DE102013225202A1 - Getriebe - Google Patents

Getriebe Download PDF

Info

Publication number
DE102013225202A1
DE102013225202A1 DE102013225202.1A DE102013225202A DE102013225202A1 DE 102013225202 A1 DE102013225202 A1 DE 102013225202A1 DE 102013225202 A DE102013225202 A DE 102013225202A DE 102013225202 A1 DE102013225202 A1 DE 102013225202A1
Authority
DE
Germany
Prior art keywords
hrs
main gearset
shaft
planetary gear
zrs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102013225202.1A
Other languages
English (en)
Other versions
DE102013225202B4 (de
Inventor
Peter Ziemer
Andreas Beisswenger
Christian SIBLA
Raffael Kuberczyk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Priority to DE102013225202.1A priority Critical patent/DE102013225202B4/de
Priority to PCT/EP2014/073879 priority patent/WO2015082167A1/de
Publication of DE102013225202A1 publication Critical patent/DE102013225202A1/de
Application granted granted Critical
Publication of DE102013225202B4 publication Critical patent/DE102013225202B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/724Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
    • F16H3/725Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4816Electric machine connected or connectable to gearbox internal shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H2003/442Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion comprising two or more sets of orbital gears arranged in a single plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2041Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with four engaging means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Structure Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Getriebe (G) mit einer Getriebe-Eingangswelle (GW1) und einer Getriebe-Ausgangswelle (GW2), einem Hauptradsatz (HRS), wobei das Getriebe (G) zumindest einen Leistungspfad (L1) zwischen der Getriebe-Eingangswelle (GW1) und dem Hauptradsatz (HRS) aufweist, wobei der Hauptradsatz (HRS) einen ersten und einen zweiten Planetenradsatz (P1, P2) mit insgesamt vier in Drehzahlordnung als erste, zweite, dritte und vierte Welle bezeichnete Wellen (W1, W2, W3, W4) aufweist, wobei der zumindest eine Leistungspfad (L1) über zumindest ein Schaltelement (A, E) mit zumindest einer der vier Wellen (W1, W2, W3, W4) des Hauptradsatzes (HRS) verbindbar ist, wobei die dritte Welle (W3) des Hauptradsatzes (HRS) mit der Getriebe-Ausgangswelle (GW2) verbunden ist, wobei ein Sonnenrad (So-P2) des zweiten Planetenradsatzes (P2) des Hauptradsatzes (HRS) mit einem Hohlrad (Ho-P1) des ersten Planetenradsatzes (P1) des Hauptradsatzes (HRS) verbunden ist, und wobei der erste Planetenradsatz (P1) des Hauptradsatzes (HRS) und der zweite Planetenradsatz (P2) des Hauptradsatzes (HRS) in einer gemeinsamen Radsatzebene (RSE) angeordnet sind.

Description

  • Die Erfindung betrifft ein Getriebe mit einer Getriebe-Eingangswelle, einer Getriebe-Ausgangswelle, und einem Hauptradsatz, wobei das Getriebe zumindest einen Leistungspfad zwischen der Getriebe-Eingangswelle und dem Hauptradsatz aufweist, wobei der Hauptradsatz einen ersten und einen zweiten Planetenradsatz mit insgesamt vier in Drehzahlordnung als erste, zweite, dritte und vierte Welle bezeichnete Wellen aufweist, wobei der zumindest eine Leistungspfad über zumindest ein Schaltelement mit zumindest einer der vier Wellen des Hauptradsatzes verbindbar ist, und wobei die dritte Welle des Hauptradsatzes mit der Getriebe-Ausgangswelle verbunden ist. Die Erfindung betrifft außerdem einen Antriebsstrang für ein Kraftfahrzeug mit einem Getriebe.
  • Ein Getriebe bezeichnet hier insbesondere ein mehrgängiges Getriebe, bei dem eine vordefinierte Anzahl an Gängen, also festen Übersetzungsverhältnissen zwischen einer Getriebe-Eingangswelle und einer Getriebe-Ausgangswelle, durch Schaltelemente automatisch schaltbar ist. Bei den Schaltelementen handelt es sich hier beispielsweise um Kupplungen oder Bremsen. Derartige Getriebe finden vor allem in Kraftfahrzeugen Anwendung, um das Drehzahl- und Drehmomentabgabevermögen der Antriebseinheit den Fahrwiderständen des Fahrzeugs in geeigneter Weise anzupassen.
  • Aus der Patentanmeldung DE 10 2012 201 377 A1 der Anmelderin ist ein Getriebe mit einer Getriebeeingangswelle und einer Getriebeausgangswelle und zwei Leistungspfaden zwischen der Getriebeeingangswelle und einem Hauptradsatz mit zwei Einzelplanetenradsätzen mit vier in Drehzahlordnung als erste, zweite, dritte und vierte Welle bezeichneten Wellen bekannt, wobei die dritte der vier Wellen mit der Getriebeausgangswelle verbunden ist.
  • Aufgabe der Erfindung ist es, den Bauraumbedarf eines derartigen Getriebes zu verringern.
  • Die Aufgabe wird gelöst durch die Merkmale des Patentanspruchs 1, wobei sich vorteilhafte Ausgestaltungen aus den Unteransprüchen, der Beschreibung sowie aus den Figuren ergeben.
  • Das Getriebe umfasst wenigstens eine Getriebe-Eingangswelle, eine Getriebe-Ausgangswelle, und einen Hauptradsatz.
  • Der Hauptradsatz weist einen ersten und einen zweiten Planetenradsatz mit insgesamt vier in Drehzahlordnung als erste, zweite, dritte und vierte Welle bezeichnete Wellen auf. Der Hauptradsatz ist somit als ein Zwei-Steg-Vier-Wellen-Getriebe ausgebildet.
  • Unter einem Zwei-Steg-Vier-Wellen-Getriebe ist ein Planetengetriebe zu verstehen, das aus zwei über genau zwei Koppelwellen kinematisch miteinander gekoppelten Einzel-Planetenradsätzen gebildet ist und bei dem vier seiner Elemente („Wellen“) für andere Getriebeelemente frei zugänglich sind. Eine Koppelwelle ist dabei als ständige mechanische Verbindung zwischen einem Element – also Sonnenrad oder Steg oder Hohlrad – des ersten Einzel-Planetenradsatzes mit einem Element – also Sonnenrad oder Steg oder Hohlrad – des zweiten Einzel-Planetenradsatzes definiert. Die Anzahl der Einzel-Planetenradsätze und die Anzahl der freien Wellen sind nicht über das optische Erscheinungsbild des Getriebes definiert, sondern über dessen Kinematik. In jedem Gang eines Zwei-Steg-Vier-Wellen-Getriebes müssen zwei der mit Elementen des Zwei-Steg-Vier-Wellen-Getriebes verbunden Schaltelemente des Getriebes geschlossen sein. Zur graphischen Darstellung der Kinematik des Getriebes wird üblicherweise ein Drehzahlplan des Getriebes verwendet, beispielsweise den aus der Getriebelehre bekannten Kutzbachplan. Bekannte Ausführungsbeispiele für ein solches Zwei-Steg-Vier-Wellen-Getriebe sind der so genannte Ravigneaux-Radsatz und der so genannte Simpson-Radsatz.
  • Ein reduziertes Zwei-Steg-Vier-Wellen-Getriebe ist eine Bauform eines Zwei-Steg-Vier-Wellen-Getriebes, bei dem ein Element – also ein Sonnenrad, ein Steg oder ein Hohlrad – des Getriebes eingespart ist, da ein anderes Element des Getriebes dessen Aufgabe übernimmt, ohne die Kinematik dadurch zu verändern. Dasjenige Element, welches die Funktion des eingesparten Elementes übernimmt, ist damit gleichzeitig eine der Koppelwellen des Getriebes. Ein bekanntes Ausführungsbeispiel hierfür ist der Ravigneaux-Radsatz, der entweder zwei Sonnenräder und nur ein Hohlrad aufweist oder aber zwei Hohlräder und nur ein Sonnenrad.
  • Über zumindest einen Leistungspfad ist die Getriebe-Eingangswelle über zumindest ein Schaltelement mit zumindest einer der vier Wellen des Hauptradsatzes verbindbar. In einer bevorzugten Ausführungsform ist der zumindest eine Leistungspfad über zwei Schaltelemente mit zwei der vier Wellen des Hauptradsatzes verbindbar. Durch Schließen eines der Schaltelemente wird somit eine drehfeste Verbindung zwischen dem zumindest einen Leistungspfad und einer der vier Wellen des Hauptradsatzes hergestellt, wodurch Drehmoment von der Getriebe-Eingangswelle auf den Hauptradsatz führbar ist. Unter zumindest einem Leistungspfad ist zu verstehen, dass das Getriebe einen oder mehrere Leistungspfade zwischen der Getriebe-Eingangswelle und dem Hauptradsatz aufweist. Die dritte Welle des Hauptradsatzes ist dabei mit der Getriebe-Ausgangswelle verbunden.
  • Bei Anwendung in einem Kraftfahrzeug ist die Getriebe-Eingangswelle mit einer Welle eines Antriebsaggregates verbunden oder über eine Kupplung verbindbar, sodass mechanische Leistung des Antriebsaggregats der Getriebe-Eingangswelle zuführbar ist. Das Antriebsaggregat kann sowohl als Verbrennungskraftmaschine als auch als elektrische Maschine ausgebildet sein. Die Getriebe-Ausgangswelle dient als Schnittstelle zur Übertragung mechanischer Leistung zu den Antriebsrädern des Kraftfahrzeugs.
  • Unter einer Welle ist nachfolgend nicht ausschließlich ein beispielsweise zylindrisches, drehbar gelagertes Maschinenelement zur Übertragung von Drehmomenten zu verstehen, sondern vielmehr sind hierunter auch allgemeine Verbindungselemente zu verstehen, die einzelne Bauteile oder Elemente miteinander verbinden, insbesondere Verbindungselemente, die mehrere Elemente drehfest miteinander verbinden.
  • Ein Planetenradsatz umfasst ein Sonnenrad, einen Steg und ein Hohlrad. An dem Steg drehbar gelagert sind Planetenräder, welche mit der Verzahnung des Sonnenrades und/oder mit der Verzahnung des Hohlrads kämmen. Nachfolgend beschreibt ein Minus-Radsatz einen Planetenradsatz mit einem Steg, an dem die Planetenräder drehbar gelagert sind, mit einem Sonnenrad und mit einem Hohlrad, wobei die Verzahnung zumindest eines der Planetenräder sowohl mit der Verzahnung des Sonnenrades, als auch mit der Verzahnung des Hohlrades kämmt, wodurch das Hohlrad und das Sonnenrad in entgegengesetzte Drehrichtungen rotieren, wenn das Sonnenrad bei feststehendem Steg rotiert.
  • Sowohl Sonnenrad als auch Hohlrad eines Planetenradsatzes können auch in mehrere Segmente aufgeteilt sein. Beispielsweise ist es denkbar, dass die Planetenräder mit zwei Sonnenräder kämmen, welche nicht miteinander verbunden sind. Die Drehzahlverhältnisse sind selbstverständlich an beiden Segmenten des Sonnenrads identisch, so als ob sie miteinander verbunden wären.
  • Ein Plus-Radsatz unterscheidet sich zu dem gerade beschriebenen Minus-Planetenradsatz dahingehend, dass der Plus-Radsatz innere und äußere Planetenräder aufweist, welche drehbar an dem Steg gelagert sind. Die Verzahnung der inneren Planetenräder kämmt dabei einerseits mit der Verzahnung des Sonnenrads und andererseits mit der Verzahnung der äußeren Planetenräder. Die Verzahnung der äußeren Planetenräder kämmt darüber hinaus mit der Verzahnung des Hohlrades. Dies hat zur Folge, dass bei feststehendem Steg das Hohlrad und das Sonnenrad in die gleiche Drehrichtung rotieren.
  • Die Standgetriebeübersetzung definiert das Drehzahlverhältnis zwischen Sonnenrad und Hohlrad eines Planetenradsatzes bei drehfestem Steg. Da sich bei einem Minus-Radsatz die Drehrichtung zwischen Sonnenrad und Hohlrad bei drehfestem Steg umkehrt, nimmt die Standgetriebeübersetzung bei einem Minus-Radsatz stets einen negativen Wert an.
  • Im Drehzahlplan sind in vertikaler Richtung die Drehzahlverhältnisse der einzelnen Wellen aufgetragen. Die horizontalen Abstände zwischen den Wellen ergeben sich aus den Übersetzungsverhältnissen zwischen den Wellen, sodass sich zu einem bestimmten Betriebspunkt gehörende Drehzahlverhältnisse und Drehmomentverhältnisse der Wellen durch eine Gerade verbinden lassen. Die Übersetzungsverhältnisse zwischen den Wellen ergeben sich aus den Standgetriebeübersetzungen der beteiligten Planetenradsätze. Der Drehzahlplan ist beispielsweise in Form eines Kutzbachplans darstellbar.
  • Vier in Drehzahlordnung als erste, zweite, dritte und vierte Welle bezeichnete Wellen sind dadurch gekennzeichnet, dass die Drehzahlen dieser Wellen in der genannten Reihenfolge linear ansteigen, abnehmen oder gleich sind. In anderen Worten ist die Drehzahl der ersten Welle kleiner gleich der Drehzahl der zweiten Welle. Die Drehzahl der zweiten Welle ist wiederum kleiner gleich der Drehzahl der dritten Welle. Die Drehzahl der dritten Welle ist kleiner gleich der Drehzahl der vierten Welle. Diese Reihenfolge ist auch reversibel, sodass die vierte Welle die größte Drehzahl aufweist, während die erste Welle eine Drehzahl annimmt die kleiner oder gleich groß wie die Drehzahl der vierten Welle ist. Zwischen den Drehzahlen aller vier Wellen besteht dabei stets ein linearer Zusammenhang.
  • Die Drehzahl einer oder mehrerer Wellen kann dabei auch negative Werte, oder auch den Wert Null annehmen. Die Drehzahlordnung ist daher stets auf den vorzeichenbehafteten Wert der Drehzahlen zu beziehen, und nicht auf deren Betrag.
  • Die Drehzahlen der vier Wellen sind dann gleich, wenn von den Elementen Hohlrad, Steg und Sonne eines der Planetenradsätze zwei dieser Elemente miteinander verbunden sind.
  • Durch Schaltelemente wird, je nach Betätigungszustand, eine Relativbewegung zwischen zwei Bauteilen zugelassen oder eine Verbindung zur Übertragung eines Drehmoments zwischen den zwei Bauteilen hergestellt. Unter einer Relativbewegung ist beispielsweise eine Rotation zweier Bauteile zu verstehen, wobei die Drehzahl des ersten Bauteils und die Drehzahl des zweiten Bauteils voneinander abweichen. Darüber hinaus ist auch die Rotation nur eines der beiden Bauteile denkbar, während das andere Bauteil stillsteht oder in entgegengesetzter Richtung rotiert. Die Schaltelemente sind in der gegenständlichen Erfindung bevorzugt als Klauen-Schaltelemente ausgeführt, welche die Verbindung durch Formschluss herstellen.
  • Zwei Elemente werden insbesondere dann als miteinander verbunden bezeichnet, wenn zwischen den Elementen eine feste, insbesondere drehfeste Verbindung besteht. Derart verbundene Elemente drehen mit der gleichen Drehzahl. Die verschiedenen Bauteile und Elemente der genannten Erfindung können dabei über eine Welle beziehungsweise über ein geschlossenes Schaltelement oder ein Verbindungselement, aber auch direkt, beispielsweise mittels einer Schweiß-, Press- oder einer sonstigen Verbindung, miteinander verbunden sein.
  • Zwei Elemente werden im Weiteren als verbindbar bezeichnet, wenn zwischen diesen Elementen eine lösbare drehfeste Verbindung besteht. Wenn die Verbindung besteht, so drehen solche Elemente mit der gleichen Drehzahl.
  • Erfindungsgemäß ist ein Sonnenrad des zweiten Planetenradsatzes des Hauptradsatzes mit einem Hohlrad des ersten Planetenradsatzes des Hauptradsatzes verbunden. Der erste Planetenradsatz und der zweite Planetenradsatz des Hauptradsatzes sind dabei in einer gemeinsamen Radsatzebene angeordnet sind.
  • Durch die erfindungsgemäße Verbindung zwischen dem Hohlrad des ersten Planetenradsatzes und dem Sonnenrad des zweiten Planetenradsatzes des Hauptradsatzes ist es möglich die beiden Planetenradsätze des Hauptradsatzes in einer gemeinsamen Radsatzebene anzuordnen. Der zweite Planetenradsatz des Hauptradsatzes ist dabei, beispielsweise ausgehend von einer zentralen Achse des Getriebes, radial außerhalb des ersten Planetenradsatzes des Hauptradsatzes angeordnet. Dadurch ist es möglich, die Längserstreckung des Getriebes erheblich zu reduzieren. Dies ist insbesondere bei Verwendung des Getriebes in einem mit quer zur Fahrtrichtung angeordnetem Antriebsstrang von Vorteil.
  • Unter der gemeinsamen Radsatzebene wird in diesem Zusammenhang eine Ebene verstanden, in der der erste und der zweite Planetenradsatz des Hauptradsatzes angeordnet sind. Die beiden Planetenradsätze müssen dazu nicht vollkommen ident zueinander aufgebaut und angeordnet sein. Der Begriff Radsatzebene ist vielmehr als eine Bauraum-Ebene auszulegen, durch die die Lage der beiden Planetenradsätze im Getriebe gekennzeichnet ist.
  • In einer bevorzugten Ausgestaltung ist das Sonnenrad des zweiten Planetenradsatzes des Hauptradsatzes am Außenumfang des Hohlrads des ersten Planetenradsatzes des Hauptradsatzes ausgebildet. Das Hohlrad des ersten Planetenradsatzes weist daher an seinem Innenumfang eine entsprechende Hohlrad-Verzahnung auf, während es an seinem Außenumfang eine entsprechende Sonnenrad-Verzahnung aufweist. Das Hohlrad des ersten Planetenradsatzes und das Sonnenrad des zweiten Planetenradsatzes können dazu einteilig ausgebildet sein. Alternativ dazu können sie auch aus mehreren zusammengesetzten Einzelteilen bestehen. Dadurch ist es möglich den Bauraumbedarf des Getriebes weiter zu reduzieren.
  • Vorzugsweise sind das Sonnenrad des zweiten Planetenradsatzes des Hauptradsatzes und das Hohlrad des ersten Planetenradsatzes des Hauptradsatzes Bestandteile der ersten Welle oder der vierten Welle des Hauptradsatzes. Durch diese Zuordnung der Elemente der Planetenradsätze zu den Wellen des Hauptradsatzes ist eine Anordnung der ersten, zweiten, dritten und vierten Welle des Hauptradsatzes in Drehzahlordnung besonders einfach darstellbar.
  • Vorzugsweise sind der erste und zweite Planetenradsatz des Hauptradsatzes als Minus-Radsätze ausgebildet.
  • In einer ersten bevorzugten Ausführungsform sind das Sonnenrad des zweiten Planetenradsatzes und das Hohlrad des ersten Planetenradsatzes Bestandteile der vierten Welle des Hauptradsatzes. Dabei sind ein Steg des ersten Planetenradsatzes und ein Steg des zweiten Planetenradsatzes Bestandteile der dritten Welle des Hauptradsatzes. Ein Hohlrad des zweiten Planetenradsatzes ist Bestandteil der zweiten Welle des Hauptradsatzes. Ein Sonnenrad des ersten Planetenradsatzes ist Bestandteil der ersten Welle des Hauptradsatzes.
  • In einer zweiten bevorzugten Ausführungsform sind das Sonnenrad des zweiten Planetenradsatzes und das Hohlrad des ersten Planetenradsatzes Bestandteile der ersten Welle des Hauptradsatzes. Dabei sind der Steg des ersten Planetenradsatzes und der Steg des zweiten Planetenradsatzes Bestandteile der zweiten Welle des Hauptradsatzes. Das Hohlrad des zweiten Planetenradsatzes ist Bestandteil der dritten Welle des Hauptradsatzes. Das Sonnenrad des ersten Planetenradsatzes ist Bestandteil der vierten Welle des Hauptradsatzes.
  • Die beiden oben genannten Ausführungsformen zeichnen sich durch eine geometrisch günstige Anordnung aus.
  • Das Getriebe weist bevorzugt einen Zusatzradsatz auf. Der Zusatzradsatz weist einen Planetenradsatz mit insgesamt drei als erste, zweite, und dritte Welle bezeichnete Wellen auf. Die erste Welle des Zusatzradsatzes ist mit dem Rotor einer elektrischen Maschine ständig verbunden.
  • Die elektrische Maschine besteht zumindest aus einem drehfesten Stator und dem drehbar gelagerten Rotor und ist in einem motorischen Betrieb dazu eingerichtet, elektrische Energie in mechanische Energie in Form von Drehzahl und Drehmoment zu wandeln, sowie in einem generatorischen Betrieb mechanische Energie in elektrische Energie in Form von Strom und Spannung zu wandeln.
  • Ein Schaltvorgang eines derartigen Getriebes mit elektrischer Maschine wird durch Schließen eines zuvor nicht im Leistungsfluss des Getriebes liegenden Schaltelements des Getriebes und Öffnen eines zuvor im Leistungsfluss des Getriebes liegenden Schaltelements des Getriebes bewirkt. Der Schaltvorgang kann auch unter Last, das heißt ohne vollständige Zurücknahme des Drehmoments an der Getriebe-Eingangswelle und der Getriebe-Ausgangswelle vorgenommen werden. Ein derartiger Schaltvorgang wird im Folgenden als Lastschaltung bezeichnet. Eine Voraussetzung für die Lastschaltung bei der Verwendung von Klauen-Schaltelementen ist, dass das zu lösende Schaltelement vor dem Lösen in einen zumindest nahezu lastlosen Zustand geführt wird. Die Führung in den nahezu lastlosen Zustand wird dadurch erreicht, dass das Schaltelement weitgehend drehmomentfrei gestellt wird, sodass über das Schaltelement kein oder nur ein geringes Drehmoment übertragen wird. Dazu wird durch die elektrische Maschine ein Drehmoment auf jene Welle aufgebracht, mit der das zu lösende Schaltelement eine Verbindung herstellt.
  • In einer ersten Ausgestaltung ist die zweite Welle des Zusatzradsatzes mit der ersten Welle des Hauptradsatzes ständig verbunden. Die dritte Welle des Zusatzradsatzes ist ständig mit der zweiten, dritten oder vierten Welle des Hauptradsatzes verbunden.
  • Durch diese Anbindung des Rotors an den Hauptradsatz wird erreicht, dass die Übersetzung vom Rotor zu den Wellen des Hauptradsatzes vergrößert wird. In anderen Worten liegt die erste Welle des Hauptradsatzes dadurch im Drehzahlplan stets zwischen der ersten Welle des Zusatzradsatzes und der zweiten Welle des Hauptradsatzes. Durch diese vergrößerte Übersetzung wird das beim Schaltvorgang vom Rotor aufzubringende Drehmoment reduziert, wodurch die elektrische Maschine kleiner und leichter aufgebaut werden kann. Derart kann die verkleinerte elektrische Maschine bei einer Lastschaltung selbst bei einem hohen Drehmoment an der Getriebe-Eingangswelle das erforderliche Drehmoment aufbringen, ohne dass es zu einer unerwünscht hohen Drehmomentreduktion an der Getriebe-Ausgangswelle kommt. Die vergrößerte Übersetzung ist zudem auch dann von Nutzen, wenn das Drehmoment der elektrischen Maschine auf die Getriebe-Ausgangswelle übertragen werden soll, beispielsweise bei Verwendung des Getriebes in einem Kraftfahrzeug, wodurch ein elektrischer Fahrbetrieb des Kraftfahrzeugs ermöglicht wird. Durch die derart vergrößerte Übersetzung ist ein Anfahren des Kraftfahrzeugs in einer Steigung selbst bei verkleinerter elektrischer Maschine möglich. Die vergrößerte Übersetzung ist zusätzlich von Nutzen, wenn ausgehend von der elektrischen Maschine ein Drehmoment auf die Getriebe-Eingangswelle übertragen wird, beispielsweise bei Anwendung zum Starten einer Verbrennungskraftmaschine, die mit der Getriebe-Eingangswelle verbunden ist. Auch hier führt die vergrößerte Übersetzung dazu, dass die elektrische Maschine kleiner und damit leichter aufgebaut werden kann.
  • Durch diese Zuordnung der Wellen des Hauptradsatzes zur zweiten und dritten Welle des Zusatzradsatzes wird außerdem erreicht, dass der Rotor selbst bei drehfester Festsetzung der ersten Welle des Hauptradsatzes dazu in der Lage ist, eine Drehzahl anzunehmen. Dies ist Vorrausetzung zur Aufnahme und Abgabe von mechanischer Leistung durch die elektrische Maschine. Dadurch wird ermöglicht, dass die elektrische Maschine auch in jenen Gängen dazu imstande ist mechanische Leistung aufzunehmen oder abzugeben, in der die erste Welle des Hauptradsatzes drehfest festgesetzt ist oder keine nennenswerte Drehzahl aufweist. Dies ist insbesondere bei Anwendung des Getriebes in einem Kraftfahrzeug vorteilhaft, da kinetische Energie des Kraftfahrzeugs durch den generatorischen Betrieb der elektrischen Maschine in jedem Gang des Getriebes rekuperiert werden kann. Ist eine Verbrennungskraftmaschine mit der Getriebe-Eingangswelle verbunden, so kann zudem der Lastpunkt der Verbrennungskraftmaschine durch generatorischen oder motorischen Betrieb der elektrischen Maschine in jedem Gang verschoben werden. Das Getriebe ermöglicht damit eine Effizienzsteigerung des Kraftfahrzeugs.
  • In einer zweiten Ausgestaltung ist die zweite Welle des Zusatzradsatzes mit der zweiten Welle oder mit der dritten Welle des Hauptradsatzes ständig verbunden. Ist die zweite Welle des Zusatzradsatzes mit der zweiten Welle des Hauptradsatzes verbunden, so ist die dritte Welle des Zusatzradsatzes mit der dritten oder mit der vierten Welle des Hauptradsatzes ständig verbunden. Ist hingegen die zweite Welle des Zusatzradsatzes mit der dritten Welle des Hauptradsatzes verbunden, so ist die dritte Welle des Zusatzradsatzes mit der vierten Welle des Hauptradsatzes verbunden. Sind dabei die Standgetriebeübersetzungen des Planetenradsatzes des Zusatzradsatzes und des ersten und zweiten Planetenradsatzes des Hauptradsatzes entsprechend gewählt, so kann durch diese Zuordnung der zweiten und dritten Welle des Zusatzradsatzes zu den Wellen des Hauptradsatzes die gleiche Wirkung erzielt werden wie in der ersten Ausgestaltung des Getriebes.
  • Vorzugsweise ist ein Sonnenrad des Planetenradsatzes des Zusatzradsatzes ein Bestandteil der ersten Welle des Zusatzradsatzes. Im Falle, dass der Planetenradsatz des Zusatzradsatzes als Minus-Radsatz ausgebildet ist, ist ein Steg des Planetenradsatzes des Zusatzradsatzes ein Bestandteil der zweiten Welle des Zusatzradsatzes, und ein Hohlrad des Planetenradsatzes des Zusatzradsatzes ein Bestandteil der dritten Welle des Zusatzradsatzes. Ist der Planetenradsatz des Zusatzradsatzes als Plus-Radsatz ausgebildet, so ist die Zuordnung von Hohlrad und Steg vertauscht, sodass das Hohlrad des Planetenradsatzes des Zusatzradsatzes ein Bestandteil der zweiten Welle des Zusatzradsatzes ist und der Steg des Planetenradsatzes des Zusatzradsatzes ein Bestandteil der dritten Welle des Zusatzradsatzes ist.
  • Die Zuordnung des Planetenradsatzes des Zusatzradsatzes zum Hauptradsatz kann aber auch gespiegelt erfolgen, indem das Sonnenrad des Planetenradsatzes des Zusatzradsatzes ein Bestandteil der dritten Welle des Zusatzradsatzes ist. Ist dabei der Planetenradsatz des Zusatzradsatzes als Minus-Radsatz ausgebildet, so ist der Steg des Planetenradsatzes des Zusatzradsatzes Bestandteil der zweiten Welle des Zusatzradsatzes, und das Hohlrad des Planetenradsatzes des Zusatzradsatzes ist Bestandteil der ersten Welle des Zusatzradsatzes. Ist der Planetenradsatz des Zusatzradsatzes als Plus-Radsatz ausgebildet, so ist die Zuordnung von Hohlrad und Steg vertauscht, sodass das Hohlrad des Planetenradsatzes des Zusatzradsatzes ein Bestandteil der zweiten Welle des Zusatzradsatzes ist und der Steg des Planetenradsatzes des Zusatzradsatzes ein Bestandteil der ersten Welle des Zusatzradsatzes ist.
  • Durch die Vielzahl an gebotenen Möglichkeiten der Anbindung zwischen Rotor, Zusatzradsatz und Hauptradsatz ist die Erfindung besonders einfach an verschiedene Getriebevarianten und zur Verfügung stehende Bauraum-Verhältnisse anpassbar. Besonders durch die entsprechende Anordnung des ersten und zweiten Planetenradsatzes des Hauptradsatzes ist das Getriebe für die Verwendung in einem Kraftfahrzeug mit quer zur Fahrtrichtung angeordnetem Antriebsstrang geeignet. Derart ist ein Getriebe mit elektrischer Antriebsfunktion selbst bei engen Bauraumverhältnissen im Kraftfahrzeug realisierbar, wobei das Getriebe keine Einschränkungen in seiner Funktionalität hinnehmen muss.
  • Durch Vorsehen eines Vorschaltradsatzes können einer oder mehrere weitere Leistungspfade zwischen der Getriebe-Eingangswelle und dem Hauptradsatzes herstellt werden, wodurch die Gangzahl des Getriebes entsprechend erhöht werden kann. Ein derartiger Vorschaltradsatz kann dazu aus zumindest einem Planetenradsatz gebildet sein.
  • Das Getriebe kann vorzugsweise Bestandteil eines Hybridantriebsstrangs eines Kraftfahrzeugs sein. Der Hybridantriebsstrang weist neben dem Getriebe auch eine Verbrennungskraftmaschine auf. Die Verbrennungskraftmaschine ist entweder direkt oder über eine Kupplung mit der Getriebe-Eingangswelle des Getriebes verbunden, bzw. verbindbar. Das Kraftfahrzeug kann dabei sowohl durch die Verbrennungskraftmaschine als auch durch die elektrische Maschine des Getriebes angetrieben werden. Optional weist das Getriebe dazu eine Zusatz-Elektromaschine auf, die dazu eingerichtet ist über ihren Rotor ein Drehmoment auf die Getriebe-Eingangswelle abzugeben und derart die Verbrennungskraftmaschine zu starten. Dies hat den Vorteil, dass die Verbrennungskraftmaschine mittels der Zusatz-Elektromaschine gestartet werden kann, ohne Einfluss auf einen zeitgleichen elektrischen Fahrbetrieb zu nehmen, in dem das Kraftfahrzeug allein durch die elektrische Maschine des Getriebes angetrieben wird.
  • Die elektrische Maschine ist dabei mit einem Umformer verbunden, über den die elektrische Maschine mit einem Energiespeicher verbunden ist. Dazu ist jede Form von Energiespeicher geeignet, insbesondere elektrochemische, elektrostatische, hydraulische und mechanische Energiespeicher.
  • In einer weiteren Ausführungsform kann das Getriebe auch Bestandteil eines Antriebsstrangs eines Elektrofahrzeugs sein. Ein Elektrofahrzeug wird dabei allein durch eine oder mehrere Elektromaschinen angetrieben, und weist dementsprechend keine Verbrennungskraftmaschine auf. An der Getriebe-Eingangswelle ist in diesem Fall eine Traktions-Elektromaschine angebunden. Durch die verschiedenen Übersetzungsstufen des Getriebes kann die Traktions-Elektromaschine dabei stets in einem Betriebsbereich mit hohem Wirkungsgrad betrieben werden, wodurch die Energieeffizienz des gesamten Elektrofahrzeugs verbessert wird.
  • Ausführungsbeispiele der Erfindung sind nachfolgend anhand der beigefügten Figuren detailliert beschrieben.
  • 1 zeigt schematisch ein Getriebe entsprechend einer ersten Variante der Erfindung.
  • 2 zeigt einen Drehzahlplan des Getriebes entsprechend der ersten Variante.
  • 3 zeigt ein Schaltschema des Getriebes entsprechend der ersten Variante.
  • 4 zeigt schematisch ein Getriebe entsprechend einer zweiten Variante der Erfindung.
  • 5 zeigt einen Drehzahlplan des Getriebes entsprechend der zweiten Variante.
  • 6 zeigt ein Schaltschema des Getriebes entsprechend der zweiten Variante.
  • 7 zeigt einen Hybridantriebstrang eines Kraftfahrzeugs.
  • Einführend sei festgehalten, dass in den unterschiedlich beschriebenen Varianten gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen versehen werden, wobei die in der gesamten Beschreibung enthaltenen Offenbarungen sinngemäß auf gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragen werden können.
  • 1 zeigt schematisch ein Getriebe G entsprechend einer ersten Variante der Erfindung. Das Getriebe G weist einen Zusatzradsatz ZRS und einen Hauptradsatz HRS auf. Der Zusatzradsatz ZRS weist einen Planetenradsatz P4 auf, während der Hauptradsatz HRS einen ersten Planetenradsatz P1 und einen zweiten Planetenradsatz P2 aufweist. Sämtliche Planetenradsätze P1, P2, P4 sind als Minus-Radsätze ausgebildet.
  • Die Darstellung des Getriebes G zeigt im Wesentlichen die verbindbaren und verbundenen Elemente des Getriebes G. Durch die in der Darstellung des Getriebes G gewählten Abstände kann nicht auf die Übersetzungsverhältnisse rückgeschlossen werden.
  • Eine erste Welle W1 des Hauptradsatzes HRS ist mit einem Sonnenrad So-P1 des ersten Planetenradsatzes P1 verbunden. Eine zweite Welle W2 des Hauptradsatzes HRS ist mit einem Hohlrad Ho-P2 des zweiten Planetenradsatzes P2 des Hauptradsatzes HRS verbunden. Eine dritte Welle W3 des Hauptradsatzes HRS ist mit einem Steg St-P1 des ersten Planetenradsatzes P1 des Hauptradsatzes HRS und mit einem Steg St-P2 des zweiten Planetenradsatzes P2 des Hauptradsatzes HRS verbunden. Eine vierte Welle W4 des Hauptradsatzes HRS ist mit einem Hohlrad Ho-P1 des ersten Planetenradsatzes P1 des Hauptradsatzes HRS und mit einem Sonnenrad So-P2 des zweiten Planetenradsatzes P2 des Hauptradsatzes HRS verbunden. Durch diese Anordnung und Verbindung zwischen den einzelnen Bauelementen des ersten und zweiten Planetenradsatzes P1, P2 des Hauptradsatzes HRS wird die Anordnung der ersten, zweiten, dritten und vierten Welle W1, W2, W3, W4 des Hauptradsatzes HRS im Drehzahlplan bestimmt, wobei die Reihenfolge erste, zweite, dritte, vierte Welle W1, W2, W3, W4 deren Reihenfolge im Drehzahlplan entspricht. Die dritte Welle W3 des Hauptradsatzes HRS ist mit der Getriebe-Ausgangswelle GW2 verbunden. Alternativ dazu kann die dritte Welle W3 des Hauptradsatzes HRS auch über ein zusätzliches Übersetzungsgetriebe mit der Getriebe-Ausgangswelle GW2 verbunden sein.
  • Der erste Planetenradsatz P1 und der zweite Planetenradsatz P2 des Hauptradsatzes HRS sind dabei in einer gemeinsamen Radsatzebene RSE angeordnet. Ausgehend von der Achse der Getriebe-Eingangswelle GW1 ist der zweite Planetenradsatz P2 radial außerhalb des ersten Planetenradsatzes P1 angeordnet.
  • Die Getriebe-Eingangswelle GW1 ist über einen Leistungspfad L1 über ein erstes Schaltelement A mit der vierten Welle W4 des Hauptradsatzes HRS und über ein zweites Schaltelement E mit der zweiten Welle W2 des Hauptradsatzes HRS verbindbar. Die erste Welle W1 des Hauptradsatzes HRS ist über ein drittes Schaltelement C drehfest festsetzbar. Die zweite Welle W2 des Hauptradsatzes HRS ist über ein viertes Schaltelement D drehfest festsetzbar. Durch das dritte und vierte Schaltelement C, D ist demnach eine feste Verbindung mit einem Getriebegehäuse GG des Getriebes G oder mit einem anderen drehfest fixierten Bauelement des Getriebes G herstellbar.
  • Das Getriebe G weist eine elektrische Maschine EM auf, wobei ein Stator S drehfest mit dem Getriebegehäuse GG des Getriebes G oder mit einem anderen drehfesten Bauelement des Getriebes G verbunden ist, sodass der Stator S keine Drehzahl annehmen kann. Ein drehbar gelagerter Rotor R ist mit einem Sonnenrad So-P4 des Planetenradsatzes P4 des Zusatzradsatzes ZRS verbunden. Das Sonnenrad So-P4 des Planetenradsatzes P4 des Zusatzradsatzes ZRS ist dabei Bestandteil einer ersten Welle W1P4 des Zusatzradsatzes ZRS. Ein Steg St-P4 des Planetenradsatzes P4 des Zusatzradsatzes ZRS ist Bestandteil einer zweiten Welle W2P4 des Zusatzradsatzes ZRS und ist mit der zweiten Welle W2 des Hauptradsatzes HRS verbunden. Ein Hohlrad Ho-P4 des Planetenradsatzes P4 des Zusatzradsatzes ZRS ist Bestandteil einer dritten Welle W3P4 des Zusatzradsatzes ZRS und ist mit der vierten Welle W4 des Hauptradsatzes HRS verbunden.
  • 2 zeigt einen Drehzahlplan der ersten Variante des Getriebes G, während in 3 ein Schaltschema der ersten Variante des Getriebes G dargestellt ist. In 2 sind in vertikaler Richtung die Drehzahlen der vier Wellen W1, W2, W3, W4 des Hauptradsatzes HRS und des Rotors R im Verhältnis zur Drehzahl der Getriebe-Eingangswelle GW1 aufgetragen. Die maximal auftretende Drehzahl der Getriebe-Eingangswelle GW1 ist auf den Wert Eins normiert. Die Abstände zwischen den vier Wellen W1, W2, W3, W4 des Hauptradsatzes HRS und dem Rotor R ergeben sich durch die Standgetriebeübersetzungen des ersten und zweiten Planetenradsätzen P1, P2 des Hauptradsatzes HRS und der Standgetriebeübersetzung des Planetenradsatzes P4 des Zusatzradsatzes ZRS. Zu einem bestimmten Betriebspunkt gehörende Drehzahlverhältnisse lassen sich durch eine Gerade verbinden.
  • Werden von Hohlrad, Steg und Sonne eines Planetenradsatzes zwei dieser Elemente miteinander verbunden, so rotieren Hohlrad, Steg und Sonne dieses Planetenradsatzes mit derselben Drehzahl. In diesem Zustand nimmt die Übersetzung zwischen den genannten Elementen den Wert Eins an. Der Übersichtlichkeit halber wird die horizontale Anordnung der mit diesen Elementen verbundenen Wellen im Drehzahlplan nicht verschoben. Infolgedessen ist dieser Zustand im Drehzahlplan durch eine horizontale Gerade zu erkennen, die die beteiligten Wellen miteinander verbindet.
  • 3 zeigt ein Schaltschema des Getriebes G entsprechend der ersten Variante. Durch das Schaltschema in 3 und dem Drehzahlplan in 2 wird die Funktionsweise der ersten Variante des Getriebes G deutlich. Die geschlossenen Schaltelemente A, C, D, E sind in 3 durch Kreise gekennzeichnet. Dem Schaltschema können die jeweiligen Übersetzungen der einzelnen Gangstufen und die daraus zu bestimmenden Gangsprünge zum nächst höheren Gang beispielhaft entnommen werden. Die Übersetzungen ergeben sich aus den Standgetriebeübersetzungen der Planetenradsätze P1, P2, P4. Bei sequentieller Schaltweise können Doppelschaltungen bzw. Gruppenschaltungen vermieden werden, da zwei benachbarte Gangstufen ein Schaltelement gemeinsam benutzen. Die Gänge des Getriebes G sind in den verschiedenen Zeilen des Schaltschemas dargestellt. In einer Spalte des Schaltschemas ist des Weiteren angegeben, ob die elektrische Maschine EM in dem betreffenden Gang in der Lage ist, mechanische Leistung auf die Getriebe-Ausgangswelle GW2 abzugeben oder von dieser aufzunehmen.
  • Durch die erste Variante des Getriebes werden insgesamt vier lastschaltbare Gänge zwischen der Getriebe-Eingangswelle GW1 und der Getriebe-Ausgangswelle GW2 ausgebildet. Ein erster Vorwärtsgang 1VM zwischen der Getriebe-Eingangswelle GW1 und der Getriebe-Ausgangswelle GW2 ergibt sich durch Schließen des ersten Schaltelements A und des vierten Schaltelements D, ein zweiter Vorwärtsgang 2VM durch Schließen des ersten Schaltelements A und des dritten Schaltelements C, ein dritter Vorwärtsgang 3VM durch Schließen des ersten Schaltelements A und des zweiten Schaltelements E, und ein vierter Vorwärtsgang 4VM durch Schließen des dritten Schaltelements C und des zweiten Schaltelements E.
  • In einem elektrischen Gang 1EM wird Drehmoment allein von der elektrischen Maschine EM zur Getriebe-Ausgangswelle GW2 übertragen, wobei alle Schaltelemente bis auf das vierte Schaltelement D geöffnet sind, und somit keine drehmomentführende Verbindung zwischen der Getriebe-Eingangswelle GW1 und der Getriebe-Ausgangswelle GW2 besteht. Der elektrische Gang 1EM dient auch als Rückwärtsgang, in dem die elektrische Maschine EM so angesteuert wird, dass der Rotor R eine negative Drehzahl, also eine Rückwärtsrotation annimmt. Auf einen separaten Rückwärtsgang kann somit verzichtet werden.
  • Im ersten und zweiten Startmodus 1S, 2S wird der Getriebe-Eingangswelle GW1 Drehmoment zugeführt. Im ersten Startmodus 1S ist das erste Schaltelement A und das vierte Schaltelement D geschlossen, wodurch die zweite Welle W2 des Hauptradsatzes HRS drehfest festgesetzt ist. Liegt im ersten Startmodus 1S Drehmoment an der Getriebe-Ausgangswelle GW2 an, so ist derart Leistung von der Getriebe-Ausgangswelle GW2 zur Getriebe-Eingangswelle GW1 übertragbar. Die elektrische Maschine EM kann ebenfalls Leistung beigeben. Bei Verwendung des Getriebes G in einem Fahrzeug mit Verbrennungskraftmaschine VKM kann der erste Startmodus 1S zum Schleppstart der Verbrennungskraftmaschine VKM benutzt werden. Im zweiten Startmodus 2S sind alle Schaltelemente bis auf das erste Schaltelement A geöffnet. Ist eine Feststellbremse eingelegt, welcher mit der Getriebe-Ausgangswelle GW2 verbunden ist, so ist die dritte Welle W3 des Hauptradsatzes HRS dadurch drehfest festgesetzt. Durch die elektrische Maschine EM kann somit Leistung von der ersten Welle W1P4 des Zusatzradsatzes ZRS auf die Getriebe-Eingangswelle GW1 übertragen werden, um derart eine an der Getriebe-Eingangswelle GW1 angebundene Verbrennungskraftmaschine VKM zu starten.
  • Durch Schließen des dritten Schaltelements C und des vierten Schaltelements D wird die erste und die zweite Welle W1, W2 des Hauptradsatzes HRS drehfest festgesetzt. Das Getriebe G ist damit blockiert. Bei Verwendung des Getriebes G im Antriebsstrang eines Kraftfahrzeugs kann derart eine Parkbremse realisiert werden.
  • 4 zeigt schematisch ein Getriebe G entsprechend einer zweiten Variante. Im Unterschied zu dem in 1 dargestellten Getriebe G ist in der zweiten Variante die Getriebe-Eingangswelle GW1 über das erste Schaltelement A mit der ersten Welle W1 des Hauptradsatzes HRS verbindbar. Über das zweite Schaltelement E ist die Getriebe-Eingangswelle GW1 wie auch in der ersten Variante mit der zweiten Welle W2 des Hauptradsatzes HRS verbindbar. Die erste Welle W1 des Hauptradsatzes HRS ist wie auch in der ersten Variante über das dritte Schaltelement C drehfest festsetzbar. Über das vierte Schaltelement D ist in der zweiten Variante die vierte Welle W4 des Hauptradsatzes HRS drehfest festsetzbar.
  • 5 zeigt einen Drehzahlplan des Getriebes G entsprechend der zweiten Variante, während in 6 ein Schaltschema der zweiten Variante des Getriebes G dargestellt ist. Die Art und Weise der Darstellung ist ident zu der in 2 und 3 dargestellten ersten Variante des Getriebes G.
  • Durch das Schaltschema in 5 und dem Drehzahlplan in 6 wird die Funktionsweise der zweiten Variante des Getriebes G deutlich. Die geschlossenen Schaltelemente A, C, D, E sind in 6 durch Kreise gekennzeichnet. Dem Schaltschema können die jeweiligen Übersetzungen der einzelnen Gangstufen und die daraus zu bestimmenden Gangsprünge zum nächst höheren Gang beispielhaft entnommen werden. Die Übersetzungen ergeben sich aus den Standgetriebeübersetzungen der Planetenradsätze P1, P2, P4. Bei sequentieller Schaltweise können Doppelschaltungen bzw. Gruppenschaltungen vermieden werden, da zwei benachbarte Gangstufen ein Schaltelement gemeinsam benutzen. Die Gänge des Getriebes G sind in den verschiedenen Zeilen des Schaltschemas dargestellt. In einer Spalte des Schaltschemas ist des Weiteren angegeben, ob die elektrische Maschine EM in dem betreffenden Gang in der Lage ist, mechanische Leistung auf die Getriebe-Ausgangswelle GW2 abzugeben oder von dieser aufzunehmen.
  • Auch in der zweiten Variante des Getriebes werden insgesamt vier lastschaltbare Gänge zwischen der Getriebe-Eingangswelle GW1 und der Getriebe-Ausgangswelle GW2 ausgebildet. Der erste Vorwärtsgang 1VM zwischen der Getriebe-Eingangswelle GW1 und der Getriebe-Ausgangswelle GW2 ergibt sich durch Schließen des vierten Schaltelements D und des ersten Schaltelements A, der zweite Vorwärtsgang 2VM durch Schließen des vierten Schaltelements D und des zweiten Schaltelements E, der dritte Vorwärtsgang 3VM durch Schließen des zweiten Schaltelements E und des ersten Schaltelements A, und der vierte Vorwärtsgang 4VM durch Schließen des dritten Schaltelements C und des zweiten Schaltelements E.
  • Die Funktionsweise des elektrischen Gangs 1EM, der Startmodi 1S, 2S sowie der Parkbremse der zweiten Variante ist ident zur Funktionsweise der ersten Variante.
  • 7 zeigt schematisch einen Hybridantriebsstrang eines Kraftfahrzeugs. Das darin enthaltene Getriebe G entspricht der ersten Variante des Getriebes G, wobei dies lediglich beispielhaft anzusehen ist. Ein drehbarer Rotor R2 einer Zusatz-Elektromaschine SG ist mit der Getriebe-Eingangswelle GW1 verbunden, während der Stator S2 der Zusatz-Elektromaschine SG drehfest am Getriebegehäuse GG des Getriebes G oder an einem anderen drehfesten Bauelement des Getriebes G angebunden ist. Über einen Rotationsschwingungsdämpfer RD ist eine Verbrennungskraftmaschine VKM mit der Getriebe-Eingangswelle GW1 verbunden. Die Getriebe-Ausgangswelle GW2 ist mit einem Achsgetriebe AG verbunden. Vom Achsgetriebe AG ausgehend wird das Drehmoment, das an der Getriebe-Ausgangswelle GW2 anliegt, auf Räder W des Kraftfahrzeugs verteilt. Im motorischen Betrieb der elektrischen Maschine EM wird dem Stator S über einen Wechselrichter INV elektrischer Leistung zugeführt. Im generatorischen Betrieb der elektrischen Maschine EM führt der Stator S dem Wechselrichter INV elektrische Leistung zu. Der Wechselrichter INV wandelt dabei die Gleichspannung einer Batterie BAT in eine für die elektrische Maschine EM geeignete Wechselspannung, und umgekehrt. Die Zusatz-Elektromaschine SG kann dabei ebenso über den Wechselrichter INV mit elektrischer Leistung versorgt werden. Alternativ dazu kann die Zusatz-Elektromaschine SG auch an eine andere Leistungsversorgung angeschlossen sein, beispielsweise an ein Niederspannungs-Bordnetz des Kraftfahrzeugs.
  • Bezugszeichen
    • G
      Getriebe
      GW1
      Getriebe-Eingangswelle
      GW2
      Getriebe-Ausgangswelle
      HRS
      Hauptradsatz
      ZRS
      Zusatzradsatz
      RSE
      Radsatzebene
      EM
      Elektrische Maschine
      R
      Rotor der elektrischen Maschine
      S
      Stator der elektrischen Maschine
      SG
      Zusatz-Elektromaschine
      R2
      Rotor der Zusatz-Elektromaschine
      S2
      Stator der Zusatz-Elektromaschine
      RD
      Rotationsschwingungsdämpfer
      VKM
      Verbrennungskraftmaschine
      INV
      Wechselrichter
      BAT
      Batterie
      P1
      Erster Planetenradsatz des Hauptradsatzes
      P2
      Zweiter Planetenradsatz des Hauptradsatzes
      P4
      Planetenradsatz des Zusatzradsatzes
      W1
      Erste Welle des Hauptradsatzes
      W2
      Zweite Welle des Hauptradsatzes
      W3
      Dritte Welle des Hauptradsatzes
      W4
      Vierte Welle des Hauptradsatzes
      W1P4
      Erste Welle des Zusatzradsatzes
      W2P4
      Zweite Welle des Zusatzradsatzes
      W3P4
      Dritte Welle des Zusatzradsatzes
      L1
      Leistungspfad
      A
      Erstes Schaltelement
      E
      Zweites Schaltelement
      C
      Drittes Schaltelement
      D
      Viertes Schaltelement
      So-P1
      Sonnenrad des ersten Planetenradsatzes des Hauptradsatzes
      St-P1
      Steg des ersten Planetenradsatzes des Hauptradsatzes
      Ho-P1
      Hohlrad des ersten Planetenradsatzes des Hauptradsatzes
      So-P2
      Sonnenrad des zweiten Planetenradsatzes des Hauptradsatzes
      St-P2
      Steg des zweiten Planetenradsatzes des Hauptradsatzes
      Ho-P2
      Hohlrad des zweiten Planetenradsatzes des Hauptradsatzes
      So-P4
      Sonnenrad des Planetenradsatzes des Zusatzradsatzes
      St-P4
      Steg des Planetenradsatzes des Zusatzradsatzes
      Ho-P4
      Hohlrad des Planetenradsatzes des Zusatzradsatzes
      1VM–4VM
      Erster bis vierter Vorwärtsgang
      1EM
      Elektrischer Gang
      1S
      Erster Startmodus
      2S
      Zweiter Startmodus
      AG
      Achsgetriebe
      W
      Rad
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102012201377 A1 [0003]

Claims (14)

  1. Getriebe (G) mit einer Getriebe-Eingangswelle (GW1), einer Getriebe-Ausgangswelle (GW2), einem Hauptradsatz (HRS), wobei das Getriebe (G) zumindest einen Leistungspfad (L1) zwischen der Getriebe-Eingangswelle (GW1) und dem Hauptradsatz (HRS) aufweist, wobei der Hauptradsatz (HRS) einen ersten und einen zweiten Planetenradsatz (P1, P2) mit insgesamt vier in Drehzahlordnung als erste, zweite, dritte und vierte Welle bezeichnete Wellen (W1, W2, W3, W4) aufweist, wobei der zumindest eine Leistungspfad (L1) über zumindest ein Schaltelement (A, E) mit zumindest einer der vier Wellen (W1, W2, W3, W4) des Hauptradsatzes (HRS) verbindbar ist, wobei die dritte Welle (W3) des Hauptradsatzes (HRS) mit der Getriebe-Ausgangswelle (GW2) verbunden ist, dadurch gekennzeichnet, dass ein Sonnenrad (So-P2) des zweiten Planetenradsatzes (P2) des Hauptradsatzes (HRS) mit einem Hohlrad (Ho-P1) des ersten Planetenradsatzes (P1) des Hauptradsatzes (HRS) verbunden ist, wobei der erste Planetenradsatz (P1) des Hauptradsatzes (HRS) und der zweite Planetenradsatz (P2) des Hauptradsatzes (HRS) in einer gemeinsamen Radsatzebene (RSE) angeordnet sind.
  2. Getriebe (G) nach Anspruch 1, dadurch gekennzeichnet, dass das Sonnenrad (So-P2) des zweiten Planetenradsatzes (P2) des Hauptradsatzes (HRS) am Außenumfang des Hohlrads (Ho-P1) des ersten Planetenradsatzes (P1) des Hauptradsatzes (HRS) gebildet ist.
  3. Getriebe (G) nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass das Sonnenrad (So-P2) des zweiten Planetenradsatzes (P2) des Hauptradsatzes (HRS) und das Hohlrad (Ho-P1) des ersten Planetenradsatzes (P1) des Hauptradsatzes (HRS) Bestandteile der ersten Welle (W1) oder der vierten Welle (W4) des Hauptradsatzes (HRS) sind.
  4. Getriebe (G) nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass der erste Planetenradsatz (P1) und der zweite Planetenradsatz (P2) des Hauptradsatzes (HRS) als Minus-Radsätze ausgebildet sind, wobei das Sonnenrad (So-P2) des zweiten Planetenradsatzes (P2) des Hauptradsatzes (HRS) und das Hohlrad (Ho-P1) des ersten Planetenradsatzes (P1) des Hauptradsatzes (HRS) Bestandteile der vierten Welle (W4) des Hauptradsatzes (HRS) sind, wobei der Steg (St-P1) des ersten Planetenradsatzes (P1) des Hauptradsatzes (HRS) und der Steg (St-P2) des zweiten Planetenradsatzes (P2) des Hauptradsatzes (HRS) Bestandteile der dritten Welle (W3) des Hauptradsatzes (HRS) sind, wobei ein Hohlrad (Ho-P2) des zweiten Planetenradsatzes (P2) des Hauptradsatzes (HRS) Bestandteil der zweiten Welle (W2) des Hauptradsatzes (HRS) ist, und wobei ein Sonnenrad (So-P1) des ersten Planetenradsatzes (P1) des Hauptradsatzes (HRS) Bestandteil der ersten Welle (W1) des Hauptradsatzes (HRS) ist.
  5. Getriebe (G) nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass der erste Planetenradsatz (P1) und der zweite Planetenradsatz (P2) des Hauptradsatzes (HRS) als Minus-Radsätze ausgebildet sind, wobei das Sonnenrad (So-P2) des zweiten Planetenradsatzes (P2) des Hauptradsatzes (HRS) und das Hohlrad (Ho-P1) des ersten Planetenradsatzes (P1) des Hauptradsatzes (HRS) Bestandteile der ersten Welle (W1) des Hauptradsatzes (HRS) sind, wobei der Steg (St-P1) des ersten Planetenradsatzes (P1) des Hauptradsatzes (HRS) und der Steg (St-P2) des zweiten Planetenradsatzes (P2) des Hauptradsatzes (HRS) Bestandteile der zweiten Welle (W2) des Hauptradsatzes (HRS) sind, wobei das Hohlrad (Ho-P2) des zweiten Planetenradsatzes (P2) des Hauptradsatzes (HRS) Bestandteil der dritten Welle (W3) des Hauptradsatzes (HRS) ist, und wobei das Sonnenrad (So-P1) des ersten Planetenradsatzes (P1) des Hauptradsatzes (HRS) Bestandteil der vierten Welle (W4) des Hauptradsatzes (HRS) ist.
  6. Getriebe (G) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Getriebe (G) einen Zusatzradsatz (ZRS) und eine elektrische Maschine (EM) mit einem Rotor (R) und einem Stator (S) aufweist, wobei der Zusatzradsatz (ZRS) einen Planetenradsatz (P4) mit einer ersten, zweiten und dritten Welle (W1P4, W2P4, W3P4) aufweist, und wobei die erste Welle (W1P4) des Zusatzradsatzes (ZRS) mit dem Rotor (R) ständig verbunden ist.
  7. Getriebe (G) nach Anspruch 6, dadurch gekennzeichnet, dass die zweite Welle (W2P4) des Zusatzradsatzes (ZRS) mit der ersten Welle (W1) des Hauptradsatzes (HRS) ständig verbunden ist, wobei die dritte Welle (W3P4) des Zusatzradsatzes (ZRS) ständig mit der zweiten, dritten oder vierten Welle (W2, W3, W4) des Hauptradsatzes (HRS) ständig verbunden ist.
  8. Getriebe (G) nach Anspruch 6, dadurch gekennzeichnet, dass die zweite Welle (W2P4) des Zusatzradsatzes (ZRS) mit der zweiten Welle (W2) oder mit der dritten Welle (W3) des Hauptradsatzes (HRS) ständig verbunden ist, wobei – im Falle, dass die zweite Welle (W2) des Hauptradsatzes (HRS) mit der zweiten Welle (W2P4) des Zusatzradsatzes (ZRS) ständig verbunden ist, die dritte oder die vierte Welle (W3, W4) des Hauptradsatzes (HRS) mit der dritten Welle (W3P4) des Zusatzradsatzes (ZRS) ständig verbunden ist, und – im Falle, dass die dritte Welle (W3) des Hauptradsatzes (HRS) mit der zweiten Welle (W2P4) des Zusatzradsatzes (ZRS) ständig verbunden ist, die vierte Welle (W4) des Hauptradsatzes (HRS) mit der dritten Welle (W3P4) des Zusatzradsatzes (ZRS) ständig verbunden ist.
  9. Getriebe (G) nach Anspruch 8, dadurch gekennzeichnet, dass die Standgetriebeübersetzungen des Planetenradsatzes (P4) des Zusatzradsatzes (ZRS) und des ersten und zweiten Planetenradsatzes (P1, P2) des Hauptradsatzes (HRS) so gewählt sind, dass die erste Welle (W1) des Hauptradsatzes (HRS) im Drehzahlplan zwischen der ersten Welle (W1P4) des Zusatzradsatzes (ZRS) und der zweiten Welle (W2) des Hauptradsatzes (HRS) liegt.
  10. Getriebe (G) nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass ein Sonnenrad (So-P4) des Planetenradsatzes (P4) des Zusatzradsatzes (ZRS) ein Bestandteil der ersten Welle (W1P4) des Zusatzradsatzes (ZRS) ist, und – im Falle, dass der Planetenradsatz (P4) des Zusatzradsatzes (ZRS) als Minus-Radsatz ausgebildet ist, ein Steg (St-P4) des Planetenradsatzes (P4) des Zusatzradsatzes (ZRS) ein Bestandteil der zweiten Welle (W2P4) des Zusatzradsatzes (ZRS) ist und ein Hohlrad (Ho-P4) des Planetenradsatzes (P4) des Zusatzradsatzes (ZRS) ein Bestandteil der dritten Welle (W3P4) des Zusatzradsatzes (ZRS) ist, und – im Falle, dass der Planetenradsatz (P4) des Zusatzradsatzes (ZRS) als Plus-Radsatz ausgebildet ist, das Hohlrad (Ho-P4) des Planetenradsatzes (P4) des Zusatzradsatzes (ZRS) ein Bestandteil der zweiten Welle (W2P4) des Zusatzradsatzes (ZRS) ist und der Steg (St-P4) des Planetenradsatzes (P4) des Zusatzradsatzes (ZRS) ein Bestandteil der dritten Welle (W3P4) des Zusatzradsatzes (ZRS) ist.
  11. Getriebe (G) nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass das Sonnenrad (So-P4) des Planetenradsatzes (P4) des Zusatzradsatzes (ZRS) Bestandteil der dritten Welle (W3P4) des Zusatzradsatzes (ZRS) ist, – im Falle, dass der Planetenradsatz (P4) des Zusatzradsatzes (ZRS) als Minus-Radsatz ausgebildet ist, der Steg (St-P4) des Planetenradsatzes (P4) des Zusatzradsatzes (ZRS) Bestandteil der zweiten Welle (W2P4) des Zusatzradsatzes (ZRS) ist und das Hohlrad (Ho-P4) des Planetenradsatzes (P4) des Zusatzradsatzes (ZRS) Bestandteil der ersten Welle (W1P4) des Zusatzradsatzes (ZRS) ist, und – im Falle, dass der Planetenradsatz (P4) des Zusatzradsatzes (ZRS) als Plus-Radsatz ausgebildet ist, das Hohlrad (Ho-P4) des Planetenradsatzes (P4) des Zusatzradsatzes (ZRS) ein Bestandteil der zweiten Welle (W2P4) des Zusatzradsatzes (ZRS) ist und der Steg (St-P4) des Planetenradsatzes (P4) des Zusatzradsatzes (ZRS) ein Bestandteil der ersten Welle (W1P4) des Zusatzradsatzes (ZRS) ist.
  12. Hybridantriebsstrang für ein Kraftfahrzeug, wobei der Hybridantriebsstrang zumindest eine Verbrennungskraftmaschine (VKM) aufweist, dadurch gekennzeichnet, dass der Hybridantriebsstrang ein Getriebe (G) nach einem der Ansprüche 1 bis 11 aufweist.
  13. Hybridantriebsstrang nach Anspruch 12, dadurch gekennzeichnet, dass der Hybridantriebsstrang zumindest eine mit der Verbrennungskraftmaschine (VKM) direkt oder über ein Getriebe verbundene Zusatz-Elektromaschine (SG) aufweist, die dazu eingerichtet ist die Verbrennungskraftmaschine (VKM) zu starten, wobei ein Rotor (R2) der Zusatz-Elektromaschine (SG) mit der Getriebe-Eingangswelle (GW1) des Getriebes (G) verbunden ist.
  14. Antriebsstrang für ein Elektrofahrzeug, dadurch gekennzeichnet, dass der Antriebsstrang ein Getriebe (G) nach einem der Ansprüche 1 bis 11 aufweist.
DE102013225202.1A 2013-12-06 2013-12-06 Getriebe für ein Kraftfahrzeug Active DE102013225202B4 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102013225202.1A DE102013225202B4 (de) 2013-12-06 2013-12-06 Getriebe für ein Kraftfahrzeug
PCT/EP2014/073879 WO2015082167A1 (de) 2013-12-06 2014-11-06 Getriebe, hybridantriebsstrang und antriebsstrang für elektrofahrzeug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013225202.1A DE102013225202B4 (de) 2013-12-06 2013-12-06 Getriebe für ein Kraftfahrzeug

Publications (2)

Publication Number Publication Date
DE102013225202A1 true DE102013225202A1 (de) 2015-06-11
DE102013225202B4 DE102013225202B4 (de) 2019-01-10

Family

ID=51866157

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013225202.1A Active DE102013225202B4 (de) 2013-12-06 2013-12-06 Getriebe für ein Kraftfahrzeug

Country Status (2)

Country Link
DE (1) DE102013225202B4 (de)
WO (1) WO2015082167A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3100888A1 (de) 2015-06-03 2016-12-07 ZF Friedrichshafen AG Getriebe für ein kraftfahrzeug, sowie antriebstrang für ein hybridfahrzeug mit einem solchen getriebe
DE102015210251A1 (de) 2015-06-03 2016-12-08 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug, sowie Antriebstrang für ein Hybridfahrzeug mit einem solchen Getriebe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215555A1 (de) * 2016-08-19 2018-02-22 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug, sowie Antriebsstrang für ein Kraftfahrzeug

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008041208A1 (de) * 2008-08-13 2010-02-18 Zf Friedrichshafen Ag Mehrstufengetriebe
DE102012201377A1 (de) 2012-01-31 2013-08-01 Zf Friedrichshafen Ag Hybridantriebsstrang für ein Kraftfahrzeug

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980049765A (ko) * 1996-12-20 1998-09-15 박병재 차량용 4속 자동 변속기의 기어 트레인
US7905806B2 (en) * 2006-02-06 2011-03-15 Hyundai Motor Company Power train for hybrid electronic vehicles and method of controlling the same
DE102012207017A1 (de) * 2012-04-27 2013-10-31 Zf Friedrichshafen Ag Mehrstufengetriebe
KR101334519B1 (ko) * 2012-10-31 2013-11-28 현대 파워텍 주식회사 자동 변속기의 파워 트레인

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008041208A1 (de) * 2008-08-13 2010-02-18 Zf Friedrichshafen Ag Mehrstufengetriebe
DE102012201377A1 (de) 2012-01-31 2013-08-01 Zf Friedrichshafen Ag Hybridantriebsstrang für ein Kraftfahrzeug

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3100888A1 (de) 2015-06-03 2016-12-07 ZF Friedrichshafen AG Getriebe für ein kraftfahrzeug, sowie antriebstrang für ein hybridfahrzeug mit einem solchen getriebe
DE102015210251A1 (de) 2015-06-03 2016-12-08 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug, sowie Antriebstrang für ein Hybridfahrzeug mit einem solchen Getriebe

Also Published As

Publication number Publication date
DE102013225202B4 (de) 2019-01-10
WO2015082167A1 (de) 2015-06-11

Similar Documents

Publication Publication Date Title
DE102013225205B4 (de) Getriebe für ein Kraftfahrzeug
DE102013225209B4 (de) Getriebe für ein Kraftfahrzeug
DE102015209647A1 (de) Getriebevorrichtung mit einer Getriebeeingangswelle, mit einer Getriebeausgangswelle und mit drei Planetenradsätzen
DE102013225208B4 (de) Getriebe für ein Kraftfahrzeug
DE102013225202B4 (de) Getriebe für ein Kraftfahrzeug
DE102013225212B4 (de) Getriebe für ein Kraftfahrzeug
EP3077239B1 (de) Getriebe, hybridantriebsstrang und antriebsstrang für elektrofahrzeug
DE102013227024B4 (de) Getriebe für ein Kraftfahrzeug
DE102013225207B4 (de) Getriebe für ein Kraftfahrzeug
DE102013227012B4 (de) Getriebe für ein Kraftfahrzeug
DE102013225210B4 (de) Getriebe für ein Kraftfahrzeug
DE102013227021B4 (de) Getriebe für ein Kraftfahrzeug
DE102013225213B4 (de) Getriebe für ein Kraftfahrzeug
DE102013227026A1 (de) Getriebe
DE102013227011B4 (de) Getriebe für ein Kraftfahrzeug
DE102013227029A1 (de) Getriebe
DE102013227015A1 (de) Getriebe
DE102013227022A1 (de) Getriebe
DE102013227018A1 (de) Getriebe

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final