DE102014110596B4 - Verfahren zum Steuern des Betrags eines den Rädern eines Fahrzeug zugeführten Drehmoments zum Verhindern einer unbeabsichtigten Beschleunigung - Google Patents

Verfahren zum Steuern des Betrags eines den Rädern eines Fahrzeug zugeführten Drehmoments zum Verhindern einer unbeabsichtigten Beschleunigung Download PDF

Info

Publication number
DE102014110596B4
DE102014110596B4 DE102014110596.6A DE102014110596A DE102014110596B4 DE 102014110596 B4 DE102014110596 B4 DE 102014110596B4 DE 102014110596 A DE102014110596 A DE 102014110596A DE 102014110596 B4 DE102014110596 B4 DE 102014110596B4
Authority
DE
Germany
Prior art keywords
engine
torque
torque request
speed
request
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102014110596.6A
Other languages
English (en)
Other versions
DE102014110596A1 (de
Inventor
Michael Livshiz
Ryan Z. Goode
Richard B. Jess
Michael L. Waterman
Ronald F. Lochocki Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/972,275 external-priority patent/US9090245B2/en
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of DE102014110596A1 publication Critical patent/DE102014110596A1/de
Application granted granted Critical
Publication of DE102014110596B4 publication Critical patent/DE102014110596B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1006Engine torque losses, e.g. friction or pumping losses or losses caused by external loads of accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/12Engine control specially adapted for a transmission comprising a torque converter or for continuously variable transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/022Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the clutch status

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Verfahren, das umfasst, dass:
eine Achsendrehmomentanforderung basierend auf einer Fahrereingabe und einer Fahrzeuggeschwindigkeit ermittelt wird;
eine Motordrehmomentanforderung basierend auf der Achsendrehmomentanforderung sowie basierend auf einer ersten Turbinendrehzahl und/oder basierend darauf ermittelt wird, ob eine Kupplung eines Drehmomentwandlers eingerückt ist;
eine abgesicherte Drehmomentanforderung basierend auf der Fahrereingabe, der Fahrzeuggeschwindigkeit und/oder einer Motordrehzahl ermittelt wird; und
ein Betrag eines Drehmoments, das durch einen Motor (102) erzeugt wird, basierend auf der Motordrehmomentanforderung oder der abgesicherten Drehmomentanforderung gesteuert wird,
wobei der Betrag des Drehmoments, das durch den Motor (102) erzeugt wird, basierend auf der Motordrehmomentanforderung gesteuert wird, wenn die Motordrehmomentanforderung kleiner als die abgesicherte Drehmomentanforderung oder gleich dieser ist.
wobei der Betrag des Drehmoments, das durch den Motor (102) erzeugt wird, basierend auf der abgesicherten Drehmomentanforderung gesteuert wird, wenn die Motordrehmomentanforderung größer als die abgesicherte Drehmomentanforderung ist, dadurch gekennzeichnet,
dass die abgesicherte Drehmomentanforderung basierend auf einem maximalen Wert einer ersten abgesicherten Drehmomentanforderung und einer zweiten abgesicherten Drehmomentanforderung ermittelt wird.

Description

  • GEBIET
  • Die vorliegende Offenbarung betrifft Verbrennungsmotoren und insbesondere Systeme und Verfahren zum Steuern des Betrags eines den Rädern eines Fahrzeug zugeführten Drehmoments, um eine unbeabsichtigte Beschleunigung zu verhindern.
  • HINTERGRUND
  • Verbrennungsmotoren verbrennen ein Luft- und Kraftstoffgemisch in Zylindern, um Kolben anzutreiben, was ein Antriebsdrehmoment erzeugt. Eine Luftströmung in den Motor wird mittels einer Drossel geregelt. Spezieller stellt die Drossel eine Drosselfläche ein, was die Luftströmung in den Motor vergrößert oder verkleinert. Wenn die Drosselfläche zunimmt, nimmt die Luftströmung in den Motor zu. Ein Kraftstoffsteuersystem stellt die Rate ein, mit der Kraftstoff eingespritzt wird, um ein Soll-Luft/Kraftstoffgemisch an die Zylinder zu liefern und/oder eine Soll-Drehmomentausgabe zu erreichen. Eine Erhöhung der Menge an Luft und Kraftstoff, die an die Zylinder geliefert werden, vergrößert die Drehmomentausgabe des Motors.
  • Bei Motoren mit Funkenzündung löst ein Zündfunken die Verbrennung eines Luft/Kraftstoff-Gemischs aus, das an die Zylinder geliefert wird. Bei Motoren mit Kompressionszündung verbrennt die Kompression in den Zylindern das Luft/Kraftstoff-Gemisch, das an die Zylinder geliefert wird. Der Zündfunkenzeitpunkt und die Luftströmung können die primären Mechanismen zum Einstellen der Drehmomentausgabe der Motoren mit Funkenzündung sein, während die Kraftstoffströmung der primäre Mechanismus zum Einstellen der Drehmomentausgabe der Motoren mit Kompressionszündung sein kann.
  • Aus der DE 10 2012 216 872 A1 ist ein Verfahren mit den Merkmalen gemäß dem Oberbegriff des Anspruchs 1 bekannt.
  • Die DE 10 2012 206 050 A1 beschreibt ein ähnliches Verfahren.
  • In der DE 10 2009 012 377 A1 ist ebenfalls ein ähnliches Verfahren beschrieben.
  • Eine Aufgabe der Erfindung besteht darin, ein Verfahren zum Steuern eines Drehmoments eines Verbrennungsmotors zu schaffen, mit dem eine unbeabsichtigte Beschleunigung eines Fahrzeugs vermieden werden kann, wenn ein innerhalb der Steuerung ermittelter Getriebegang kleiner als ein tatsächlicher Getriebegang ist.
  • ZUSAMMENFASSUNG
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.
  • Das Verfahren umfasst, dass eine Achsendrehmomentanforderung basierend auf einer Fahrereingabe und einer Fahrzeuggeschwindigkeit ermittelt wird. Eine Motordrehmomentanforderung wird basierend auf der Achsendrehmomentanforderung sowie basierend auf einer ersten Turbinendrehzahl und/oder basierend darauf ermittelt, ob eine Kupplung eines Drehmomentwandlers eingerückt ist. Ferner wird eine abgesicherte Drehmomentanforderung basierend auf der Fahrereingabe, der Fahrzeuggeschwindigkeit und/oder einer Motordrehzahl ermittelt. Schließlich wird ein Betrag eines Drehmoments, das durch einen Motor erzeugt wird, basierend auf der Motordrehmomentanforderung oder der abgesicherten Drehmomentanforderung gesteuert.
  • Figurenliste
  • Die vorliegende Offenbarung wird anhand der ausführlichen Beschreibung und der begleitenden Zeichnungen verständlicher werden, wobei:
    • 1 ein Funktionsblockdiagramm eines beispielhaften Motorsystems gemäß den Prinzipien der vorliegenden Offenbarung ist;
    • 2 ein Funktionsblockdiagramm eines beispielhaften Steuersystems gemäß den Prinzipien der vorliegenden Offenbarung ist; und
    • 3 ein Flussdiagramm ist, das ein beispielhaftes Steuerverfahren gemäß den Prinzipien der vorliegenden Offenbarung darstellt.
  • In den Zeichnungen können Bezugszeichen erneut verwendet werden, um ähnliche und/oder identische Elemente zu identifizieren.
  • AUSFÜHRLICHE BESCHREIBUNG
  • Ein System und ein Verfahren gemäß der vorliegenden Offenbarung können den Betrag eines Drehmoments, das durch einen Motor erzeugt wird, basierend auf einer Achsendrehmomentanforderung steuern. Das System und das Verfahren können die Achsendrehmomentanforderung basierend auf einer Pedalposition und einer Fahrzeuggeschwindigkeit ermitteln. Das System und das Verfahren können eine Motordrehmomentanforderung basierend auf der Achsendrehmomentanforderung und Getriebeverlusten (Drehmomentverlusten in dem Getriebe) ermitteln. Das System und das Verfahren können anschließend den Betrag des Drehmoments, das durch den Motor erzeugt wird, basierend auf der Motordrehmomentanforderung steuern.
  • Das System und das Verfahren können die Getriebeverluste basierend auf einem Getriebegang, einer Turbinendrehzahl, die dem Drehmomentwandler zugeordnet ist, und basierend darauf ermitteln, ob eine Drehmomentwandlerkupplung eingerückt ist. Wenn die Motordrehmomentanforderung erzeugt wird, berücksichtigen daher das System und das Verfahren den Getriebegang, die Turbinendrehzahl und ferner, ob die Drehmomentwandlerkupplung eingerückt ist. Das System und das Verfahren verbessern wiederum die Fahrbarkeit im Vergleich zu anderen Systemen und Verfahren zum Steuern des Motordrehmoments.
  • Der Getriebegang kann weniger genau sein als ein abgesicherter Parameter, wie beispielsweise die Motordrehzahl oder die Fahrzeuggeschwindigkeit, die gemessen werden können. Das System und das Verfahren können die Motordrehmomentanforderung ermitteln, indem die Achsendrehmomentanforderung durch ein Übersetzungsverhältnis dividiert wird, das dem Getriebegang zugeordnet ist.
  • Wenn der Getriebegang, der zum Ermitteln der Motordrehmomentanforderung verwendet wird, kleiner als der tatsächliche Gang ist, kann daher das Steuern der Motordrehmomentausgabe basierend auf der Motordrehmomentanforderung eine unbeabsichtigte Beschleunigung bewirken.
  • Ein System und ein Verfahren gemäß der vorliegenden Offenbarung verhindern eine unbeabsichtigte Beschleunigung, indem die Motordrehmomentanforderung mit einer abgesicherten Drehmomentanforderung verglichen wird. Wenn die Motordrehmomentanforderung kleiner als die abgesicherte Drehmomentanforderung oder gleich dieser ist, steuern das System und das Verfahren den Betrag des Drehmoments, das durch den Motor erzeugt wird, basierend auf der Motordrehmomentanforderung. Wenn die Motordrehmomentanforderung größer als die abgesicherte Drehmomentanforderung ist, steuern das System und das Verfahren den Betrag des Drehmoments, das durch den Motor erzeugt wird, basierend auf der abgesicherten Drehmomentanforderung.
  • Die abgesicherte Drehmomentanforderung kann ein maximaler Wert einer ersten abgesicherten Drehmomentanforderung und einer zweiten abgesicherten Drehmomentanforderung sein. Das System und das Verfahren können die erste abgesicherte Drehmomentanforderung basierend auf einer Motorleistungsanforderung und der Motordrehzahl ermitteln. Das System und das Verfahren können die Motorleistungsanforderung basierend auf der Pedalposition und der Fahrzeuggeschwindigkeit ermitteln.
  • Das System und das Verfahren können die zweite abgesicherte Drehmomentanforderung basierend auf dem Achsendrehmoment, einem geschätzten Getriebegang und einer geschätzten Turbinendrehzahl ermitteln. Das System und das Verfahren können den Getriebegang basierend auf der Motordrehzahl und der Fahrzeuggeschwindigkeit schätzen. Das System und das Verfahren können die Turbinendrehzahl basierend auf der Fahrzeuggeschwindigkeit und dem geschätzten Getriebegang schätzen.
  • Nun auf 1 Bezug nehmend, umfasst ein beispielhaftes Motorsystem 100 einen Motor 102, der ein Luft/Kraftstoff-Gemisch verbrennt, um ein Antriebsdrehmoment für ein Fahrzeug zu erzeugen. Der Betrag des Drehmoments, das durch den Motor 102 erzeugt wird, basiert auf einer Fahrereingabe von einem Fahrereingabemodul 104. Die Fahrereingabe kann auf einer Position eines Gaspedals basieren. Die Fahrereingabe kann auch auf einem Tempomat basieren, der ein adaptives Tempomatsystem sein kann, das die Fahrzeuggeschwindigkeit variiert, um eine vorbestimmte Nachfolgedistanz aufrecht zu erhalten.
  • Luft wird durch ein Einlasssystem 108 in den Motor 102 eingelassen. Lediglich beispielhaft kann das Einlasssystem 108 einen Einlasskrümmer 110 und ein Drosselventil 112 umfassen. Lediglich beispielhaft kann das Drosselventil 112 eine Drosselklappe mit einem drehbaren Blatt umfassen. Ein Motorsteuermodul (ECM) 114 steuert ein Drossel-Aktuatormodul 116, welches das Öffnen des Drosselventils 112 regelt, um die Luftmenge zu steuern, die in den Einlasskrümmer 110 eingelassen wird.
  • Luft aus dem Einlasskrümmer 110 wird in Zylinder des Motors 102 eingelassen. Obgleich der Motor 102 mehrere Zylinder aufweisen kann, ist zu Darstellungszwecken ein einzelner repräsentativer Zylinder 118 gezeigt. Lediglich beispielhaft kann der Motor 102 2, 3, 4, 5, 6, 8, 10 und/oder 12 Zylinder aufweisen. Das ECM 114 kann einige der Zylinder selektiv deaktivieren, was die Kraftstoffwirtschaftlichkeit unter bestimmten Motorbetriebsbedingungen verbessern kann.
  • Der Motor 102 kann unter Verwendung eines Viertakt-Motorzyklus arbeiten. Die vier Takte, die nachstehend beschrieben sind, werden als der Einlasstakt, der Kompressionstakt, der Verbrennungstakt und der Auslasstakt bezeichnet. Während jeder Umdrehung einer Kurbelwelle (nicht gezeigt) treten zwei der vier Takte in dem Zylinder 118 auf. Daher sind zwei Kurbelwellenumdrehungen für den Zylinder 118 notwendig, um alle vier Takte zu durchlaufen.
  • Während des Einlasstakts wird Luft aus dem Einlasskrümmer 110 durch ein Einlassventil 122 in den Zylinder 118 eingelassen. Das ECM 114 steuert ein Kraftstoff-Aktuatormodul 124, das die Kraftstoffeinspritzung regelt, um ein gewünschtes Luft/Kraftstoff-Verhältnis zu erreichen. Kraftstoff kann an einem zentralen Ort oder an mehreren Orten, wie z.B. in der Nähe des Einlassventils 122 jedes der Zylinder, in den Einlasskrümmer 110 eingespritzt werden. Bei verschiedenen Implementierungen kann der Kraftstoff direkt in die Zylinder oder in Mischkammern, die den Zylindern zugeordnet sind, eingespritzt werden. Das Kraftstoff-Aktuatormodul 124 kann die Einspritzung von Kraftstoff in die Zylinder stoppen, die deaktiviert sind.
  • Der eingespritzte Kraftstoff vermischt sich mit Luft und erzeugt ein Luft/KraftstoffGemisch in dem Zylinder 118. Während des Kompressionstakts komprimiert ein Kolben (nicht gezeigt) in dem Zylinder 118 das Luft/Kraftstoff-Gemisch. Der Motor 102 kann ein Motor mit Kompressionszündung sein, in welchem Fall die Kompression in dem Zylinder 118 das Luft/Kraftstoff-Gemisch zündet. Alternativ kann der Motor 102 ein Motor mit Funkenzündung sein, in welchem Fall ein Zündfunken-Aktuatormodul 126 eine Zündkerze 128 in dem Zylinder 118 basierend auf einem Signal von dem ECM 114 aktiviert, welche das Luft/Kraftstoff-Gemisch zündet. Der Zeitpunkt des Zündfunkens kann relativ zu der Zeit spezifiziert werden, zu der sich der Kolben an seiner obersten Position befindet, die als oberer Totpunkt (TDC) bezeichnet wird.
  • Das Zündfunken-Aktuatormodul 126 kann durch ein Zeitpunktsignal gesteuert werden, das spezifiziert, wie weit vor oder nach dem TDC der Zündfunken erzeugt werden soll. Da die Kolbenposition mit der Kurbelwellendrehung in direkter Beziehung steht, kann der Betrieb des Zündfunken-Aktuatormoduls 126 mit dem Kurbelwellenwinkel synchronisiert werden. Bei verschiedenen Implementierungen kann das Zündfunken-Aktuatormodul 126 die Lieferung des Zündfunkens an die deaktivierten Zylinder stoppen.
  • Das Erzeugen des Zündfunkens kann als ein Zündungsereignis bezeichnet werden. Das Zündfunken-Aktuatormodul 126 kann die Fähigkeit aufweisen, den Zeitpunkt des Zündfunkens für jedes Zündungsereignis zu variieren. Das Zündfunken-Aktuatormodul 126 kann sogar dann in der Lage sein, den Zündfunkenzeitpunkt für ein nächstes Zündungsereignis variieren, wenn das Signal für den Zündfunkenzeitpunkt zwischen einem letzten Zündungsereignis und dem nächsten Zündungsereignis verändert wird. Bei verschiedenen Implementierungen kann der Motor 102 mehrere Zylinder aufweisen, und das Zündfunken-Aktuatormodul 126 kann den Zündfunkenzeitpunkt relativ zu dem TDC für alle Zylinder in dem Motor 102 um denselben Betrag variieren.
  • Während des Verbrennungstakts treibt die Verbrennung des Luft/Kraftstoff-Gemischs den Kolben abwärts, wodurch die Kurbelwelle angetrieben wird. Der Verbrennungstakt kann als die Zeit zwischen dem Erreichen des TDC durch den Kolben und der Zeit definiert werden, zu welcher der Kolben zu einem unteren Totpunkt (BDC) zurückkehrt. Während des Auslasstakts beginnt der Kolben, sich wieder von dem BDC aufwärts zu bewegen, und er treibt die Nebenprodukte der Verbrennung durch ein Auslassventil 130 heraus. Die Nebenprodukte der Verbrennung werden mittels eines Abgassystems 134 aus dem Fahrzeug ausgestoßen.
  • Das Einlassventil 122 kann durch eine Einlassnockenwelle 140 gesteuert werden, während das Auslassventil 130 durch eine Auslassnockenwelle 142 gesteuert werden kann. Bei verschiedenen Implementierungen können mehrere Einlassnockenwellen (einschließlich der Einlassnockenwelle 140) mehrere Einlassventile (einschließlich des Einlassventils 122) für den Zylinder 118 und/oder die Einlassventile (einschließlich des Einlassventils 122) mehrerer Reihen von Zylindern (einschließlich des Zylinders 118) steuern. Auf ähnliche Weise können mehrere Auslassnockenwellen (einschließlich der Auslassnockenwelle 142) mehrere Auslassventile für den Zylinder 118 und/oder die Auslassventile (einschließlich des Auslassventils 130) für mehrere Reihen von Zylindern (einschließlich des Zylinders 118) steuern.
  • Die Zeit, zu der das Einlassventil 122 geöffnet wird, kann durch einen Einlass-Nockenphasensteller 148 bezogen auf den Kolben-TDC variiert werden. Die Zeit, zu der das Auslassventil 130 geöffnet wird, kann durch einen Auslass-Nockenphasensteller 150 bezogen auf den Kolben-TDC variiert werden. Ein Ventil-Aktuatormodul 158 kann den Einlass- und den Auslass-Nockenphasensteller 148, 150 basierend auf Signalen von dem ECM 114 steuern. Wenn er implementiert ist, kann ein variabler Ventilhub ebenso durch das Ventil-Aktuatormodul 158 gesteuert werden.
  • Das Ventil-Aktuatormodul 158 kann den Zylinder 118 deaktivieren, indem das Öffnen des Einlassventils 122 und/oder des Auslassventils 130 abgeschaltet wird. Das Ventil-Aktuatormodul 158 kann das Öffnen des Einlassventils 122 abschalten, indem das Einlassventil 122 von dem Einlass-Nockenphasensteller 148 entkoppelt wird. Auf ähnliche Weise kann das Ventil-Aktuatormodul 158 das Öffnen des Auslassventils 130 abschalten, indem das Auslassventil 130 von dem Auslass-Nockenphasensteller 150 abgekoppelt wird. Gemäß verschiedenen Implementierungen kann das Ventil-Aktuatormodul 158 das Einlassventil 122 und/oder das Auslassventil 130 unter Verwendung von anderen Einrichtungen als Nockenwellen steuern, wie beispielsweise unter der Verwendung von elektromagnetischen oder elektrohydraulischen Aktuatoren.
  • Das Motorsystem 100 kann eine Ladedruckeinrichtung aufweisen, die unter Druck stehende Luft an den Einlasskrümmer 110 liefert. Beispielsweise zeigt 1 einen Turbolader, der eine heiße Turbine 160-1 aufweist, die durch heiße Abgase angetrieben wird, die durch das Abgassystem 134 strömen. Der Turbolader weist auch einen von der Turbine 160-1 angetriebenen Kompressor 160-2 für kalte Luft auf, der die Luft komprimiert, die in das Drosselventil 112 geführt wird. Bei verschiedenen Implementierungen kann ein von der Kurbelwelle angetriebener Turbokompressor (nicht gezeigt) Luft von dem Drosselventil 112 komprimieren und die komprimierte Luft an den Einlasskrümmer 110 liefern.
  • Ein Ladedruck-Regelventil 162 kann dem Abgas ermöglichen, an der Turbine 160-1 vorbeizuströmen, wodurch der Ladedruck (der Betrag der Einlassluftkompression) des Turboladers verringert wird. Das ECM 114 kann den Turbolader mittels eines Ladedruck-Aktuatormoduls 164 steuern. Das Ladedruck-Aktuatormodul 164 kann den Ladedruck des Turboladers modulieren, indem die Position des Ladedruck-Regelventils 162 gesteuert wird. Bei verschiedenen Implementierungen können mehrere Turbolader durch das Ladedruck-Aktuatormodul 164 gesteuert werden. Der Turbolader kann eine variable Geometrie aufweisen, die durch das Ladedruck-Aktuatormodul 164 gesteuert werden kann.
  • Ein Zwischenkühler (nicht gezeigt) kann einen Teil der in der komprimierten Luftladung enthaltenen Wärme dissipieren, die erzeugt wird, wenn die Luft komprimiert wird. Die komprimierte Luftladung kann auch Wärme von Komponenten des Abgassystems 134 absorbiert haben. Obwohl sie zu Darstellungszwecken getrennt gezeigt sind, können die Turbine 160-1 und der Kompressor 160-2 aneinander befestigt sein und die Einlassluft in die unmittelbare Nähe des heißen Abgases bringen.
  • Das Motorsystem kann ein Abgasrückführungsventil (AGR-Ventil) 170 aufweisen, das Abgas selektiv zurück zu dem Einlasskrümmer 110 zurückleitet. Das AGR-Ventil 170 kann stromaufwärts der Turbine 160-1 angeordnet sein. Das AGR-Ventil 170 kann durch ein AGR-Aktuatormodul 172 gesteuert werden.
  • Das Motorsystem 100 kann die Position der Kurbelwelle unter Verwendung eines Kurbelwellen-Positionssensors (CKP-Sensors) 180 messen. Die Temperatur des Motorkühlmittels kann unter Verwendung eines Motorkühlmittel-Temperatursensors (ECT-Sensors) 182 gemessen werden. Der ECT-Sensor 182 kann in dem Motor 102 oder an anderen Orten angeordnet sein, an denen das Kühlmittel zirkuliert, wie beispielsweise in einem Kühler (nicht gezeigt).
  • Der Druck in dem Einlasskrümmer 110 kann unter Verwendung eines Krümmerabsolutdrucksensors (MAP-Sensors) 184 gemessen werden. Bei verschiedenen Implementierungen kann ein Motorvakuum gemessen werden, das die Differenz zwischen dem Umgebungsluftdruck und dem Druck in dem Einlasskrümmer 110 ist. Die Luftmassenströmungsrate in den Einlasskrümmer 110 kann unter Verwendung eines Luftmassenströmungssensors (MAF-Sensors) 186 gemessen werden. Bei verschiedenen Implementierungen kann der MAF-Sensor 186 in einem Gehäuse angeordnet sein, das auch das Drosselventil 112 umfasst. Die Geschwindigkeit des Fahrzeugs kann unter Verwendung eines Fahrzeuggeschwindigkeitssensors (VS-Sensors) 188 gemessen werden, der an einem Rad des Fahrzeugs angeordnet sein kann.
  • Das Drossel-Aktuatormodul 116 kann die Position des Drosselventils 112 unter Verwendung eines oder mehrerer Drosselpositionssensoren (TPS) 190 überwachen. Die Umgebungstemperatur der Luft, die in den Motor 102 angesaugt wird, kann unter Verwendung eines Einlassluft-Temperatursensors (IAT-Sensors) 192 gemessen werden. Das ECM 114 kann Signale von den Sensoren verwenden, um Steuerentscheidungen für das Motorsystem 100 zu treffen.
  • Das ECM 114 kann mit einem Getriebesteuermodul (TCM) 194 in Verbindung stehen, um Gangwechsel in einem Getriebe (nicht gezeigt) abzustimmen. Beispielsweise kann das ECM 114 das Motordrehmoment während eines Gangwechsels verringern. Das ECM 114 kann mit einem Hybridsteuermodul (HCM) 196 in Verbindung stehen, um den Betrieb des Motors 102 und eines Elektromotors 198 abzustimmen. Der Elektromotor 198 kann auch als ein Generator funktionieren, und er kann verwendet werden, um elektrische Energie zur Verwendung durch elektrische Systeme des Fahrzeugs und/oder zur Speicherung in einer Batterie zu erzeugen. Bei verschiedenen Implementierungen können verschiedene Funktionen des ECM 114, des TCM 194 und des HCM 196 in ein oder mehrere Module integriert werden.
  • Ein Drehmomentwandler (nicht gezeigt) kann verwendet werden, um den Motor 102 hydraulisch mit dem Getriebe zu koppeln. Der Drehmomentwandler kann ein Schaufelrad und eine Turbine aufweisen. Das Schaufelrad kann mechanisch mit dem Motor 102 gekoppelt sein. Die Turbine kann hydraulisch mit dem Schaufelrad gekoppelt sein und das Getriebe antreiben. Der Drehmomentwandler kann auch eine Verriegelungskupplung aufweisen, welche die Turbine mit dem Schaufelrad verriegelt und das Schaufelrad und die Turbine mechanisch koppelt. Die Drehzahl der Turbine kann unter Verwendung eines Turbinendrehzahlsensors (nicht gezeigt) gemessen werden, der die Turbinendrehzahl an das TCM 194 ausgeben kann.
  • Nun auf 2 Bezug nehmend, umfasst eine beispielhafte Implementierung des ECM 114 ein Achsendrehmoment-Ermittlungsmodul 202, ein Achsendrehmoment-Anpassungsmodul 204 und ein Motordrehmoment-Ermittlungsmodul 206. Das Achsendrehmoment-Ermittlungsmodul 202 ermittelt eine Achsendrehmomentanforderung basierend auf der Fahrereingabe von dem Fahrereingabemodul 104 und der Fahrzeuggeschwindigkeit von dem VS-Sensor 188. Das Achsendrehmoment-Ermittlungsmodul 202 kann die Achsendrehmomentanforderung basierend auf einer Beziehung ermitteln wie beispielsweise T axl = T acc ( PP ,VS ) + ZPT
    Figure DE102014110596B4_0001
    wobei Tacc ein Beschleunigungsdrehmoment ist, PP die Pedalposition ist, VS die Fahrzeuggeschwindigkeit ist und ZPT ein Nullpedaldrehmoment ist. Diese Beziehung kann als eine Gleichung und/oder eine Nachschlagetabelle verkörpert werden.
  • Das Beschleunigungsdrehmoment ist ein Betrag eines Achsendrehmoments (Drehmoment an den Rädern), das erforderlich ist, um eine gewünschte Beschleunigung des Fahrzeug zu erreichen. Wie es die Beziehung (1) angibt, ist das Beschleunigungsdrehmoment eine Funktion der Pedalposition und der Fahrzeuggeschwindigkeit. Das Nullpedaldrehmoment kann verwendet werden, um den Betrag des Drehmoments zu steuern, das durch den Motor 102 erzeugt wird, wenn ein Fahrer seinen Fuß von dem Gaspedal entfernt, wie nachstehend detaillierter diskutiert wird.
  • Das Beschleunigungsdrehmoment kann basierend auf einer Beziehung ermittelt wird wie beispielsweise T acc = ACCEL ( PP ,VS ) * M * R
    Figure DE102014110596B4_0002
    wobei ACCEL die gewünschte Beschleunigung des Fahrzeugs ist, M eine Masse des Fahrzeugs ist und R ein Radius der Räder ist. Diese Beziehung kann als eine Gleichung und/oder eine Nachschlagetabelle verkörpert werden. Wie es die Beziehung (2) angibt, ist die gewünschte Beschleunigung eine Funktion der Pedalposition und der Fahrzeuggeschwindigkeit. Das Achsendrehmoment-Ermittlungsmodul 202 gibt das Achsendrehmoment aus.
  • Das Achsendrehmoment-Anpassungsmodul 204 passt die Achsendrehmomentanforderung basierend auf einer tatsächlichen Antwort eines Antriebsstrangsystems und einer gewünschten Antwort des Antriebsstrangsystems an. Das Antriebsstrangsystem kann den Motor 102, das Getriebe, den Drehmomentwandler und einen Endantrieb (nicht gezeigt) umfassen, der das Getriebe mit den Rädern koppelt. Eine Antwort erster Ordnung des Antriebsstrangsystems kann gleich einer Zeitdauer von einer ersten Zeit, zu welcher ein Achsendrehmoment angewiesen wird, bis zu einer zweiten Zeit sein, zu welcher 90 Prozent des Achsendrehmoments erreicht werden. Die Antwort erster Ordnung kann dadurch charakterisiert sein, dass eine Zeitkonstante gleich einem Drittel der Antwort erster Ordnung verwendet wird. Das Achsendrehmoment-Anpassungsmodul 204 kann eine angepasste Achsendrehmomentanforderung basierend auf einer Beziehung ermitteln wie beispielsweise T axl_adj = τ act s+1 τ des s+1 T axl
    Figure DE102014110596B4_0003
    wobei τact eine tatsächliche Zeitkonstante einer Antriebsstrang-Systemantwort ist, τdes eine gewünschte Zeitkonstante der Antriebsstrang-Systemantwort ist und s ein komplexes Argument einer Laplace-Transformation ist.
  • Die tatsächliche Zeitkonstante kann basierend auf einer Funktion der Motordrehzahl und eines Verhältnisses eines angewiesenen Drehmoments zu einem maximalen Drehmoment bei der Motordrehzahl ermittelt werden. Diese Funktion kann als eine Gleichung und/oder eine Nachschlagetabelle verkörpert werden. Zusätzlich kann diese Funktion vorbestimmt werden, indem das Antriebsstrangsystem in einem Dynamometer angeordnet wird. Alternativ kann das Achsendrehmoment-Anpassungsmodul 204 die tatsächliche Zeitkonstante in Echtzeit basierend auf der Antwort erster Ordnung des Antriebsstrangsystems schätzen. Das gewünschte Drehmoment kann basierend auf einer Funktion der Fahrzeuggeschwindigkeit und eines gewünschten Achsendrehmoments ermittelt werden. Diese Funktion kann als eine Gleichung und/oder eine Nachschlagetabelle verkörpert werden, und sie kann mit dem Ziel der Verbesserung der Fahrbarkeit vorbestimmt werden.
  • Das Motordrehmoment-Ermittlungsmodul 206 ermittelt eine Motordrehmomentanforderung basierend auf der angepassten Achsendrehmomentanforderung. Das Motordrehmoment-Ermittlungsmodul 206 kann die Motordrehmomentanforderung basierend auf einer Beziehung ermitteln wie beispielsweise T eng = T axl_adj +OFF SC
    Figure DE102014110596B4_0004
    wobei Teng die Motordrehmomentanforderung ist, OFF ein Offset ist und SC ein Skalar ist. Diese Beziehung kann als eine Gleichung und/oder eine Nachschlagetabelle verkörpert werden. Der Offset und der Skalar können ein Maß der Getriebeverluste sein, wie es nachstehend detaillierter diskutiert wird.
  • Ein Modul 208 für eine gewünschte Motordrehzahl ermittelt eine gewünschte Motordrehzahl basierend auf der Achsendrehmomentanforderung, die durch das Achsendrehmoment-Ermittlungsmodul 202 ermittelt wird, einem Getriebegang und einer Turbinendrehzahl. Wenn die Drehmomentwandlerkupplung nicht eingerückt ist, kann das Modul 208 für die gewünschte Motordrehzahl die gewünschte Motordrehzahl beispielsweise basierend auf einer Beziehung ermitteln wie etwa N eng_des = f ( T axl ,N turb ,Gear )
    Figure DE102014110596B4_0005
    wobei Neng_des die gewünschte Motordrehzahl ist, Nturb die Turbinendrehzahl ist und Gear der Getriebegang ist. Diese Beziehung kann als eine Gleichung und/oder eine Nachschlagetabelle verkörpert werden. Das Modul 208 für die gewünschte Motordrehzahl kann den Getriebegang und die Turbinendrehzahl von dem TCM 194 empfangen.
  • Gemäß einem Beispiel kann die Beziehung (5) in einer Gleichung verkörpert wie beispielsweise T axl +SL ( Gear ) η E η R TR ( N turb N eng_des ) = N eng_des 2 k 2 ( N turb N eng_des )
    Figure DE102014110596B4_0006
    wobei SL die gesamten Drehverluste des Antriebsstrangsystems sind, ηE die Effizienz des Getriebes ist und ηR das Drehmomentverhältnis des Getriebes, eines Verteilergetriebes (nicht gezeigt) und eines Differentials (nicht gezeigt) ist, TR des Drehmomentverhältnis des Drehmomentwandlers ist und k ein Faktor ist. Wie Gleichung (6) angibt, können die gesamten Drehverluste eine Funktion des Getriebegangs sein, während das Drehmomentverhältnis des Drehmomentwandlers und der k-Faktor eine Funktion eines Verhältnisses der Turbinendrehzahl zu der gewünschten Motordrehzahl sein können. Die Getriebeeffizienz, das Getriebe-Drehmomentverhältnis und der k-Faktor können vorbestimmt werden, indem beispielsweise das Antriebsstrangsystem in einem Dynamometer angeordnet wird. Gemäß einem Beispiel kann der k-Faktor gleich der Motordrehzahl dividiert durch die Quadratwurzel der Drehmomentausgabe des Motors 102 sein. Die Gleichung (6) kann offline auf eine iterative Weise gelöst werden, und die Ergebnisse können in einer Nachschlagetabelle gespeichert werden. Anschließend kann die gewünschte Motordrehzahl in Echtzeit unter Verwendung der Nachschlagetabelle basierend auf der Achsendrehmomentanforderung, dem Getriebegang und der Turbinendrehzahl ermittelt werden.
  • Gemäß einem anderen Beispiel kann das Modul 208 für die gewünschte Motordrehzahl dann, wenn die Drehmomentwandlerkupplung eingerückt ist, die gewünschte Motordrehzahl basierend auf einer Beziehung ermitteln wie beispielsweise N eng_des = N turb + Slip des
    Figure DE102014110596B4_0007
    wobei Slipdes ein gewünschter Schlupf in dem Drehmomentwandler ist. Der Drehmomentwandlerschlupf ist gleich einer Differenz zwischen der Motordrehzahl und der Turbinendrehzahl. Das Modul 208 für die gewünschte Motordrehzahl kann den gewünschten Schlupf von dem TCM 194 empfangen. Das TCM 194 kann den gewünschten Schlupf einstellen, um die Kraftstoffwirtschaftlichkeit zu verbessern und Schwingungen zu verringern.
  • Ein Modul 210 für Getriebeverluste ermittelt den Skalar und den Offset, die durch das Motordrehmoment-Ermittlungsmodul 206 zum Ermitteln des Motordrehmoments verwendet werden. Das Modul 210 für Getriebeverluste kann den Skalar basierend auf einer Beziehung ermitteln wie beispielsweise SC =  η E η R TR ( N turb N eng_des )
    Figure DE102014110596B4_0008
  • Das Modul 210 für Getriebeverluste kann den Offset basierend auf einer Beziehung ermitteln wie beispielsweise OFF = SL ( Gear )
    Figure DE102014110596B4_0009
  • Das Modul 210 für die Getriebeverluste kann die Turbinendrehzahl und den Getriebegang von dem TCM 194 empfangen.
  • Ein Motordrehzahl-Steuermodul 212 gibt eine Motordrehmomentanforderung aus, um die Motordrehzahl zu steuern. Das Motordrehzahl-Steuermodul 212 kann die Motordrehmomentanforderung gleich dem Nullpedaldrehmoment setzen, wenn das ECM 114 von einem Drehmomentsteuermodus in einen Drehzahlsteuermodus übergeht, beispielsweise dann, wenn ein Fahrer seinen Fuß von dem Gaspedal entfernt. Das Motordrehzahl-Steuermodul 212 kann das Nullpedaldrehmoment ausgeben, wenn die Achsendrehmomentanforderung von dem Achsendrehmoment-Ermittlungsmodul 202 kleiner als ein Schwellenwert ist (ein vorbestimmter Wert), was angibt, dass sich der Fuß des Fahrers nicht auf dem Gaspedal befindet. Das Nullpedaldrehmoment kann nur dann zum Steuern des Betrags des Drehmoments, das durch den Motor 102 erzeugt wird, verwendet werden, wenn das Motordrehzahl-Steuermodul 212 das Nullpedaldrehmoment ausgibt.
  • Das Motordrehzahl-Steuermodul 212 kann das Nullpedaldrehmoment anpassen, um die Differenz zwischen einer gewünschten Motordrehzahl und einer tatsächlichen Motordrehzahl zu verringern. Das Motordrehzahl-Steuermodul 212 kann die gewünschte Motordrehzahl für einen Fahrzeugschiebebetrieb linear verringern, bis eine Leerlaufdrehzahl erreicht ist, und die gewünschte Motordrehzahl anschließend bei der Leerlaufdrehzahl halten. Das Motordrehzahl-Steuermodul 212 kann die tatsächliche Motordrehzahl basierend auf der Kurbelwellenposition von dem CKP-Sensor 180 ermitteln.
  • Ein Motordrehmoment-Steuermodul 214 steuert den Betrag des Drehmoments, das durch den Motor 102 erzeugt wird. Das Motordrehmoment-Steuermodul 214 kann die Motordrehmomentausgabe basierend auf der Motordrehmomentanforderung steuern, die durch das Motordrehmoment-Ermittlungsmodul 206 ausgegeben wird, wenn die Achsendrehmomentanforderung, die durch das Achsendrehmoment-Ermittlungsmodul 202 ausgegeben wird, größer als der Schwellenwert oder gleich diesem ist. Das Motordrehmoment-Steuermodul 214 kann das ausgegebene Motordrehmoment basierend auf der Motordrehmomentanforderung steuern, die durch das Motordrehzahl-Steuermodul 212 ausgegeben wird, wenn die Achsendrehmomentanforderung, die durch das Achsendrehmoment-Ermittlungsmodul 202 ausgegeben wird, kleiner als der Schwellenwert ist.
  • Das Motordrehmoment-Steuermodul 214 kann den Betrag des Drehmoments steuern, das durch den Motor 102 erzeugt wird, indem eine gewünschte Drosselfläche, eine gewünschte Kraftstoffzufuhrrate und/oder ein gewünschter Zündfunkenzeitpunkt eingestellt werden. Das Motordrehmoment-Steuermodul 214 kann die gewünschte Drosselfläche, die gewünschte Kraftstoffzufuhrrate und den gewünschten Zündfunkenzeitpunkt an das Drossel-Aktuatormodul 116, das Kraftstoff-Aktuatormodul 124 bzw. das Zündfunken-Aktuatormodul 126 ausgeben. Das Drossel-Aktuatormodul 116 kann das Drosselventil 112 basierend auf der gewünschten Drosselfläche regeln. Das Kraftstoff-Aktuatormodul 124 kann die Kraftstoffeinspritzung basierend auf der gewünschten Kraftstoffzufuhrrate regeln. Das Zündfunken-Aktuatormodul 126 kann die Zündkerze 128 basierend auf dem gewünschten Zündfunkenzeitpunkt regeln.
  • Ein Motorleistungs-Ermittlungsmodul 216 ermittelt eine Motorleistungsanforderung basierend auf der Fahrereingabe von dem Fahrereingabemodul 104 und der Fahrzeuggeschwindigkeit von dem VS-Sensor 188. Das Motorleistungs-Ermittlungsmodul 216 kann die Motorleistungsanforderung basierend auf einer Beziehung ermitteln wie beispielsweise P eng ( PP ,VS ) = T eng ( PP ,VS ) N eng_des ( PP ,VS )
    Figure DE102014110596B4_0010
    wobei Teng eine Motordrehmomentanforderung ist und Neng_des die gewünschte Motordrehzahl ist. Die Motordrehmomentanforderung in Beziehung (10) kann von der Motordrehmomentanforderung verschieden sein, die basierend auf den Beziehungen (4) bis (9) ermittelt wird. Die gewünschte Motordrehzahl kann basierend auf den Beziehungen (5) bis (7) ermittelt werden, wie vorstehend diskutiert wurde.
  • Wie es die Beziehung (10) angibt, ist das Motordrehmoment ET eine Funktion der Pedalposition und der Fahrzeuggeschwindigkeit. Gemäß einem Beispiel kann das Motorleistungs-Ermittlungsmodul 216 das Motordrehmoment ET basierend auf einer Beziehung ermitteln wie beispielsweise ET ( PP ,VS ) = T acc ( PP ,VS ) + SL ( Gear ) η E ( Gear ) η R ( Gear ) TR ( N turb N eng_des )
    Figure DE102014110596B4_0011
  • Wie es Beziehung (11) angibt, können die gesamten Drehverluste, die Getriebeeffizienz und das Drehmomentverhältnis ηR eine Funktion des Getriebegangs sein, während das Drehmomentverhältnis TR eine Funktion eines Verhältnisses der Turbinendrehzahl zu der gewünschten Motordrehzahl sein kann. Die Turbinendrehzahl kann ermittelt werden, indem die Fahrzeuggeschwindigkeit durch das Drehmomentverhältnis ηR dividiert wird.
  • Wenn die Motorleistungsanforderung ermittelt wird, kann das Motorleistungs-Ermittlungsmodul 216 annehmen, dass das Getriebe hochschaltet. Daher kann das Motorleistungs-Ermittlungsmodul 216 den Getriebegang basierend auf einem Getriebe-Hochschaltzeitplan ermitteln, der eine vorbestimmte Abbildung der Pedalposition und der Fahrzeuggeschwindigkeit auf dem Getriebegang umfassen kann. Zusätzlich kann das Motorleistungs-Ermittlungsmodul 216 basierend auf einem Drehmomentwandlerkupplungs-Zeitplan ermitteln, der eine vorbestimmte Abbildung der Pedalposition und der Fahrzeuggeschwindigkeit auf den Einrückzustand der Drehmomentwandlerkupplung umfassen kann, ob die Drehmomentwandlerkupplung eingerückt ist. Der Drehmomentwandlerkupplungs-Zeitplan kann eine Funktion dessen sein, ob das Getriebe hochschaltet oder herunterschaltet. Da das Getriebe möglicherweise nicht hochschaltet, können die Werte in den Beziehungen (10) und (11), die durch die Annahme beeinflusst werden, dass das Getriebe hochschaltet, von den entsprechenden Werten in den Beziehungen (5) bis (9) verschieden sein.
  • Ein erstes Drehmomentsicherheitsmodul 218 ermittelt eine erste abgesicherte Drehmomentanforderung. Das erste Drehmomentsicherheitsmodul 218 kann die erste abgesicherte Drehmomentanforderung basierend auf der Motorleistungsanforderung und der tatsächlichen Motordrehzahl ermitteln. Beispielsweise kann das erste Drehmomentsicherheitsmodul 218 die erste abgesicherte Drehmomentanforderung unter Verwendung einer Beziehung ermitteln wie beispielsweise T eng_sec1 = P eng ( PP ,V ) N eng_act + Δ Τ max_eng
    Figure DE102014110596B4_0012
    wobei ΔTmax_eng eine maximale Differenz zwischen einer abgesicherten Motordrehmomentanforderung und einem Motordrehmoment ist, das dem Betrag der Beschleunigung entspricht, die durch den Fahrer angefordert wird. Diese maximale Differenz kann vorbestimmt sein und/oder basierend auf dem Getriebegang ermittelt werden.
  • Ein Gangschätzmodul 220 schätzt den Getriebegang. Das Gangschätzmodul 220 kann den Getriebegang basierend auf einem ersten Drehzahlverhältnis und einer Übersetzungsverhältnisabweichung schätzen. Das erste Drehzahlverhältnis kann gleich einer Turbinendrehzahl, die dem niedrigsten Gang des Fahrzeugs entspricht (z.B. dem ersten Gang), dividiert durch die tatsächliche Motordrehzahl sein. Die Turbinendrehzahl, die dem niedrigsten Gang des Fahrzeugs entspricht, kann basierend auf einem Produkt der Fahrzeuggeschwindigkeit und eines Übersetzungsverhältnisses ηR berechnet werden, das eine Funktion des angenommenen Gangs (z.B. des ersten Gangs) sein kann.
  • Die Übersetzungsverhältnisabweichung kann gleich einer Differenz zwischen einem gemessenen Übersetzungsverhältnis des Getriebes und einem angewiesenen Übersetzungsverhältnis des Getriebes sein. Das gemessene Übersetzungsverhältnis kann basierend auf einer Getriebeeingangswellendrehzahl und einer Getriebewellenausgangswellendrehzahl ermittelt werden. Die Getriebeeingangswellendrehzahl kann basierend auf der Motordrehzahl und dem Übersetzungsverhältnis des Drehmomentwandlers ermittelt werden. Die Getriebeausgangswellendrehzahl kann basierend auf der Fahrzeuggeschwindigkeit und dem Übersetzungsverhältnis des Verteilergetriebes und des Differentials ermittelt werden. Das angewiesene Übersetzungsverhältnis kann basierend auf einem angewiesenen Gang ermittelt werden. Das Gangschätzmodul 220 kann den angewiesenen Gang von dem TCM 194 empfangen.
  • Wenn der Getriebegang geschätzt wird, kann das Gangschätzmodul 220 ermitteln, ob das erste Drehzahlverhältnis und die Übersetzungsverhältnisabweichung bestimmte Bedingungen erfüllen. Die Bedingungen können davon abhängen, ob eine Getriebeumschaltung durchgeführt wird. Das Gangschätzmodul 220 kann basierend auf einer Eingabe ermitteln, die von dem TCM 194 empfangen wird, ob eine Umschaltung durchgeführt wird.
  • Wenn keine Umschaltung durchgeführt wird, kann das Gangschätzmodul 220 ermitteln, ob die Übersetzungsverhältnisabweichung kleiner als ein Schwellenwert ist und ob das erste Drehzahlverhältnis innerhalb eines vorbestimmten Bereichs liegt. Wenn die Übersetzungsverhältnisabweichung kleiner als der Schwellenwert ist und das erste Drehzahlverhältnis innerhalb des vorbestimmten Bereichs liegt, kann das Gangschätzmodul 220 einen Zähler erhöhen. Wenn der Zähler größer als eine vorbestimmte Anzahl oder gleich dieser ist, kann das Gangschätzmodul 220 den geschätzten Gang gleich dem angewiesenen Gang setzen.
  • Wenn die Übersetzungsverhältnisabweichung größer als der Schwellenwert ist und/oder das erste Drehzahlverhältnis außerhalb des vorbestimmten Bereichs liegt, kann das Gangschätzmodul 220 den geschätzten Gang gleich dem niedrigsten möglichen Gang setzen. Das Gangschätzmodul 220 kann den niedrigsten möglichen Gang ermitteln, indem das erste Drehzahlverhältnis mit vorbestimmten Bereichen vergleichen wird, die jedem Gang zugeordnet sind. Das Gangschätzmodul 220 kann einen Gang in einem Satz möglicher Gänge umfassen, wenn das erste Drehzahlverhältnis innerhalb eines vorbestimmten Bereichs liegt, der dem Gang zugeordnet ist.
  • Wenn eine Umschaltung durchgeführt wird, kann das Gangschätzmodul 220 ermitteln, ob das gemessene Übersetzungsverhältnis innerhalb eines ersten Bereichs liegt, ob die Übersetzungsverhältnisabweichung kleiner als ein erster Schwellenwert ist und ob das erste Drehzahlverhältnis innerhalb eines vorbestimmten Bereichs liegt. Der erste Bereich kann zwischen einer unteren Grenze und einer oberen Grenze liegen. Die untere Grenze kann gleich einer Differenz zwischen dem angewiesenen Übersetzungsverhältnis und einem zweiten Schwellenwert sein. Die obere Grenze kann eine Summe eines geschätzten Übersetzungsverhältnisses und eines dritten Schwellenwerts sein. Das geschätzte Übersetzungsverhältnis kann basierend auf dem geschätzten Getriebegang aus einer vorhergehenden Iterationsschleife ermittelt werden.
  • Wenn das gemessene Übersetzungsverhältnis innerhalb des ersten Bereichs liegt, die Übersetzungsverhältnisabweichung kleiner als der erste Schwellenwert ist und das erste Drehzahlverhältnis innerhalb des vorbestimmten Bereichs liegt, kann das Gangschätzmodul 220 einen Zähler erhöhen. Ansonsten kann das Gangschätzmodul 220 den Getriebegang basierend auf anderen Kriterien schätzen. Wenn der Zähler größer als eine vorbestimmte Anzahl oder gleich dieser ist, kann das Gangschätzmodul den geschätzten Gang gleich dem angewiesenen Gang setzen.
  • Das Gangschätzmodul 220 kann ermitteln, ob das gemessene Übersetzungsverhältnis innerhalb des ersten Bereichs liegt, ob eine vorhergehende Übersetzungsverhältnisabweichung kleiner als ein zweiter Schwellenwert ist und ob das erste Drehzahlverhältnis innerhalb eines vorbestimmten Bereichs liegt. Die vorhergehende Übersetzungsverhältnisabweichung ist eine Übersetzungsverhältnisabweichung, die in einer vorhergehenden Iterationsschleife ermittelt wurde. Wenn das gemessene Übersetzungsverhältnis innerhalb des ersten Bereichs liegt, die vorhergehende Übersetzungsverhältnisabweichung kleiner als der zweite Schwellenwert ist und das erste Drehzahlverhältnis innerhalb des vorbestimmten Bereichs liegt, kann das Gangschätzmodul 220 den geschätzten Gang gleich dem geschätzten Gang aus der vorhergehenden Iterationsschleife setzen.
  • Ein Turbinendrehzahl-Schätzmodul 222 schätzt die Turbinendrehzahl. Das Turbinendrehzahl-Schätzmodul 222 kann die Turbinendrehzahl schätzen, indem die Fahrzeuggeschwindigkeit durch das Getriebeübersetzungsverhältnis dividiert wird. Das Getriebeübersetzungsverhältnis kann basierend auf dem geschätzten Getriebegang ermittelt werden. Beispielsweise kann jeder Gang in dem Getriebe einem vorbestimmten Übersetzungsverhältnis zugeordnet sein.
  • Ein zweites Drehmomentsicherheitsmodul 224 ermittelt eine zweite abgesicherte Drehmomentanforderung. Das zweite Drehmomentsicherheitsmodul kann die zweite abgesicherte Drehmomentanforderung basierend auf dem geschätzten Getriebegang und der geschätzten Turbinendrehzahl ermitteln. Beispielsweise kann das zweite Drehmomentsicherheitsmodul die zweite abgesicherte Drehmomentanforderung basierend auf einer Beziehung ermitteln wie beispielsweise T eng_sec2 = T axl_adj ( PP ,V ) + SL ( Gear est ) + Δ Τ max_axl η E ( Gear est ) η R ( Gear est ) TR ( ( N turb ) est N eng_des )
    Figure DE102014110596B4_0013
    wobei ΔTmax_axl eine maximale Differenz zwischen einer abgesicherten Motordrehmomentanforderung und einem Achsendrehmoment ist, das dem Betrag einer Beschleunigung entspricht, die durch den Fahrer angefordert wird. Diese maximale Differenz kann vorbestimmt sein und/oder basierend auf dem Getriebegang ermittelt werden.
  • Ein drittes Drehmomentsicherheitsmodul 226 ermittelt eine dritte abgesicherte Drehmomentanforderung basierend auf der ersten und der zweiten abgesicherten Drehmomentanforderung. Das dritte Drehmomentsicherheitsmodul 226 kann die dritte abgesicherte Drehmomentanforderung gleich einem maximalen Wert der ersten und der zweiten abgesicherten Drehmomentanforderung setzen. Bei verschiedenen Implementierungen können das erste Drehmomentsicherheitsmodul 218, das zweite Drehmomentsicherheitsmodul 224 und/oder das dritte Drehmomentsicherheitsmodul 226 in einem einzigen Drehmomentsicherheitsmodul implementiert sein.
  • Das Motordrehmoment-Steuermodul 214 kann die dritte abgesicherte Drehmomentanforderung mit der Motordrehmomentanforderung vergleichen, die durch das Motordrehmoment-Ermittlungsmodul 206 ausgegeben wird. Das Motordrehmoment-Steuermodul 214 kann die Motordrehmomentausgabe basierend auf der Motordrehmomentanforderung steuern, wenn die Motordrehmomentanforderung kleiner als die dritte abgesicherte Drehmomentanforderung oder gleich dieser ist. Das Motordrehmoment-Steuermodul 214 kann die Motordrehmomentausgabe basierend auf der dritten abgesicherten Drehmomentanforderung steuern, wenn die Motordrehmomentanforderung größer als die dritte abgesicherte Drehmomentanforderung ist.
  • Nun auf 3 Bezug nehmend, beginnt ein Verfahren zum Steuern eines Achsendrehmoments (Drehmoment an den Rädern) bei 302. Bei 304 ermittelt das Verfahren eine Achsendrehmomentanforderung basierend auf einer Pedalposition, einer Fahrzeuggeschwindigkeit und dem Nullpedaldrehmoment. Beispielsweise kann das Verfahren die Achsendrehmomentanforderung unter Verwendung der Beziehungen (1) und (2) ermitteln, wie vorstehend diskutiert wurde. Bei 306 passt das Verfahren die Achsendrehmomentanforderung basierend auf der Antwortzeit eines Antriebsstrangsystems an. Das Antriebsstrangsystem kann den Motor, ein Getriebe, einen Drehmomentwandler, der den Motor hydraulisch mit dem Getriebe koppelt, und einen Endantrieb umfassen, der das Getriebe mit Rädern eines Fahrzeugs koppelt. Gemäß einem Beispiel kann das Verfahren die Achsendrehmomentanforderung unter Verwendung der Beziehung (3) anpassen, wie vorstehend diskutiert wurde.
  • Bei 308 ermittelt das Verfahren eine gewünschte Motordrehzahl. Wen eine Drehmomentwandlerkupplung nicht eingerückt ist, kann das Verfahren die gewünschte Motordrehzahl basierend auf den Beziehungen (5) und (6) ermitteln, wie vorstehend diskutiert wurde. Ansonsten kann das Verfahren die gewünschte Motordrehzahl basierend auf der Beziehung (7) ermitteln, wie vorstehend diskutiert wurde. Die Drehmomentwandlerkupplung kann verwendet werden, um eine Turbine des Drehmomentwandlers mit einem Schaufelrad des Drehmomentwandlers mechanisch zu koppeln. Das Schaufelrad kann mit dem Motor mechanisch gekoppelt sein. Die Turbine kann mit dem Getriebe mechanisch gekoppelt sein.
  • Bei 310 ermittelt das Verfahren einen Skalar und einen Offset, die Getriebeverluste angeben. Das Verfahren kann den Skalar basierend auf der Turbinendrehzahl und der gewünschten Motordrehzahl unter Verwendung der Beziehung (8) ermitteln, wie es vorstehend diskutiert wurde. Das Verfahren kann den Offset basierend auf einem Getriebegang unter Verwendung der Beziehung (9) ermitteln, wie es vorstehend diskutiert wurde.
  • Bei 312 ermittelt das Verfahren eine Motordrehmomentanforderung. Das Verfahren kann die zweite Motordrehmomentanforderung basierend auf dem angepassten Achsendrehmoment, dem Skalar und dem Offset ermitteln. Beispielsweise kann das Verfahren die Motordrehmomentanforderung unter Verwendung der Beziehung (4) ermitteln, wie es vorstehend diskutiert wurde.
  • Bei 314 ermittelt das Verfahren eine Motorleistungsanforderung. Das Verfahren kann die Motorleistungsanforderung basierend auf der Pedalposition, der Fahrzeuggeschwindigkeit und dem Getriebegang ermitteln. Beispielsweise kann das Verfahren die Motorleistungsanforderung unter Verwendung der Beziehungen (10) und (11) ermitteln, wie vorstehend diskutiert wurde. Wenn die Motorleistungsanforderung ermittelt wird, kann das Verfahren annehmen, dass das Getriebe hochschaltet und dass die Drehmomentwandlerkupplung eingerückt ist. Daher kann das Verfahren den Getriebegang basierend auf einem Getriebe-Hochschaltzeitplan ermitteln, der eine vorbestimmte Abbildung der Pedalposition und der Fahrzeuggeschwindigkeit auf den Getriebegang sein kann.
  • Bei 316 ermittelt das Verfahren eine erste abgesicherte Drehmomentanforderung. Das Verfahren kann die erste abgesicherte Drehmomentanforderung basierend auf der Motorleistungsanforderung und der tatsächlichen Motordrehzahl ermitteln. Beispielsweise kann das Verfahren die erste abgesicherte Motordrehmomentanforderung unter Verwendung der Beziehung (12) ermitteln, wie vorstehend diskutiert wurde.
  • Bei 318 schätzt das Verfahren den Getriebegang. Das Verfahren kann den Getriebegang basierend auf der tatsächlichen Motordrehzahl und der Fahrzeuggeschwindigkeit schätzen, wie vorstehend bezogen auf das Gangschätzmodul 220 von 2 diskutiert wurde. Bei 320 schätzt das Verfahren eine Turbinendrehzahl, Das Verfahren kann die Turbinendrehzahl schätzen, indem die Fahrzeuggeschwindigkeit durch ein Übersetzungsverhältnis dividiert wird, das dem geschätzten Gang zugeordnet ist.
  • Bei 322 ermittelt das Verfahren eine zweite abgesicherte Drehmomentanforderung. Das Verfahren kann die zweite abgesicherte Drehmomentanforderung basierend auf dem angepassten Achsendrehmoment, dem geschätzten Getriebegang und der geschätzten Turbinendrehzahl ermitteln. Beispielsweise kann das Verfahren die zweite abgesicherte Drehmomentanforderung unter Verwendung der Beziehung (13) ermitteln, wie vorstehend diskutiert wurde.
  • Bei 324 ermittelt das Verfahren, ob die Motordrehmomentanforderung kleiner als ein Maximum der ersten abgesicherten Drehmomentanforderung und der zweiten abgesicherten Drehmomentanforderung oder gleich diesem ist. Wenn die Motordrehmomentanforderung kleiner als die maximale abgesicherte Drehmomentanforderung oder gleich dieser ist, fährt das Verfahren bei 326 fort. Ansonsten fährt das Verfahren bei 328 fort. Bei 326 steuert das Verfahren den Motor basierend auf der Motordrehmomentanforderung. Bei 328 steuert das Verfahren den Motor basierend auf der maximalen abgesicherten Drehmomentanforderung.
  • Die vorstehende Beschreibung ist nur beispielhafter Natur und ist in keiner Weise dazu gedacht, die Offenbarung, ihre Anwendungsmöglichkeit oder Verwendungen einzuschränken. Die breiten Lehren der Offenbarung können in einer Vielzahl von Formen implementiert werden. Während diese Offenbarung spezielle Beispiele aufweist, soll der wahre Umfang der Offenbarung daher nicht auf diese beschränkt sein, da andere Modifikationen nach einem Studium der Zeichnungen, der Beschreibung und der nachfolgenden Ansprüche offensichtlich werden. Wie hierin verwendet, sollte die Formulierung A, B und/oder C derart ausgelegt werden, dass sie ein logisches (A oder B oder C) unter Verwendung eines nicht exklusiven logischen Oders bedeutet. Es versteht sich, dass ein oder mehrere Schritte innerhalb eines Verfahrens in unterschiedlicher Reihenfolge (oder gleichzeitig) ausgeführt werden können, ohne die Prinzipien der vorliegenden Offenbarung zu verändern.
  • In dieser Anmeldung einschließlich der nachstehenden Definitionen kann der Ausdruck Modul durch den Ausdruck Schaltung ersetzt werden. Der Ausdruck Modul kann sich auf eine anwendungsspezifische integrierte Schaltung (ASIC); eine digitale, analoge oder gemischt analoge/digitale diskrete Schaltung; eine digitale, analoge oder gemischt analoge/digitale integrierte Schaltung; eine Schaltung der kombinatorischen Logik; ein feldprogrammierbares Gate-Array (FPGA); einen Prozessor (gemeinsam genutzt, fest zugeordnet oder als Gruppe), der einen Code ausführt; einen Speicher (gemeinsam genutzt, fest zugeordnet oder als Gruppe), der Code speichert, der durch den Prozessor ausgeführt wird; andere geeignete Hardwarekomponenten, welche die beschriebene Funktionalität bereitstellen; oder eine Kombination einiger oder aller von den vorstehenden Gegenständen, wie beispielsweise bei einem Ein-Chip-System, beziehen, ein Teil von diesen sein oder diese umfassen.
  • Der Ausdruck Code, wie er vorstehend verwendet wird, kann eine Software, eine Firmware und/oder einen Mikrocode umfassen, und er kann sich auf Programme, Routinen, Funktionen, Klassen und/oder Objekte beziehen. Der Ausdruck gemeinsam genutzter Prozessor umfasst einen einzelnen Prozessor, der einen Teil des Codes oder den gesamten Code mehrerer Module ausführt. Der Ausdruck Gruppenprozessor umfasst einen Prozessor, der in Kombination mit zusätzlichen Prozessoren einen Teil des Codes oder den gesamten Code eines oder mehrerer Module ausführt. Der Ausdruck gemeinsam genutzter Speicher umfasst einen einzelnen Speicher, der einen Teil des Codes oder den gesamten Code mehrerer Module speichert. Der Ausdruck Gruppenspeicher umfasst einen Speicher, der in Kombination mit zusätzlichen Speichern einen Teil oder den gesamten Code eines oder mehrerer Module speichert. Der Ausdruck Speicher kann eine Teilmenge des Ausdrucks computerlesbares Medium bezeichnen. Der Ausdruck computerlesbares Medium umfasst keine vorübergehenden elektrischen und elektromagnetischen Signale, die sich durch ein Medium ausbreiten, und dieses kann daher als zugreifbar und nicht flüchtig angesehen werden. Nicht einschränkende Beispiele des nicht flüchtigen, zugreifbaren, computerlesbaren Mediums sind ein nicht flüchtiger Speicher, ein magnetischer Speicher und ein optischer Speicher.
  • Die in dieser Anmeldung beschriebenen Vorrichtungen und Verfahren können teilweise oder vollständig durch ein oder mehrere Computerprogramme implementiert werden, die durch einen oder mehrere Prozessoren ausgeführt werden. Die Computerprogramme umfassen durch einen Prozessor ausführbare Anweisungen, die auf einem nicht flüchtigen, zugreifbaren, computerlesbaren Medium gespeichert sind. Die Computerprogramme können auch gespeicherte Daten umfassen und/oder auf diese angewiesen sein.

Claims (7)

  1. Verfahren, das umfasst, dass: eine Achsendrehmomentanforderung basierend auf einer Fahrereingabe und einer Fahrzeuggeschwindigkeit ermittelt wird; eine Motordrehmomentanforderung basierend auf der Achsendrehmomentanforderung sowie basierend auf einer ersten Turbinendrehzahl und/oder basierend darauf ermittelt wird, ob eine Kupplung eines Drehmomentwandlers eingerückt ist; eine abgesicherte Drehmomentanforderung basierend auf der Fahrereingabe, der Fahrzeuggeschwindigkeit und/oder einer Motordrehzahl ermittelt wird; und ein Betrag eines Drehmoments, das durch einen Motor (102) erzeugt wird, basierend auf der Motordrehmomentanforderung oder der abgesicherten Drehmomentanforderung gesteuert wird, wobei der Betrag des Drehmoments, das durch den Motor (102) erzeugt wird, basierend auf der Motordrehmomentanforderung gesteuert wird, wenn die Motordrehmomentanforderung kleiner als die abgesicherte Drehmomentanforderung oder gleich dieser ist. wobei der Betrag des Drehmoments, das durch den Motor (102) erzeugt wird, basierend auf der abgesicherten Drehmomentanforderung gesteuert wird, wenn die Motordrehmomentanforderung größer als die abgesicherte Drehmomentanforderung ist, dadurch gekennzeichnet, dass die abgesicherte Drehmomentanforderung basierend auf einem maximalen Wert einer ersten abgesicherten Drehmomentanforderung und einer zweiten abgesicherten Drehmomentanforderung ermittelt wird.
  2. Verfahren nach Anspruch 1, das ferner umfasst, dass die erste abgesicherte Drehmomentanforderung basierend auf einer Motorleistungsanforderung und der Motordrehzahl ermittelt wird.
  3. Verfahren nach Anspruch 2, das ferner umfasst, dass die Motorleistungsanforderung basierend auf der Fahrereingabe und der Fahrzeuggeschwindigkeit ermittelt wird.
  4. Verfahren nach Anspruch 3, das ferner umfasst, dass: ein Getriebegang basierend auf der Fahrereingabe und der Fahrzeuggeschwindigkeit ermittelt wird; und die Motorleistungsanforderung basierend auf dem Getriebegang ermittelt wird.
  5. Verfahren nach Anspruch 1, das ferner umfasst, dass die zweite abgesicherte Drehmomentanforderung basierend auf der Achsendrehmomentanforderung, einem Getriebegang und einer zweiten Turbinendrehzahl ermittelt wird.
  6. Verfahren nach Anspruch 5, das ferner umfasst, dass der Getriebegang basierend auf der Motordrehzahl und der Fahrzeuggeschwindigkeit geschätzt wird.
  7. Verfahren nach Anspruch 6, das ferner umfasst, dass die zweite Turbinendrehzahl basierend auf der Fahrzeuggeschwindigkeit und dem geschätzten Getriebegang geschätzt wird.
DE102014110596.6A 2013-07-31 2014-07-28 Verfahren zum Steuern des Betrags eines den Rädern eines Fahrzeug zugeführten Drehmoments zum Verhindern einer unbeabsichtigten Beschleunigung Active DE102014110596B4 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361860307P 2013-07-31 2013-07-31
US61/860,307 2013-07-31
US13/972,275 2013-08-21
US13/972,275 US9090245B2 (en) 2013-07-31 2013-08-21 System and method for controlling the amount of torque provided to wheels of a vehicle to prevent unintended acceleration

Publications (2)

Publication Number Publication Date
DE102014110596A1 DE102014110596A1 (de) 2015-02-05
DE102014110596B4 true DE102014110596B4 (de) 2019-05-23

Family

ID=52342084

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014110596.6A Active DE102014110596B4 (de) 2013-07-31 2014-07-28 Verfahren zum Steuern des Betrags eines den Rädern eines Fahrzeug zugeführten Drehmoments zum Verhindern einer unbeabsichtigten Beschleunigung

Country Status (1)

Country Link
DE (1) DE102014110596B4 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009012377A1 (de) 2008-03-14 2009-11-26 GM Global Technology Operations, Inc., Detroit ECM-Sicherheitsstrategie zum Rationalisieren und Steuern zunehmender Getriebedrehmomentanforderungen oberhalb eines Fahrerbefehls
DE102012206050A1 (de) 2011-04-18 2012-10-18 GM Global Technology Operations LLC (n.d. Ges. d. Staates Delaware) Motorsteuersysteme und -verfahren
DE102012216872A1 (de) 2011-09-23 2013-03-28 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) System und Verfahren zum Sichern von Motordrehmomentanforderungen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009012377A1 (de) 2008-03-14 2009-11-26 GM Global Technology Operations, Inc., Detroit ECM-Sicherheitsstrategie zum Rationalisieren und Steuern zunehmender Getriebedrehmomentanforderungen oberhalb eines Fahrerbefehls
DE102012206050A1 (de) 2011-04-18 2012-10-18 GM Global Technology Operations LLC (n.d. Ges. d. Staates Delaware) Motorsteuersysteme und -verfahren
DE102012216872A1 (de) 2011-09-23 2013-03-28 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) System und Verfahren zum Sichern von Motordrehmomentanforderungen

Also Published As

Publication number Publication date
DE102014110596A1 (de) 2015-02-05

Similar Documents

Publication Publication Date Title
DE102015109569B4 (de) Verfahren zur Steuerung einer Motordrehzahl
DE102015108037B4 (de) Zylinder-Zündungsanteilsermittlung sowie Steuersysteme und -verfahren
DE102015103788B4 (de) Kraftmaschinensteuerverfahren mit Modellvorhersage für künftige Drehmomentänderungen
DE102013217929B4 (de) Sicherungsverfahren für eine abgestimmte Drehmomentsteuerung
DE102014102896B4 (de) Adaptives Tempomatsystem und- verfahren mit Funktion zum regenerativen Bremsen und Start-Stopp-Funktion
DE102009003948B4 (de) Motorsteuersystem und Motorsteuerverfahren
DE102013218163B4 (de) Abgestimmte Motordrehmomentsteuerung
DE102008054062B4 (de) Lösung für inverses Drehmomentmodell und Beschränkung
DE102010051221B4 (de) System zum Steuern eines Motordrehmoments
DE102013204901B4 (de) System und Verfahren zum Steuern einer Motordrehzahl
DE102011014832B4 (de) System zum schätzen einerdrehmomentabgabe eines motors mit homogenerkompressionszündung
DE102015110021B4 (de) Verfahren zur Drosselsteuerung bei Zylinderaktivierung und -deaktivierung
DE102018102081B4 (de) Verfahren zum ermitteln der referenzluftstrom-stellgliedpositionen für einen benzinmotor
DE102014111478B4 (de) Verfahren zum steuern eines motors beim loslassen eines gaspedals
DE102013222492B4 (de) Adaptive Motordrehzahlsteuerung zum Verhindern des Schlingerns und Abwürgen eines Motors
DE102015102526B4 (de) Verfahren zum Steuern eines Motors basierend auf einer gewünschten Turbinenleistung unter Berücksichtigung von Verlusten in einem Drehmomentwandler
DE102014110595B4 (de) Verfahren zum Steuern des Betrags eines den Rädern eines Fahrzeug zugeführten Drehmoments zum Verbessern der Fahrbarkeit
DE102015105463B4 (de) Verfahren zum steuern einer kraftstoffzufuhr bei einer zylinder-reaktivierung
DE102014105278B4 (de) Verfahren zur steuerung einer luftströmung unter verwendung einer steuerung mittels eines voraussagenden modells
DE102012205533B4 (de) Steuerverfahren für einen motor mit homogener kompressionszündung (hcci-motor)
DE102014105277B4 (de) Systeme und verfahren zur steuerung einer luftströmung unter verwendung einer steuerung mittels eines voraussagenden modells
DE102016210370B4 (de) Verfahren zum Bestimmen der Drehzahl eines Motors, wenn einer oder mehrere Zylinder des Motors deaktiviert sind
DE102015104100B4 (de) Kraftmaschinensteuerverfahren für Getriebehochschaltungen
DE102014110596B4 (de) Verfahren zum Steuern des Betrags eines den Rädern eines Fahrzeug zugeführten Drehmoments zum Verhindern einer unbeabsichtigten Beschleunigung
DE102014105276B4 (de) Systeme und verfahren zur steuerung einer luftströmung unter verwendung einer steuerung mittels eines voraussagenden modells

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final