis Φ6). Das erste Kommutierungssignal (A1) wird dabei in Abhängigkeit von der Anschlussspannung am ersten Motoranschluss (U) im dritten Kommutierungsintervall (Φ3) und/oder im sechsten Kommutierungsintervall (Φ6) erzeugt. Das zweite Kommutierungssignal (A2) wird dabei in Abhängigkeit von der Anschlussspannung am zweiten Motoranschluss (V) im ersten Kommutierungsintervall (Φ1) und/oder im vierten Kommutierungsintervall (Φ4) erzeugt. Das dritte Kommutierungssignal (A3) wird dabei in Abhängigkeit von der Anschlussspannung am dritten Motoranschluss (V) im zweiten Kommutierungsintervall (Φ2) und/oder im fünften Kommutierungsintervall (Φ5) erzeugt.
- Int1U
- erster Integrator. Der erste Integrator bildet im Stand der Technik durch Integration des korrigierten Spannungssignals (Ukorr) des ersten Motoranschlusses (U) bzw. durch Integration des begrenzten korrigierten Spannungssignals (U'korr) des ersten Motoranschlusses (U) ein zugehöriges erstes Schwellwertsignal (S1U). Dieser Vorrichtungsteil ist dem ersten Motoranschluss (U) zugeordnet.
- Int1V
- zweiter Integrator. Der zweite Integrator bildet im Stand der Technik durch Integration des korrigierten Spannungssignals (Vkorr) des zweiten Motoranschlusses (V) bzw. durch Integration des begrenzten korrigierten Spannungssignals (V'korr) des zweiten Motoranschlusses (V) ein zugehöriges zweites Schwellwertsignal (S1V). Dieser Vorrichtungsteil ist dem zweiten Motoranschluss (V) zugeordnet.
- Int1W
- dritter Integrator. Der dritte Integrator bildet im Stand der Technik durch Integration des korrigierten Spannungssignals (Wkorr) des dritten Motoranschlusses (W) bzw. durch Integration des begrenzten korrigierten Spannungssignals (W'korr) des dritten Motoranschlusses (W) ein zugehöriges drittes Schwellwertsignal (S1W). Dieser Vorrichtungsteil ist dem dritten Motoranschluss (W) zugeordnet.
- lnt2U
- vierter Integrator. Der vierte erfindungsgemäße Integrator bildet durch Integration des korrigierten Spannungssignals (Ukorr) des ersten Motoranschlusses (U) das vierte Schwellwertsignal (S2U). Der Wert der Integration kann vor der Ausgabe mit einem ersten konstanten Faktor (FU) zur Einstellung des Einschwingverhaltens durch einen im vierten Integrator (Int2U) enthaltenen Multiplizierer angepasst werden. Dieser Vorrichtungsteil ist dem ersten Motoranschluss (U) zugeordnet.
- lnt2V
- fünfter Integrator. Der fünfte erfindungsgemäße Integrator bildet durch Integration des korrigierten Spannungssignals (Vkorr) des ersten Motoranschlusses (V) das fünfte Schwellwertsignal (S2V). Der Wert der Integration kann vor der Ausgabe mit einem ersten konstanten Faktor (FV) zur Einstellung des Einschwingverhaltens durch einen im fünften Integrator (Int2V enthaltenen Multiplizierer angepasst werden. Dieser Vorrichtungsteil ist dem zweiten Motoranschluss (V) zugeordnet.
- Int2W
- sechster Integrator. Der sechste erfindungsgemäße Integrator bildet durch Integration des korrigierten Spannungssignals (Wkorr) des dritten Motoranschlusses (W) das sechste Schwellwertsignal (S2W). Der Wert der Integration kann vor der Ausgabe mit einem ersten konstanten Faktor (Fw) zur Einstellung des Einschwingverhaltens durch einen im sechsten Integrator (Int2W) enthaltenen Multiplizierer angepasst werden. Dieser Vorrichtungsteil ist dem dritten Motoranschluss (W) zugeordnet.
- M
- beispielhafter BLDC-Motor
- min/maxU
- erster Maximalwertdetektor. Der erste Maximalwertdetektor detektiert das Maximum des vierten Schwellwertsignals (S2U), das das Ausgangssignal des vierten Integrators (Int2U) ist, und stellt es als erstes Maximumssignal (S2Umax) für die erste Motorphase (U) dem ersten Komparator (CMP1U) zur Verfügung
- min/maxV
- zweiter Maximalwertdetektor. Der zweite Maximalwertdetektor detektiert das Maximum des fünften Schwellwertsignals (S2V), das das Ausgangssignal des fünften Integrators (Int2V) ist, und stellt es als zweites Maximumssignal (S2Vmax) für die zweite Motorphase (V) dem zweiten Komparator (CMP1V) zur Verfügung
- min/maxW
- dritter Maximalwertdetektor. Der dritte Maximalwertdetektor detektiert das Maximum des sechsten Schwellwertsignals (S2W), das das Ausgangssignal des sechsten Integrators (lnt2W) ist, und stellt es als drittes Maximumssignal (S2Wmax) für die dritte Motorphase (W) dem dritten Komparator (CMP1W) zur Verfügung
- Φ1
- erstes Kommutierungsintervall. In diesem Kommutierungsintervall ist der obere Schalter der Halbbrücke innerhalb der Ansteuerschaltung, der mit dem ersten Motoranschluss (U) auf der einen Seite und der oberen Versorgungsspannung auf der anderen Seite verbunden ist, geschlossen. Gleichzeitig ist in diesem Kommutierungsintervall der untere Schalter der Halbbrücke innerhalb der Ansteuerschaltung, der mit dem dritten Motoranschluss (W) auf der einen Seite und der unteren Versorgungsspannung auf der anderen Seite verbunden ist, geschlossen. Außerdem sind beide Schalter der Halbbrücke innerhalb der Ansteuerschaltung, die mit dem zweiten Motoranschluss (V) verbunden sind, geöffnet. Daher ist am zweiten Motoranschluss (V) in diesem Kommutierungsintervall die elektromotorische Kraft (EMK) als Phasenspannung messbar.
- Φ2
- zweites Kommutierungsintervall. In diesem Kommutierungsintervall ist der obere Schalter der Halbbrücke innerhalb der Ansteuerschaltung, der mit dem ersten Motoranschluss (U) auf der einen Seite und der oberen Versorgungsspannung auf der anderen Seite verbunden ist, geschlossen. Gleichzeitig ist in diesem Kommutierungsintervall der untere Schalter der Halbbrücke innerhalb der Ansteuerschaltung, der mit dem zweiten Motoranschluss (V) auf der einen Seite und der unteren Versorgungsspannung auf der anderen Seite verbunden ist, geschlossen. Außerdem sind beide Schalter der Halbbrücke innerhalb der Ansteuerschaltung, die mit dem dritten Motoranschluss (W) verbunden sind, geöffnet. Daher ist am dritten Motoranschluss (W) in diesem Kommutierungsintervall die elektromotorische Kraft (EMK) als Phasenspannung messbar.
- Φ3
- drittes Kommutierungsintervall. In diesem Kommutierungsintervall ist der obere Schalter der Halbbrücke innerhalb der Ansteuerschaltung, der mit dem dritten Motoranschluss (W) auf der einen Seite und der oberen Versorgungsspannung auf der anderen Seite verbunden ist, geschlossen. Gleichzeitig ist in diesem Kommutierungsintervall der untere Schalter der Halbbrücke innerhalb der Ansteuerschaltung, der mit dem zweiten Motoranschluss (W) auf der einen Seite und der unteren Versorgungsspannung auf der anderen Seite verbunden ist, geschlossen. Außerdem sind beide Schalter der Halbbrücke innerhalb der Ansteuerschaltung, die mit dem ersten Motoranschluss (U) verbunden sind, geöffnet. Daher ist am ersten Motoranschluss (U) in diesem Kommutierungsintervall die elektromotorische Kraft (EMK) als Phasenspannung messbar.
- Φ4
- viertes Kommutierungsintervall. In diesem Kommutierungsintervall ist der obere Schalter der Halbbrücke innerhalb der Ansteuerschaltung, der mit dem dritten Motoranschluss (W) auf der einen Seite und der oberen Versorgungsspannung auf der anderen Seite verbunden ist, geschlossen. Gleichzeitig ist in diesem Kommutierungsintervall der untere Schalter der Halbbrücke innerhalb der Ansteuerschaltung, der mit dem ersten Motoranschluss (U) auf der einen Seite und der unteren Versorgungsspannung auf der anderen Seite verbunden ist, geschlossen. Außerdem sind beide Schalter der Halbbrücke innerhalb der Ansteuerschaltung, die mit dem zweiten Motoranschluss (V) verbunden sind, geöffnet. Daher ist am zweiten Motoranschluss (V) in diesem Kommutierungsintervall die elektromotorische Kraft (EMK) als Phasenspannung messbar.
- Φ5
- fünftes Kommutierungsintervall. In diesem Kommutierungsintervall ist der obere Schalter der Halbbrücke innerhalb der Ansteuerschaltung, der mit dem zweiten Motoranschluss (V) auf der einen Seite und der oberen Versorgungsspannung auf der anderen Seite verbunden ist, geschlossen. Gleichzeitig ist in diesem Kommutierungsintervall der untere Schalter der Halbbrücke innerhalb der Ansteuerschaltung, der mit dem ersten Motoranschluss (U) auf der einen Seite und der unteren Versorgungsspannung auf der anderen Seite verbunden ist, geschlossen. Außerdem sind beide Schalter der Halbbrücke innerhalb der Ansteuerschaltung, die mit dem dritten Motoranschluss (W) verbunden sind, geöffnet. Daher ist am dritten Motoranschluss (W) in diesem Kommutierungsintervall die elektromotorische Kraft (EMK) als Phasenspannung messbar.
- Φ6
- sechstes Kommutierungsintervall. In diesem Kommutierungsintervall ist der obere Schalter der Halbbrücke innerhalb der Ansteuerschaltung, der mit dem zweiten Motoranschluss (V) auf der einen Seite und der oberen Versorgungsspannung auf der anderen Seite verbunden ist, geschlossen. Gleichzeitig ist in diesem Kommutierungsintervall der untere Schalter der Halbbrücke innerhalb der Ansteuerschaltung, der mit dem dritten Motoranschluss (W) auf der einen Seite und der unteren Versorgungsspannung auf der anderen Seite verbunden ist, geschlossen. Außerdem sind beide Schalter der Halbbrücke innerhalb der Ansteuerschaltung, die mit dem ersten Motoranschluss (U) verbunden sind, geöffnet. Daher ist am ersten Motoranschluss (U) in diesem Kommutierungsintervall die elektromotorische Kraft (EMK) als Phasenspannung messbar.
- S1U
- erstes Schwellwertsignal. Das erste Schwellwertsignal wird durch Integration des korrigierten Spannungssignals (Ukorr) des ersten Motoranschlusses (U) im ersten Integrator (Int1U) erzeugt. Das Signal ist dem ersten Motoranschluss (U) zugeordnet.
- S1
- erster Schalter
- S1V
- zweites Schwellwertsignal. Das zweite Schwellwertsignal wird durch Integration des korrigierten Spannungssignals (Vkorr) des zweiten Motoranschlusses (V) im zweiten Integrator (Int1V) erzeugt. Das Signal ist dem zweiten Motoranschluss (V) zugeordnet.
- S1W
- drittes Schwellwertsignal. Das dritte Schwellwertsignal wird durch Integration des korrigierten Spannungssignals (Wkorr) des dritten Motoranschlusses (W) im dritten Integrator (Int1W) erzeugt. Das Signal ist dem dritten Motoranschluss (W) zugeordnet.
- S2
- zweiter Schalter
- S2U
- viertes Schwellwertsignal. Das vierte Schwellwertsignal wird durch Integration des korrigierten Spannungssignals (Ukorr) des ersten Motoranschlusses (U) im vierten Integrator (Int2U) erzeugt. Das Signal ist dem ersten Motoranschluss (U) zugeordnet.
- S2Umax
- erstes Maximumssignal. Das erste Maximumssignal gibt das Maximum des Ausgangssignals des zusätzlichen vierten Integrators (Int2U), das Maximum des vierten Schwellwertsignals (S2U), wieder. Es wird im Freilaufintervall gemessen und als Referenzschwelle für die Integrationsmethode zum Vergleich mit dem ersten Schwellwertsignal (S1U) genutzt.
- S2V
- fünftes Schwellwertsignal. Das fünfte Schwellwertsignal wird durch Integration des korrigierten Spannungssignals (Vkorr) des zweiten Motoranschlusses (V) im fünften Integrator (Int2V) erzeugt. Das Signal ist dem zweiten Motoranschluss (V) zugeordnet.
- S2Vmax
- zweites Maximumssignal. Das zweite Maximumssignal gibt das Maximum des Ausgangssignals des zusätzlichen fünften Integrators (Int2V), das Maximum des fünften Schwellwertsignals (S2V), wieder. Es wird im Freilaufintervall gemessen und als Referenzschwelle für die Integrationsmethode zum Vergleich mit dem zweiten Schwellwertsignal (S1V) genutzt.
- S2W
- sechstes Schwellwertsignal. Das sechste Schwellwertsignal wird durch Integration des korrigierten Spannungssignals (Wkorr) des dritten Motoranschlusses (W) im sechsten Integrator (Int2W) erzeugt. Das Signal ist dem dritten Motoranschluss (W) zugeordnet.
- S2Wmax
- drittes Maximumssignal. Das dritte Maximumssignal gibt das Maximum des Ausgangssignals des zusätzlichen sechsten Integrators (Int2W), das Maximum des sechsten Schwellwertsignals (S2W), wieder. Es wird im Freilaufintervall gemessen und als Referenzschwelle für die Integrationsmethode zum Vergleich mit dem dritten Schwellwertsignal (S1W) genutzt.
- SdT
- Markierung der betreffenden Figur als Stand der Technik
- SpS
- virtuelles Sternpunktsignal. Das virtuelle Sternpunktsignal ist vorzugsweise die Summe des ersten, zweiten und dritten reduzierten Klemmensignals (Ur, Vr, Wr) und wird im ersten Summierer (SU1) gebildet. Das Signal ist dem allen Motoranschlüssen (U, V, W) zugeordnet.
- SpT1
- erster Spannungsteiler. Der erste Spannungsteiler reduziert die Spannung am ersten Motoranschluss (U) um einen Faktor 1/3 zum reduzierten ersten Klemmensignal (Ur). Dieser Vorrichtungsteil ist dem allen Motoranschlüssen (U, V, W) zugeordnet.
- SpT2
- zweiter Spannungsteiler. Der zweite Spannungsteiler reduziert die Spannung am zweiten Motoranschluss (U) um einen Faktor 1/3 zum reduzierten zweiten Klemmensignal (Vr). Dieser Vorrichtungsteil ist dem allen Motoranschlüssen (U, V, W) zugeordnet.
- SpT3
- dritter Spannungsteiler. Der dritte Spannungsteiler reduziert die Spannung am dritten Motoranschluss (W) um einen Faktor 1/3 zum reduzierten dritten Klemmensignal (Wr). Dieser Vorrichtungsteil ist dem allen Motoranschlüssen (U, V, W) zugeordnet.
- SSt
- Systemsteuerung Es handelt sich typischerweise um einen endlichen Automaten als Ablaufsteuerung und/oder einen Mikroprozessor mit Speicher. Die Systemsteuerung umfasst in einer besonderen Ausprägung der Erfindung insbesondere typischerweise einen oder mehrere Analog-zu-Digital-Wandlern und ggf. weitere Speicher, die ggf. Initialwert für den vierten Integrator (Int2U), den fünften Integrator (Int2V) und/oder den sechsten Integrator (Int2W) und/oder den ersten Maximalwertdetektor (min/maxU) und/oder den zweiten Maximalwertdetektor (min/maxV) und/oder den dritten Maximalwertdetektor (min/maxW). Dieser Initialwert (V0) kann ggf. auch in Form von drei separaten Initialwerten spezifisch für den jeweiligen Zweig (ZW1, ZW2, ZW3) erzeugt werden. Nach dem Abschalten der Versorgungsspannung würde das System jedoch den jeweiligen erfindungsgemäßen Initialwert verlieren und müsste beim nächsten Wiedereinschalten wieder eine erneute Parametrierung durchführen. Es ist daher sinnvoll, wenn der jeweilige erfindungsgemäße Initialwert in einem nicht flüchtigen, vorzugsweise digitalen Speicher vorzugsweise innerhalb der Systemsteuerung (SSt) gesichert wird und als jeweiliger zugeordneter spezifischer Initialwert beim Neustart des Systems in den vierten Integrator (lnt2U) bzw. in den fünften Integrator (lnt2V) bzw. in den sechsten Integrator (Int2W) bzw. in den ersten Maximalwertdetektor (min/maxU) bzw. in den zweiten Maximalwertdetektor (min/maxV) bzw. in den dritten Maximalwertdetektor (min/maxW) geladen wird. Dieser Vorrichtungsteil ist typischerweise allen Motoranschlüssen (U, V, W) zugeordnet.
- St
- Ansteuerblock. Der Ansteuerblock erzeugt die Signale für die drei Motoranschlüsse (U, V, W) aus den Kommutierungssignalen A1, A2, A3. Diese Ansteuerschaltung zur Blockkommutierung weist typischerweise drei nicht gezeichnete Halbbrücken auf. Eine erste Halbbrücke ist dabei mit ihrem Ausgang mit dem ersten Motoranschluss (U) verbunden. Eine zweite Halbbrücke ist dabei mit ihrem Ausgang mit dem zweiten Motoranschluss (V) verbunden. Eine dritte Habbrücke ist dabei mit ihrem Ausgang mit dem dritten Motoranschluss (W) verbunden. Jeder der Habbrücken weist typischerweise einen oberen Schalter auf, der den Ausgang der betreffenden Halbbrücke mit einer oberen Versorgungsspannung verbinden kann und einen unteren Schalter, der den Ausgang der betreffenden Halbbrücke mit einer unteren Versorgungsspannung verbinden kann. Ein gleichzeitiges Verbinden von oberer und unterer Versorgungsspannung mit dem jeweiligen Ausgang einer Halbbrücke ist durch eine Verriegelungsschaltung innerhalb der Ansteuerschaltung zur Blockkommutierung unterbunden. Darüber hinaus weist die Ansteuerschaltung zur Blockkommutierung eine Logik auf, die mindestens sechs Zustände einnehmen kann. Diese sechs Zustände korrespondieren mit den sechs Kommutierungsintervalle (Φ1 bis Φ6). Mit einer vorgegebenen Flanke eines Kommutierungssignals (A1, A2, A3), die fallend und/oder steigend sein kann, wechselt die Ansteuerschaltung ihren Zustand. Hierbei kann es zu einer Asynchronizität der Kommutierungssignale (A1, A2, A3) kommen
- SU1
- erster Summierer. Der erste Summierer bildet aus dem ersten, zweiten und dritten reduzierten Klemmensignal (Ur, Vr, Wr) ein virtuelles Sternpunktsignal (SpS). Dieser Vorrichtungsteil ist typischerweise allen Motoranschlüssen (U, V, W) zugeordnet.
- SU2U
- zweiter Summierer für den ersten Motoranschluss (U). Der zweite Summierer für den ersten Motoranschluss (U) subtrahiert das virtuelle Sternpunktsignal (SpS) vom Spannungssignal des ersten Motoranschlusses (U) und bildet dadurch das korrigierte Spannungssignal (Ukorr) des ersten Motoranschlusses (U). Dieser Vorrichtungsteil ist dem ersten Motoranschluss (U) zugeordnet.
- SU2V
- zweiter Summierer für den zweiten Motoranschluss (V). Der zweite Summierer für den zweiten Motoranschluss (V) subtrahiert das virtuelle Sternpunktsignal (SpS) vom Spannungssignal des zweiten Motoranschlusses (V) und bildet dadurch das korrigierte Spannungssignal (Vkorr) des zweiten Motoranschlusses (V). Dieser Vorrichtungsteil ist dem zweiten Motoranschluss (V) zugeordnet.
- SU2W
- zweiter Summierer für den dritten Motoranschluss (W). Der zweite Summierer für den dritten Motoranschluss (V) subtrahiert das virtuelle Sternpunktsignal (SpS) vom Spannungssignal des dritten Motoranschlusses (W) und bildet dadurch das korrigierte Spannungssignal (Wkorr) des dritten Motoranschlusses (W). Dieser Vorrichtungsteil ist dem dritten Motoranschluss (W) zugeordnet.
- U
- erster Motoranschluss des beispielhaften BLDC Motors
- Ukorr
- korrigiertes Spannungssignal (Ukorr) des ersten Motoranschlusses (U). Das korrigierte Spannungssignal (Ukorr) des ersten Motoranschlusses (U) wird im zugehörigen zweiten Summierer (SU2U) durch Subtraktion des virtuellen Sternpunktsignals (SpS) vom Spannungssignal des ersten Motoranschlusses (U) erzeugt. Das Signal ist dem ersten Motoranschluss (U) zugeordnet.
- U'korr
- begrenztes korrigiertes Spannungssignal (U'korr) des ersten Motoranschlusses (U). Das Signal ist dem ersten Motoranschluss (U) zugeordnet.
- V
- zweiter Motoranschluss des beispielhaften BLDC Motors
- Vref
- optionale gemeinsame Referenzspannung für die Motorphasen (U, V, W)
- VrefU
- erste Referenzspannung für die Kommutierung der ersten Motorphase (U)
- VrefV
- zweite Referenzspannung für die Kommutierung der zweiten Motorphase (V)
- VrefW
- dritte Referenzspannung für die Kommutierung der dritten Motorphase (W)
- Vkorr
- korrigiertes Spannungssignal (Vkorr) des zweiten Motoranschlusses (V). Das korrigierte Spannungssignal (Vkorr) des zweiten Motoranschlusses (V) wird im zugehörigen zweiten Summierer (SU2V) durch Subtraktion des virtuellen Sternpunktsignals (SpS) vom Spannungssignal des zweiten Motoranschlusses (V) erzeugt. Das Signal ist dem zweiten Motoranschluss (V) zugeordnet.
- V'korr
- begrenztes korrigiertes Spannungssignal (V'korr) des zweiten Motoranschlusses (V). Das Signal ist dem zweiten Motoranschluss (V) zugeordnet.
- W
- dritter Motoranschluss des beispielhaften BLDC Motors
- Wr
- reduziertes drittes Klemmensignal. Der Spannungspegel liegt vorzugsweise um den Faktor 1/3 niedriger als die Spannung am dritten Motoranschluss (W). Das Signal ist dem dritten Motoranschluss (W) zugeordnet.
- Wkorr
- korrigiertes Spannungssignal (Wkorr) des dritten Motoranschlusses (W). Das korrigierte Spannungssignal (Wkorr) des dritten Motoranschlusses (W) wird im zugehörigen zweiten Summierer (SU2W) durch Subtraktion des virtuellen Sternpunktsignals (SpS) vom Spannungssignal des dritten Motoranschlusses (W) erzeugt. Das Signal ist dem dritten Motoranschluss (W) zugeordnet.
- W'korr
- begrenztes korrigiertes Spannungssignal (W'korr) des dritten Motoranschlusses (W). Das Signal ist dem dritten Motoranschluss (W) zugeordnet.
- ZW1
- erster Zweig innerhalb der EMK-Auswertung (EMKA) zur Erzeugung des ersten Kommutierungssignals (A1) aus der EMK am ersten Motoranschluss (U) während des dritten Kommutierungsintervalls (Φ3) und während des sechsten Kommutierungsintervalls (Φ6). Dieser Vorrichtungsteil ist dem ersten Motoranschluss (U) zugeordnet.
- ZW2
- zweiter Zweig innerhalb der EMK-Auswertung (EMKA) zur Erzeugung des zweiten Kommutierungssignals (A2) aus der EMK am zweiten Motoranschluss (V) während des ersten Kommutierungsintervalls (Φ1) und während des vierten Kommutierungsintervalls (Φ4). Dieser Vorrichtungsteil ist dem zweiten Motoranschluss (V) zugeordnet.
- ZW3
- dritter Zweig innerhalb der EMK-Auswertung (EMKA) zur Erzeugung des dritten Kommutierungssignals (A3) aus der EMK am dritten Motoranschluss (W) während des zweiten Kommutierungsintervalls (Φ2) und während des fünften Kommutierungsintervalls (Φ5). Dieser Vorrichtungsteil ist dem dritten Motoranschluss (W) zugeordnet.