DE102013216024B4 - Method for lambda control of an internal combustion engine and control device - Google Patents

Method for lambda control of an internal combustion engine and control device Download PDF

Info

Publication number
DE102013216024B4
DE102013216024B4 DE102013216024.0A DE102013216024A DE102013216024B4 DE 102013216024 B4 DE102013216024 B4 DE 102013216024B4 DE 102013216024 A DE102013216024 A DE 102013216024A DE 102013216024 B4 DE102013216024 B4 DE 102013216024B4
Authority
DE
Germany
Prior art keywords
lambda
exhaust gas
temperature
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102013216024.0A
Other languages
German (de)
Other versions
DE102013216024A1 (en
Inventor
Michael Wilkens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Priority to DE102013216024.0A priority Critical patent/DE102013216024B4/en
Publication of DE102013216024A1 publication Critical patent/DE102013216024A1/en
Application granted granted Critical
Publication of DE102013216024B4 publication Critical patent/DE102013216024B4/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • F02D41/1447Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater

Abstract

Verfahren zur Lambda-Regelung einer Verbrennungskraftmaschine (11), umfassend die folgenden Schritte:- Messen oder Bestimmen einer Temperatur eines Abgasstroms oder eines abgasführenden Bauteils einer Abgasanlage (17) der Verbrennungskraftmaschine (11) an einer vorbestimmten Position mittels wenigstens eines Sensors (23);- Messen eines Abgas-Lambdas mittels einer in der Abgasanlage angeordneten Lambdasonde (22) und Übermitteln eines gemessenen Lambda-Wertes (λW) an ein Abgastemperaturmodell (28) der Verbrennungskraftmaschine (11);- Bestimmen der Temperatur des Abgasstroms oder des abgasführenden Bauteils an der vorbestimmten Position mittels des Abgastemperaturmodells (28) in Abhängigkeit des gemessenen Lambda-Wertes (λW);- Überprüfen, ob eine maximal zulässige Justierabweichung zwischen der mittels des Sensors (23) gemessenen oder bestimmten Temperatur (TS) und der mittels des Abgastemperaturmodells (28) bestimmten Temperatur (TATM) überschritten ist,- wenn die maximal zulässige Justierabweichung (JA) überschritten ist, Korrigieren- der Lambda-Messung, und/oder- eines Verbrennungs-Lambdas der Verbrennungskraftmaschine (11).Method for lambda control of an internal combustion engine (11), comprising the following steps: - measuring or determining a temperature of an exhaust gas flow or an exhaust gas-carrying component of an exhaust system (17) of the internal combustion engine (11) at a predetermined position using at least one sensor (23); - Measuring an exhaust gas lambda by means of a lambda probe (22) arranged in the exhaust system and transmitting a measured lambda value (λW) to an exhaust gas temperature model (28) of the internal combustion engine (11); - Determining the temperature of the exhaust gas flow or the exhaust gas-carrying component at the predetermined position by means of the exhaust gas temperature model (28) as a function of the measured lambda value (λW); - checking whether a maximum permissible adjustment deviation between the temperature (TS) measured or determined by means of the sensor (23) and the temperature (TS) measured by means of the exhaust gas temperature model (28) certain temperature (TATM) is exceeded - if the maximum permissible Justi deviation (JA) is exceeded, correcting the lambda measurement and/or a combustion lambda of the internal combustion engine (11).

Description

Die Erfindung betrifft ein Verfahren zur Lambda-Regelung einer Verbrennungskraftmaschine und eine Regelvorrichtung, welche zur Durchführung des erfindungsgemäßen Verfahrens ausgebildet ist.The invention relates to a method for lambda control of an internal combustion engine and a control device which is designed to carry out the method according to the invention.

Es ist bekannt, die Sauerstoffkonzentration in einem Gasgemisch mittels einer sauerstoffempfindlichen Gassonde, einer Lambdasonde, zu bestimmen. Dabei stellt die Lambdasonde ein von dem Sauerstoffgehalt des Gasgemischs abhängiges Ist-Sondensignal bereit, bei dem es sich beispielsweise bei Sprung-Lambdasonden um eine Sondenspannung oder bei Linear-Lambdasonden (Linearsonden) um eine Stromstärke handeln kann. Dieses Sondensignal wird mittels einer gespeicherten Kennlinie oder einer entsprechenden Rechenvorschrift in den Lambda-Wert umgerechnet. Prominentester Anwendungsfall sind Verbrennungsmotoren, bei denen der Lambda-Wert des Abgases mittels im Abgaskanal verbauter Lambdasonden bestimmt wird, um in Abhängigkeit des ermittelten Lambda-Wertes das Luft-Kraftstoff-Verhältnis, mit dem der Motor betrieben wird, zu regeln. Diese Vorgehensweise wird im Allgemeinen als Lambdaregelung bezeichnet.It is known to determine the oxygen concentration in a gas mixture using an oxygen-sensitive gas probe, a lambda probe. The lambda probe provides an actual probe signal which is dependent on the oxygen content of the gas mixture and which can be, for example, a probe voltage in the case of jump lambda probes or a current intensity in the case of linear lambda probes (linear probes). This sensor signal is converted into the lambda value using a stored characteristic curve or a corresponding calculation rule. The most prominent applications are internal combustion engines, in which the lambda value of the exhaust gas is determined using lambda probes installed in the exhaust gas duct in order to regulate the air-fuel ratio with which the engine is operated depending on the lambda value determined. This procedure is generally referred to as lambda control.

Es werden Sprung-Lambdasonden (auch Sprungantwort-Lambdasonde) und Breitbandlambdasonden unterschieden. Sprung-Lambdasonden können einen Signalverlauf nach dem Nernst-Prinzip liefern, das bei einem Abgas-Lambda kleiner eins und größer eins nur geringe Steigungen aufweist und im Bereich um ein Abgas-Lambda gleich 1 eine sprungartige Änderung zeigt. Somit werden Sprung-Lambdasonden üblicherweise nur für die Verbrennungsmotoren verwendet, die bei Lambda gleich 1 geregelt werden. Demgegenüber zeigen Breitbandlambdasonden im gesamten Lambdabereich eine ausreichende Empfindlichkeit, weswegen sie einen breiteren Einsatz als Sprung-Lambdasonden erlauben, auf der anderen Seite jedoch wesentlich teurer als diese sind.A distinction is made between step lambda probes (also step response lambda probes) and broadband lambda probes. Stepped lambda probes can deliver a signal curve according to the Nernst principle, which has only slight gradients for an exhaust gas lambda less than one and greater than one and shows a sudden change in the area around an exhaust gas lambda equal to 1. Thus, jump lambda probes are usually only used for combustion engines that are controlled when lambda is equal to 1. In contrast, broadband lambda probes show sufficient sensitivity in the entire lambda range, which is why they can be used more widely than jump lambda probes, but on the other hand are significantly more expensive than these.

Eine Umrechnung des Sondensignals in einen Lambda-Wert ist in der Praxis jedoch dadurch erschwert, dass das Sondensignal nicht nur von der Abgaszusammensetzung abhängt, sondern auch durch zusätzliche Störeinflüsse beeinflusst wird, welche bewirken, dass die Kennlinie nicht unter allen Bedingungen konstant ist. Im Falle von Sprungsonden ist beispielsweise bekannt, dass die Sondentemperatur, das heißt die Temperatur des Messelementes der Sonde, einen Einfluss auf die Genauigkeit der Umrechnungsvorschrift beziehungsweise der Kennlinie hat. Dies wirkt sich insbesondere im fetten Lambdabereich, also bei Lambdawerten kleiner 1, aus. Ferner ergeben sich Änderungen der Kennliniencharakteristik durch zunehmende Alterung des Messelementes der Sonde über die Betriebszeit. Darüber hinaus können verschiedene Abgasbestandteile wie Blei, Mangan, Phosphor oder Zink eine fortschreitende Vergiftung des Messelementes und somit eine Veränderung der Kennlinie verursachen.In practice, however, converting the probe signal into a lambda value is made more difficult by the fact that the probe signal not only depends on the composition of the exhaust gas, but is also influenced by additional interference, which means that the characteristic curve is not constant under all conditions. In the case of jump probes, it is known, for example, that the probe temperature, ie the temperature of the measuring element of the probe, has an influence on the accuracy of the conversion rule or the characteristic curve. This has an effect in particular in the rich lambda range, i.e. with lambda values less than 1. Furthermore, changes in the characteristic curve result from increasing aging of the measuring element of the probe over the operating time. In addition, various exhaust gas components such as lead, manganese, phosphorus or zinc can cause progressive poisoning of the measuring element and thus a change in the characteristic.

Um diese Einflüsse auszugleichen, können Verfahren zur Korrektur gemessener Lambda-Werte eingesetzt werden. Nachteilig bei den bekannten Verfahren ist, dass die ermittelten Lambda-Werte nur eine begrenzte Genauigkeit aufweisen. So zeigt ein Lambda-Wert, der aus dem Sondensignal einer Sprung-Lambdasonde erhalten wurde, in der Praxis trotz einer Temperaturkorrektur Abweichungen von Lambda-Werten, die mit einer Breitbandlambdasonde unter gleichen Bedingungen erhalten wurden oder die für synthetische Gasgemische bekannter Zusammensetzungen berechnet wurden.Methods for correcting measured lambda values can be used to compensate for these influences. A disadvantage of the known methods is that the lambda values determined have only limited accuracy. In practice, for example, a lambda value obtained from the probe signal of a jump lambda probe shows deviations from lambda values that were obtained with a broadband lambda probe under the same conditions or that were calculated for synthetic gas mixtures of known compositions, despite a temperature correction.

Die DE 26 49 272 A1 offenbart eine Lambda-Regelung mit einer Lambda-Sprungsonde bei einer niedrigen Motor- bzw. Lambdasondentemperatur. Die Lambda-Regelung erfolgt, indem entsprechend einem vorgegebenen, auf das Ausgangssignal der Lambdasonde abgestimmten Verlauf ein der Lambdasonde zugeführter Strom in einer Weise verändert wird, dass eine Entzerrung eines Ausgangsspannungsverhaltens der Lambdasonde erzielt wird.the DE 26 49 272 A1 discloses a lambda control with a lambda jump probe at a low engine or lambda probe temperature. The lambda regulation takes place in that a current supplied to the lambda probe is changed in accordance with a predetermined curve matched to the output signal of the lambda probe in such a way that an equalization of an output voltage behavior of the lambda probe is achieved.

Der Erfindung liegt nun die Aufgabe zugrunde, ein Verfahren zur Lambda-Regelung einer Verbrennungskraftmaschine und eine Regelvorrichtung zur Verfügung zu stellen, welche sich durch eine erhöhte Genauigkeit auszeichnen.The object of the invention is now to provide a method for lambda control of an internal combustion engine and a control device which are characterized by increased accuracy.

Diese Aufgabe wird durch ein Verfahren zur Lambda-Regelung einer Verbrennungskraftmaschine, welches die folgenden Schritte umfasst, gelöst:

  • - Messen oder Bestimmen einer Temperatur eines Abgasstroms oder eines abgasführenden Bauteils einer Abgasanlage der Verbrennungskraftmaschine an einer vorbestimmten Position mittels wenigstens eines Sensors;
  • - Messen eines Abgas-Lambdas mittels einer in der Abgasanlage angeordneten Lambdasonde und Übermitteln eines gemessenen Lambda-Wertes an ein Abgastemperaturmodell der Verbrennungskraftmaschine;
  • - Bestimmen der Temperatur des Abgasstroms oder des abgasführenden Bauteils an der vorbestimmten Position mittels des Abgastemperaturmodells in Abhängigkeit des gemessenen Lambda-Wertes;
  • - Überprüfen, ob eine maximal zulässige Justierabweichung zwischen der mittels des Sensors gemessenen oder bestimmten Temperatur und der mittels des Abgastemperaturmodells bestimmten Temperatur überschritten ist,
  • - wenn die maximal zulässige Justierabweichung überschritten ist, Korrigieren
    • - der Lambda-Messung, und/oder
    • - eines Verbrennungs-Lambdas der Verbrennungskraftmaschine.
This object is achieved by a method for lambda control of an internal combustion engine, which includes the following steps:
  • - Measuring or determining a temperature of an exhaust gas flow or an exhaust-carrying component of an exhaust system of the internal combustion engine at a predetermined position by means of at least one sensor;
  • - Measuring an exhaust gas lambda by means of a lambda probe arranged in the exhaust system and transmitting a measured lambda value to an exhaust gas temperature model of the internal combustion engine;
  • - Determining the temperature of the exhaust gas flow or the exhaust gas-carrying component at the predetermined position using the exhaust gas temperature model as a function of the measured lambda value;
  • - Check whether a maximum permissible adjustment deviation between the temperature measured or determined by the sensor and the temperature determined using the exhaust gas temperature model is exceeded,
  • - if the maximum permissible adjustment deviation is exceeded, correct
    • - the lambda measurement, and/or
    • - A combustion lambda of the internal combustion engine.

Zur Durchführung des Verfahrens wird also eine Temperatur des Abgasstroms oder des abgasführenden Bauteils der Abgasanlage der Verbrennungskraftmaschine an einer vorbestimmten Position (insbesondere gleichzeitig) auf zwei verschiedene Arten gemessen und/oder bestimmt. Das Verfahren kann zu diskreten Zeitpunkten oder kontinuierlich durchgeführt werden. Mittels des erfindungsgemäßen Verfahrens kann eine ungenaue Lambda-Regelung z. B. aufgrund einer Alterung der Lambdasonde vermieden oder verhindert werden.To carry out the method, a temperature of the exhaust gas flow or the exhaust gas-carrying component of the exhaust system of the internal combustion engine is measured and/or determined at a predetermined position (in particular simultaneously) in two different ways. The method can be carried out at discrete points in time or continuously. Using the method according to the invention, an inaccurate lambda control z. B. be avoided or prevented due to aging of the lambda probe.

Das Verfahren wird vorzugsweise während einem konstanten Betriebspunkt und/oder während Volllast der Verbrennungskraftmaschine, also z. B. bei einer Konstantfahrt und/oder einer Volllastfahrt eines Kraftfahrzeugs, welches die Verbrennungskraftmaschine zu ihrem Antrieb nutzt, durchgeführt. Dadurch spielt eine (thermische) Trägheit seitens des Sensors keine Rolle.The method is preferably carried out during a constant operating point and/or during full load of the internal combustion engine, ie z. B. at a constant speed and / or full load driving of a motor vehicle, which uses the internal combustion engine to drive it, performed. This means that (thermal) inertia on the part of the sensor is irrelevant.

Zum Einen wird die Temperatur mittels des wenigstens einen Sensors gemessen oder bestimmt. Dies kann erfolgen, indem der wenigstens eine Sensor wenigstens einen Temperatursensor umfasst oder ein solcher ist. Somit kann die Temperatur mittels des Temperatursensors gemessen werden. Alternativ kann der wenigstens eine Sensor wenigstens einen Drucksensor umfassen. Somit kann die Temperatur bestimmt werden, indem ein Druck des Abgasstroms mittels des wenigstens einen Drucksensors gemessen wird und anschließend ein Umrechnen in eine dem Druck entsprechende Temperatur durchgeführt wird. Das Umrechnen kann mittels eines Abgasmassenstroms, einer Gaskonstante und dem gemessenen Druck erfolgen. Der Abgasmassenstrom kann aus einer Drehzahl und einer Last der Verbrennungskraftmaschine bestimmt werden. Die direkte Messung der Temperatur mittels des Temperatursensors ist jedoch vorzuziehen, da dieser günstiger als der Drucksensor ist und er zudem eine höhere Genauigkeit durch die entfallende Umrechnung bietet.On the one hand, the temperature is measured or determined using the at least one sensor. This can be done in that the at least one sensor comprises or is at least one temperature sensor. Thus, the temperature can be measured using the temperature sensor. Alternatively, the at least one sensor can include at least one pressure sensor. The temperature can thus be determined by measuring a pressure of the exhaust gas flow using the at least one pressure sensor and then converting it into a temperature corresponding to the pressure. The conversion can take place using an exhaust gas mass flow, a gas constant and the measured pressure. The exhaust gas mass flow can be determined from a speed and a load of the internal combustion engine. However, the direct measurement of the temperature using the temperature sensor is preferable, as this is cheaper than the pressure sensor and it also offers greater accuracy due to the fact that there is no conversion.

Zum Anderen wird die Temperatur (an der vorbestimmten Position, also an der Position des Sensors) mittels eines Abgastemperaturmodells bestimmt. Das Abgastemperaturmodell ist ein mathematisches Modell und dazu ausgebildet, in Abhängigkeit eines gemessenen Lambda-Wertes eines realen Abgas-Lambdas Temperaturen in der Abgasanlage der Verbrennungskraftmaschine zu bestimmen (modellieren). Zudem können dem Abgastemperaturmodell neben dem Lambda-Wert noch weitere Eingangsgrößen, wie z. B. die Drehzahl und/oder Last der Verbrennungskraftmaschine zur Verfügung stehen. Der Lambda-Wert wird mittels einer Lambdasonde gemessenen.On the other hand, the temperature (at the predetermined position, ie at the position of the sensor) is determined using an exhaust gas temperature model. The exhaust gas temperature model is a mathematical model and is designed to determine (model) temperatures in the exhaust system of the internal combustion engine as a function of a measured lambda value of a real exhaust gas lambda. In addition to the lambda value, other input variables, such as e.g. B. the speed and / or load of the internal combustion engine are available. The lambda value is measured using a lambda probe.

Nachdem die Temperatur des Abgasstroms oder des abgasführenden Bauteils an der vorbestimmten Position (zur gleichen Zeit) auf zwei verschiedene Arten gemessen und/oder bestimmt wurde, wird überprüft, ob eine maximal zulässige Justierabweichung zwischen der mittels des Sensors gemessenen oder bestimmten Temperatur und der mittels des Abgastemperaturmodells bestimmten Temperatur überschritten ist. Wenn diese maximal zulässige Justierabweichung überschritten ist, also z. B. ein Betrag einer Differenz der beiden Temperaturen größer der maximal zulässigen Justierabweichung ist, kann daraus geschlossen werden, dass eine Eingangsgröße des Abgastemperaturmodells nicht stimmt. Da die Sensoren der anderen Eingangsgrößen keiner ausgeprägten Alterung unterliegen, kann darauf geschlossen werden, dass die Differenz der Temperaturen auf eine Alterung der Lambdasonde zurückzuführen ist.After the temperature of the exhaust gas flow or the exhaust gas-carrying component has been measured and/or determined in two different ways at the predetermined position (at the same time), it is checked whether a maximum permissible adjustment deviation between the temperature measured or determined by means of the sensor and the temperature determined by means of the Exhaust temperature model certain temperature is exceeded. If this maximum permissible misalignment is exceeded, ie z. B. an amount of a difference between the two temperatures is greater than the maximum permissible adjustment deviation, it can be concluded that an input variable of the exhaust gas temperature model is incorrect. Since the sensors of the other input variables are not subject to pronounced aging, it can be concluded that the temperature difference is due to aging of the lambda probe.

Durch diese Erkenntnis kann nun einem falschen, gemessenen Lambda-Wert entgegengewirkt werden, indem ein Korrigieren der Lambda-Messung, und/oder eines Verbrennungs-Lambdas der Verbrennungskraftmaschine erfolgt. Das Korrigieren kann dabei erfolgen, bis die maximal zulässige Justierabweichung unterschritten wird, insbesondere bis eine maximal zulässige justierte Abweichung unterschritten wird, welche geringer als die maximal zulässige Justierabweichung ist. Die maximal zulässige Justierabweichung kann auch gleich 0 sein, wodurch der Schritt des Korrigierens durchgeführt wird, sobald eine (beliebig hohe) Abweichung der mittels des Sensors gemessenen oder bestimmten Temperatur und der mittels des Abgastemperaturmodells bestimmten Temperatur vorliegt.This knowledge can now be used to counteract an incorrect, measured lambda value by correcting the lambda measurement and/or a combustion lambda of the internal combustion engine. In this case, the correction can take place until the deviation falls below the maximum permissible adjustment deviation, in particular until the deviation falls below a maximum permissible adjusted deviation which is less than the maximum permissible deviation from adjustment. The maximum permissible adjustment deviation can also be equal to 0, whereby the correcting step is carried out as soon as there is a deviation (of any magnitude) between the temperature measured or determined using the sensor and the temperature determined using the exhaust gas temperature model.

Vorzugsweise ist dabei vorgesehen, dass das Verfahren bei einem nicht-stöchiometrischen Abgasstrom (mit einem Abgas-Lambda ungleich 1) durchgeführt wird. Der nichtstöchiometrische Abgasstrom kann ein fetter Abgasstrom mit einem Abgas-Lambda kleiner 1 sein und somit durch einen nicht-stöchiometrischen (z. B. fetten) Betriebspunkt der Verbrennungskraftmaschine bewirkt werden. Die Verbrennungskraftmaschine ist typischerweise ein Ottomotor.Provision is preferably made here for the method to be carried out with a non-stoichiometric exhaust gas flow (with an exhaust gas lambda not equal to 1). The non-stoichiometric exhaust gas flow can be a rich exhaust gas flow with an exhaust gas lambda of less than 1 and can thus be brought about by a non-stoichiometric (eg rich) operating point of the internal combustion engine. The internal combustion engine is typically an Otto engine.

Vorzugsweise ist vorgesehen, dass die Lambdasonde eine Sprunglambdasonde ist. Die Lambdasonde kann also eine Spannungssprungsonde (Nernstsonde) oder eine Widerstandssprungsonde sein. Durch die erfindungsgemäße Korrektur wird eine so hohe Präzision der Lambda-Wert-Ermittlung erreicht, dass das Einsatzgebiet der Sprung-Lambdasonde signifikant erweitert werden kann. Während im Stand der Technik Sprung-Lambdasonden im Wesentlichen für Lambda gleich 1 geregelte Verbrennungskraftmaschinen verwendet werden, kann der Anwendungsbereich einer Sprunglambdasonde, die mit dem erfindungsgemäßen Verfahren prozessiert wird, auf Lambdabereiche ungleich 1 ausgedehnt werden, welche herkömmlich nur mit kostspieligen Breitbandlambdasonden geregelt werden können.Provision is preferably made for the lambda probe to be a jump lambda probe. The lambda probe can therefore be a voltage jump probe (Nernst probe) or a resistance jump be probe The correction according to the invention achieves such a high level of precision in determining the lambda value that the field of application of the jump lambda probe can be significantly expanded. While in the prior art jump lambda probes are essentially used for internal combustion engines controlled lambda equal to 1, the area of application of a jump lambda probe, which is processed using the method according to the invention, can be extended to lambda ranges not equal to 1, which conventionally can only be controlled with expensive broadband lambda probes.

Die Lambda-Regelung ist bevorzugt eine stetige Lambda-Regelung. Somit werden eine exaktere Lambda-Regelung und eine Lambda-Regelung bei einem Abgas-Lambda (und somit Verbrennungs-Lambda) ungleich 1 gewährleistet.The lambda control is preferably a continuous lambda control. A more precise lambda regulation and a lambda regulation with an exhaust gas lambda (and thus combustion lambda) not equal to 1 are thus ensured.

Bevorzugt ist vorgesehen, dass das Korrigieren der Lambda-Messung ein Korrigieren einer Beheizung der Lambdasonde umfasst. Die Temperatur der Lambdasonde hat einen wesentlichen Einfluss auf den, mittels der Lambdasonde gemessenen Lambda-Wert. Dies trifft insbesondere bei Sprunglambdasonden bei zu messenden Abgas-Lambdas kleiner 1 zu. Die Lambdasonde wird durch die Beheizung beheizt, wobei die Beheizung dabei auf eine gewünschte Solltemperatur der Lambdasonde geregelt wird. Eine Ist-Temperatur der Lambdasonde wird durch einen Innenwiderstand der Lambdasonde und/oder durch das Abgastemperaturmodell bestimmt. Mit zunehmender Alterung der Lambdasonde ändert sich jedoch der Innenwiderstand. Dadurch wird die Lambdasonde oftmals mit zu hoher Temperatur betrieben, was bezüglich eines Bauteilschutzes der Lambdasonde kritische Ausmaße annehmen kann. Zudem ändert sich durch die zu hohe Temperatur der Lambdasonde das Ausgangssignal der Lambdasonde (insbesondere von Sprunglambdasonden bei einem fetten Abgas-Lambda). Als Folge würde die Verbrennungskraftmaschine ohne Korrektur der Lambda-Messung zu fett betrieben werden, was für den Kraftstoffverbrauch der Verbrennungskraftmaschine abträglich wäre. Durch das Korrigieren der Beheizung der Lambdasonde wird diesem Nachteil jedoch vorgebeugt. Das Korrigieren der Beheizung kann insbesondere mittels eines Korrigierens eines (angenommenen) Innenwiderstandes der Lambdasonde erfolgen, womit der Ursache der alterungsbedingten, falschen Betriebstemperatur der Lambdasonde entgegengewirkt wird.Provision is preferably made for correcting the lambda measurement to include correcting heating of the lambda probe. The temperature of the lambda probe has a significant influence on the lambda value measured by the lambda probe. This applies in particular to jump lambda probes when the exhaust gas lambda to be measured is less than 1. The lambda probe is heated by the heating, the heating being regulated to a desired setpoint temperature of the lambda probe. An actual temperature of the lambda probe is determined by an internal resistance of the lambda probe and/or by the exhaust gas temperature model. However, as the lambda probe ages, the internal resistance changes. As a result, the lambda probe is often operated at too high a temperature, which can assume critical proportions with regard to component protection of the lambda probe. In addition, the output signal of the lambda probe changes due to the excessively high temperature of the lambda probe (in particular of jump lambda probes in the case of a rich exhaust gas lambda). As a result, without correcting the lambda measurement, the internal combustion engine would be operated too richly, which would be detrimental to the fuel consumption of the internal combustion engine. However, correcting the heating of the lambda probe prevents this disadvantage. The heating can be corrected in particular by correcting an (assumed) internal resistance of the lambda probe, which counteracts the cause of the incorrect operating temperature of the lambda probe caused by aging.

Gemäß einer bevorzugten Ausgestaltung der Erfindung ist vorgesehen, dass das Korrigieren der Lambda-Messung ein Korrigieren des (bereits) gemessenen Lambda-Wertes umfasst. Unter dem gemessenen Lambda-Wert kann auch ein Signal der Lambdasonde, z. B. eine Sondenspannung verstanden werden, welche korrigiert wird. Somit kann ein gemessener Lambda-Wert (nachträglich) korrigiert werden, z. B. indem ein Korrekturfaktor auf den Lambda-Wert angewendet wird. Im Rahmen der vorliegenden Erfindung wird unter dem Begriff „Anwenden eines Korrekturfaktors“ eine geeignete Verrechnung des Korrekturfaktors mit dem zu korrigierenden Objekt verstanden, welche eine Multiplikation, Division, Addition und Subtraktion beinhalten kann. Es versteht sich somit, dass unter dem Begriff „Korrekturfaktor“ nicht nur Multiplikatoren, sondern auch andere Rechengrößen verstanden werden. Zudem kann der Lambda-Wert auch korrigiert werden, indem eine korrigierte Kennlinie verwendet wird.According to a preferred embodiment of the invention, it is provided that the correction of the lambda measurement includes a correction of the (already) measured lambda value. A signal from the lambda probe, e.g. B. be understood as a probe voltage, which is corrected. In this way, a measured lambda value can be corrected (subsequently), e.g. B. by applying a correction factor to the lambda value. In the context of the present invention, the term “application of a correction factor” means a suitable offsetting of the correction factor with the object to be corrected, which can include multiplication, division, addition and subtraction. It is therefore understood that the term "correction factor" is understood to mean not only multipliers, but also other operands. In addition, the lambda value can also be corrected by using a corrected characteristic curve.

Vorzugsweise ist vorgesehen, dass das Verfahren ferner, insbesondere bei einem stöchiometrischen Abgasstrom, folgende Schritte umfasst:

  • - Messen oder Bestimmen der Temperatur des Abgasstroms oder des abgasführenden Bauteils der Abgasanlage der Verbrennungskraftmaschine an der vorbestimmten Position mittels des wenigstens einen Sensors;
  • - Messen des Abgas-Lambdas mittels der in der Abgasanlage angeordneten Lambdasonde und Übermitteln des gemessenen Lambda-Wertes an das Abgastemperaturmodell der Verbrennungskraftmaschine;
  • - Bestimmen der Temperatur des Abgasstroms oder des abgasführenden Bauteils an der vorbestimmten Position mittels des Abgastemperaturmodells in Abhängigkeit des gemessenen Lambda-Wertes;
  • - Überprüfen, ob eine maximal zulässige Kalibrierabweichung zwischen der mittels des Sensors gemessenen oder bestimmten Temperatur und der mittels des Abgastemperaturmodells bestimmten Temperatur überschritten ist,
  • - wenn die maximal zulässige Kalibrierabweichung überschritten ist, Kalibrieren des Abgastemperaturmodells.
It is preferably provided that the method also includes the following steps, in particular in the case of a stoichiometric exhaust gas flow:
  • - Measuring or determining the temperature of the exhaust gas flow or the exhaust-carrying component of the exhaust system of the internal combustion engine at the predetermined position by means of the at least one sensor;
  • - Measuring the exhaust gas lambda by means of the lambda probe arranged in the exhaust system and transmitting the measured lambda value to the exhaust gas temperature model of the internal combustion engine;
  • - Determining the temperature of the exhaust gas flow or the exhaust gas-carrying component at the predetermined position using the exhaust gas temperature model as a function of the measured lambda value;
  • - checking whether a maximum permissible calibration deviation between the temperature measured or determined by means of the sensor and the temperature determined by means of the exhaust gas temperature model is exceeded,
  • - if the maximum permissible calibration deviation is exceeded, calibrating the exhaust gas temperature model.

Somit kann bei einem stöchiometrischen Abgasstrom (also einem stöchiometrischen Betriebspunkt der Verbrennungskraftmaschine), welcher z. B. auch mittels einer Sprunglambdasonde exakt eingestellt werden kann, eine Kalibrierung des Abgastemperaturmodells erfolgen. Die maximal zulässige Kalibrierabweichung kann auch gleich 0 sein, wodurch eine Kalibrierung erfolgt, sobald eine Abweichung der Temperaturen vorliegt.Thus, with a stoichiometric exhaust gas flow (i.e. a stoichiometric operating point of the internal combustion engine), which z. B. can also be set exactly by means of a jump lambda probe, a calibration of the exhaust gas temperature model. The maximum permissible calibration deviation can also be equal to 0, which means that a calibration takes place as soon as there is a deviation in the temperatures.

Bevorzugt ist vorgesehen, dass das Kalibrieren des Abgastemperaturmodells mittels Anpassens der mittels des Abgasmodells an der vorbestimmten Position bestimmten Temperatur erfolgt. Dadurch wird die maximal zulässige Kalibrierabweichung, insbesondere eine maximal zulässige kalibrierte Abweichung, welche kleiner als die Kalibrierabweichung ist, nicht mehr überschritten.Provision is preferably made for the exhaust gas temperature model to be calibrated by adapting the temperature determined at the predetermined position using the exhaust gas model. As a result, the maximum permissible calibration deviation, ins in particular, a maximum permissible calibrated deviation, which is smaller than the calibration deviation, is no longer exceeded.

Bevorzugt ist vorgesehen, dass das Verfahren einen Schritt des Anfettens umfasst, wenn die mittels des Sensors gemessene oder bestimmte Temperatur oder eine mittels des Abgastemperaturmodells bestimmte Temperatur an einer beliebigen (insbesondere vordefinierten) Position eine maximal zulässige Temperatur überschreitet. Das Anfetten kann dabei kurzfristig erfolgen, wodurch ein Bauteilschutz von mit dem Abgasstrom in Kontakt stehenden Bauteilen gewährleistet wird. Mittels des Abgastemperaturmodells können Temperaturen an beliebigen vordefinierten Position (sowohl des Abgasstroms als auch der abgasführenden Bauteile) bestimmt werden. Wird erkannt, dass eine derart bestimmte Temperatur oder die mittels des Sensors gemessene Temperatur größer als eine für die jeweilige Position vordefinierte maximal zulässige Temperatur ist, wird die Temperatur des Abgasstroms mittels einer Anfettung der Verbrennungskraftmaschine gesenkt.Provision is preferably made for the method to include an enriching step if the temperature measured or determined by means of the sensor or a temperature determined by means of the exhaust gas temperature model exceeds a maximum permissible temperature at any (in particular predefined) position. Enrichment can take place in the short term, thereby ensuring component protection of components that are in contact with the exhaust gas flow. Using the exhaust gas temperature model, temperatures can be determined at any predefined position (both of the exhaust gas flow and of the exhaust gas-carrying components). If it is recognized that a temperature determined in this way or the temperature measured by the sensor is greater than a maximum permissible temperature predefined for the respective position, the temperature of the exhaust gas flow is lowered by enriching the internal combustion engine.

Ferner wird eine Regelvorrichtung, welche zur Durchführung des erfindungsgemäßen Verfahrens ausgebildet ist, zur Verfügung gestellt. Die Regelvorrichtung zeichnet sich durch ein exakter geregeltes Luft -Kraftstoff-Verhältnis der Verbrennungskraftmaschine aus. Sie umfasst typischerweise eine Verbrennungskraftmaschine, eine Abgasanlage, eine Motorsteuerung (ein Motorsteuergerät) und weitere, für den Betrieb der Verbrennungskraftmaschine erforderliche Komponenten.Furthermore, a control device, which is designed to carry out the method according to the invention, is made available. The control device is distinguished by a more precisely controlled air/fuel ratio of the internal combustion engine. It typically includes an internal combustion engine, an exhaust system, an engine controller (an engine control unit) and other components required for the operation of the internal combustion engine.

Überdies wird ein Kraftfahrzeug zur Verfügung gestellt, welches die erfindungsgemäße Regelvorrichtung umfasst. Das Kraftfahrzeug zeichnet sich während seines Betriebs durch einen verminderten Kraftstoffverbrauch und eine verringerte Ausfallssicherheit aus.In addition, a motor vehicle is made available which includes the control device according to the invention. During its operation, the motor vehicle is characterized by reduced fuel consumption and reduced reliability.

Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further preferred configurations of the invention result from the remaining features mentioned in the dependent claims.

Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen erläutert. Es zeigen:

  • 1 eine Regeleinrichtung,
  • 2 einen Zusammenhang zwischen einer Spannungsfunktion und einer Temperatur einer Lambdasonde, und
  • 3 einen Teil eines Verfahrensablaufs zur Lambda-Regelung.
The invention is explained below in exemplary embodiments with reference to the associated drawings. Show it:
  • 1 a control device,
  • 2 a relationship between a voltage function and a temperature of a lambda probe, and
  • 3 part of a procedure for lambda control.

1 zeigt beispielhaft eine Regeleinrichtung 10 gemäß einer bevorzugten Ausgestaltung der Erfindung, welche Teil eines Kraftfahrzeugs sein kann. Die Regeleinrichtung umfasst eine Verbrennungskraftmaschine 11, dessen Kraftstoffversorgung über eine Einspritzanlage 12 erfolgt. Bei der Einspritzanlage 12 kann es sich um eine Saugrohreinspritzung oder eine Direkteinspritzung handeln. Die Verbrennungskraftmaschine 11 wird ferner über einen Ansaugtrakt 14 mit Luft versorgt. Gegebenenfalls kann die zugeführte Luftmenge über ein in dem Ansaugtrakt 14 angeordnetes steuerbares Stellelement 16, beispielsweise eine Drosselklappe, reguliert werden. 1 shows an example of a control device 10 according to a preferred embodiment of the invention, which can be part of a motor vehicle. The control device includes an internal combustion engine 11 whose fuel supply takes place via an injection system 12 . The injection system 12 can be an intake manifold injection or a direct injection. The internal combustion engine 11 is also supplied with air via an intake tract 14 . If necessary, the amount of air supplied can be regulated via a controllable actuating element 16 arranged in the intake tract 14, for example a throttle valve.

Ein von der Verbrennungskraftmaschine 11 erzeugter Abgasstrom wird über eine Abgasanlage 17 mit einem Abgaskanal (einem Abgasrohr) 18 in die Umgebung entlassen, wobei umweltrelevante Abgasbestandteile durch einen Katalysator 20 umgesetzt werden.An exhaust gas flow generated by the internal combustion engine 11 is discharged into the environment via an exhaust system 17 with an exhaust gas duct (an exhaust pipe) 18 , with environmentally relevant exhaust gas components being converted by a catalytic converter 20 .

Innerhalb des Abgaskanals 18 ist an einer motornahen Position eine Lambdasonde 22 angeordnet, bei der es sich insbesondere um eine vergleichsweise kostengünstige Sprunglambdasonde handelt. Gegebenenfalls kann eine weitere Lambdasonde 24 stromab des Katalysators 20 angeordnet sein, bei der es sich ebenfalls um eine Sprunglambdasonde oder auch um eine Breitband-Lambdasonde handeln kann.A lambda probe 22 is arranged within the exhaust gas duct 18 at a position close to the engine, which lambda probe is in particular a comparatively inexpensive jump lambda probe. If necessary, a further lambda probe 24 can be arranged downstream of the catalytic converter 20, which can also be a jump lambda probe or a broadband lambda probe.

Die Signale der Lambdasonden 22 und 24 werden an eine Motorsteuerung 26 übermittelt. Im Fall einer Verwendung von Nernstsonden als Sprunglambdasonden sind also die Sondensignale Sondenspannungen. Die Sondenspannung US ist dabei die Sondenspannung der Lambdasonde 22. Weitere Signale nicht dargestellter Sensoren gehen ebenfalls in die Motorsteuerung 26 ein. So erhält die Motorsteuerung auch Daten der Verbrennungskraftmaschine 11, welche beispielsweise die aktuelle Motordrehzahl n und die aktuelle relative Motorlast L als Eingangsgrößen umfassen, und den Betriebspunkt der Verbrennungskraftmaschine 11 kennzeichnen. Die Motorsteuerung 26 steuert in Abhängigkeit der eingehenden Signale in bekannter Weise verschiedene Komponenten der Verbrennungskraftmaschine 11 an. Insbesondere erfolgt in Abhängigkeit der Sondenspannung US der motornahen Lambdasonde 22 eine Regelung des der Verbrennungskraftmaschine 11 zuzuführenden Luft-Kraftstoff-Gemischs, wofür die Motorsteuerung 26 eine über die Kraftstoffeinspritzanlage 12 zuzuführende Kraftstoffmenge und/oder eine über die Ansauganlage 14 zuzuführende Luftmenge regelt.The signals from the lambda probes 22 and 24 are transmitted to an engine controller 26 . If Nernst sensors are used as jump lambda sensors, the sensor signals are sensor voltages. The probe voltage U S is the probe voltage of the lambda probe 22. Other signals from sensors (not shown) also go into the engine control 26. In this way, the engine controller also receives data from the internal combustion engine 11 which, for example, include the current engine speed n and the current relative engine load L as input variables and characterize the operating point of the internal combustion engine 11 . The engine controller 26 controls various components of the internal combustion engine 11 in a known manner as a function of the incoming signals. In particular, depending on the probe voltage U S of the lambda probe 22 close to the engine, the air-fuel mixture to be supplied to the internal combustion engine 11 is regulated, for which purpose the engine controller 26 regulates a fuel quantity to be supplied via the fuel injection system 12 and/or an air quantity to be supplied via the intake system 14.

Zudem umfasst die Abgasanlage einen Sensor 23, welcher im gezeigten Bespiel ein Temperatursensor ist. Mittels des Temperatursensors als Sensor 23 wird die Temperatur des Abgasstroms oder eines abgasführenden Bauteils der Abgasanlage an einer vorbestimmten Position gemessen und der Motorsteuerung 26 übermittelt. Je nachdem welcher Typ von Temperatursensor verwendet wird, können unterschiedliche Signale an die Motorsteuerung 26 übermittelt werden. Bei einer beispielhaften Verwendung eines Thermoelements als Temperatursensor kann eine Spannung an die Motorsteuerung 26 übermittelt werden. Als Alternative zu dem Temperatursensor kann der Sensor 23 auch ein Drucksensor sein, wobei ein Druck des Abgasstroms gemessen und anschließend in eine Temperatur des Abgasstroms umgerechnet wird.In addition, the exhaust system includes a sensor 23, which is a temperature sensor in the example shown. By means of the temperature sensor as a sensor 23, the temperature of the exhaust gas flow or an exhaust-carrying component of the exhaust gas position measured at a predetermined position and the engine control 26 is transmitted. Depending on which type of temperature sensor is used, different signals can be transmitted to the engine controller 26 . In an exemplary use of a thermocouple as a temperature sensor, a voltage can be transmitted to the engine controller 26 . As an alternative to the temperature sensor, the sensor 23 can also be a pressure sensor, with a pressure of the exhaust gas flow being measured and then converted into a temperature of the exhaust gas flow.

Die Motorsteuerung 26 umfasst zudem ein Abgastemperaturmodell 28, welches als ein Rechenmodell dazu ausgebildet ist, neben anderen Eingangsgrößen in Abhängigkeit eines gemessenen Lambda-Wertes λW eines realen Abgas-Lambdas, Temperaturen in der Abgasanlage 17 der Verbrennungskraftmaschine 11 zu bestimmen (zu modellieren). So kann das Abgastemperaturmodell 28 dazu ausgebildet sein, an beliebigen vorbestimmten Positionen in der Abgasanlage 17 (insbesondere an der Position des Sensors 23 und der Lambdasonde 22) die Temperatur eines Bauteils und/oder des Abgasstroms zu bestimmen. Zu diesem Zweck kann das Abgastemperaturmodell 28 einen entsprechenden Algorithmus in computerlesbarer Form enthalten.The engine controller 26 also includes an exhaust gas temperature model 28, which is designed as a calculation model to determine (to model) temperatures in the exhaust system 17 of the internal combustion engine 11 , in addition to other input variables, depending on a measured lambda value λ W of a real exhaust gas lambda. Exhaust gas temperature model 28 can thus be designed to determine the temperature of a component and/or the exhaust gas flow at any predetermined positions in exhaust system 17 (in particular at the position of sensor 23 and lambda probe 22). For this purpose, the exhaust gas temperature model 28 can contain a corresponding algorithm in computer-readable form.

Auch die Motorsteuerung 26 kann Algorithmen in computerlesbarer Form sowie geeignete Kennlinien und Kennfelder enthalten.The engine control 26 can also contain algorithms in computer-readable form as well as suitable characteristic curves and characteristic diagrams.

Die Lambdasonde 22 umfasst eine Heizung, welche zur Beheizung der Lambdasonde 22 ausgebildet ist und die Lambdasonde 22 auf eine vorbestimmte Soll-Temperatur regelt. Eine Ist-Temperatur der Lambdasonde 22 kann durch einen Innenwiderstand der Lambdasonde 22 und/oder eine von dem Abgastemperaturmodell 28 an der Position der Lambdasonde 22 bestimmte Temperatur TATM ermittelt werden.The lambda probe 22 includes a heater, which is designed to heat the lambda probe 22 and regulates the lambda probe 22 to a predetermined setpoint temperature. An actual temperature of the lambda probe 22 can be determined by an internal resistance of the lambda probe 22 and/or a temperature TATM determined by the exhaust gas temperature model 28 at the position of the lambda probe 22 .

Der Innenwiderstand der Lambdasonde 22 ändert sich jedoch mit voranschreitender Alterung der Lambdasonde 22, wodurch aufgrund einer falsch ermittelten Ist-Temperatur die Soll-Temperatur der Lambdasonde 22 nicht mehr eingehalten wird. Dies kann dazu führen, dass die Lambdasonde 22 zu heiß betrieben wird. Dies kann einerseits zu einer verminderten Lebensdauer der Lambdasonde 22, andererseits jedoch auch zu einem falsch bemessenen Verbrennungs-Lambda der Verbrennungskraftmaschine 11 bei einem nicht-stöchiometrischen Betrieb führen.However, the internal resistance of the lambda probe 22 changes as the aging of the lambda probe 22 progresses, as a result of which the target temperature of the lambda probe 22 is no longer maintained due to an incorrectly determined actual temperature. This can lead to the lambda probe 22 being operated too hot. On the one hand, this can lead to a reduced service life of the lambda probe 22, but on the other hand to an incorrectly dimensioned combustion lambda of the internal combustion engine 11 in non-stoichiometric operation.

In 2 ist der Zusammenhang zwischen einer von einer Lambdasonde 22 (eine Nernstsonde) gelieferten Spannungsfunktion und der Temperatur der Lambdasonde 22 ersichtlich.In 2 the relationship between a voltage function supplied by a lambda probe 22 (a Nernst probe) and the temperature of the lambda probe 22 can be seen.

Es wird im Folgenden davon ausgegangen, dass das Verbrennungs-Lambda dem Abgas-Lambda an der Position der Lambdasonde 22 entspricht. Angenommen, die Motorsteuerung 26 soll die Verbrennungskraftmaschine 11 auf ein nicht-stöchiometrisches Verbrennungs-Lambda von 0,98 regeln. Ferner angenommen, die Motorsteuerung berücksichtigt (entgegen dem erfindungsgemäßen Verfahren) eine Alterung der Lambdasonde 22 nicht. Somit geht die Motorsteuerung davon aus, dass die Lambdasonde 22 mit der vorgesehenen Soll-Temperatur betrieben wird und bestimmt das aktuelle Abgas-Lambda aufgrund der durchgezogenen Kennlinie, welche für eine korrekte Soll-Temperatur zu verwenden ist. Somit regelt die Motorsteuerung 26 das Verbrennungs-Lambda derart, dass die Lambdasonde 22 eine Sondenspannung US von ca. 0,75 Volt ausgibt. Aufgrund der nicht berücksichtigten Alterung der Lambdasonde 22 wird diese wie oben beschrieben jedoch heißer betrieben als von der Motorsteuerung 26 angenommen. Somit sollte die Motorsteuerung 26 für eine korrigierte Lambda-Messung eigentlich die untere gestrichelte Linie verwenden. Daraus folgt, dass die (fälschlich) von der Motorsteuerung 26 angestrebte Sondenspannung US von ca. 0,75 Volt in Wirklichkeit einem Verbrennungs-Lambda von 0,93 anstatt 0,98 entspricht. Das nun in Wirklichkeit fetter als gewünscht eingeregelte Verbrennungs-Lambda bewirkt einen unerwünscht erhöhten Kraftstoffverbrauch durch eine zusätzliche Anfettung.It is assumed below that the combustion lambda corresponds to the exhaust gas lambda at the position of the lambda probe 22 . Assuming that the engine controller 26 is to regulate the internal combustion engine 11 to a non-stoichiometric combustion lambda of 0.98. Furthermore, it is assumed that the engine control does not take into account aging of the lambda probe 22 (contrary to the method according to the invention). The engine control thus assumes that the lambda probe 22 is being operated at the intended target temperature and determines the current exhaust gas lambda on the basis of the continuous characteristic curve, which is to be used for a correct target temperature. The engine controller 26 thus regulates the combustion lambda in such a way that the lambda probe 22 outputs a probe voltage U S of approximately 0.75 volts. Due to the aging of the lambda probe 22 that was not taken into account, however, as described above, it is operated hotter than assumed by the engine controller 26 . Thus, the engine controller 26 should actually use the lower dashed line for a corrected lambda measurement. It follows from this that the probe voltage U S of approx. 0.75 volts (wrongly) sought by the engine controller 26 actually corresponds to a combustion lambda of 0.93 instead of 0.98. The fact that the combustion lambda is now actually richer than desired causes an undesired increase in fuel consumption due to additional enrichment.

Bei einer Abweichung des gemessenen Lambda-Wertes λW von dem tatsächlichen Abgas-Lambda, welche in einem zu mageren Verbrennungs-Lambda resultiert (und somit die Verbrennungskraftmaschine 11 die mit einer falschen Kennlinie, bzw. in einem falschen Bereich eines Kennfelds betrieben wird), kann es dazu kommen, dass die Verbrennungskraftmaschine 11 zu heiß betrieben wird.If the measured lambda value λ W deviates from the actual exhaust gas lambda, which results in a combustion lambda that is too lean (and thus the internal combustion engine 11 that is operated with an incorrect characteristic curve or in an incorrect area of a characteristic map), it can happen that the internal combustion engine 11 is operated too hot.

Aus den oben genannten Gründen wurde bisher für einen Betrieb der Verbrennungskraftmaschine 11 in nicht-stöchiometrischen Betriebspunkten und im Speziellen für eine stetige Lambda-Regelung eine deutlich kostenintensivere Linear-Lambdasonde (Linearsonde) eingesetzt, welche von den genannten technischen Problemen nicht betroffen ist.For the above-mentioned reasons, a significantly more expensive linear lambda probe (linear probe) was previously used for operating the internal combustion engine 11 at non-stoichiometric operating points and in particular for continuous lambda control, which is not affected by the technical problems mentioned.

3 zeigt einen Verfahrensablauf zur Lambda-Regelung der Verbrennungskraftmaschine 11 gemäß einer bevorzugten Ausführungsform der Erfindung während einer stetigen Lambda-Regelung. Dabei soll nur auf die Aspekte der Lambda-Regelung gemäß der vorliegenden Erfindung in einer bevorzugten Ausführungsform eingegangen werden. Auf allgemein bekannte Abläufe zur Lambda-Regelung wird nicht eingegangen. 3 shows a method sequence for lambda control of internal combustion engine 11 according to a preferred embodiment of the invention during continuous lambda control. In this context, only the aspects of the lambda control according to the present invention are to be discussed in a preferred embodiment. Well-known processes for lambda control are not discussed.

Zunächst wird in Schritt 100 ermittelt, ob ein von der Motorsteuerung 26 mittels der Lambdasonde 22 ermittelter Lambda-Wert λW gleich 1 ist.First, in step 100, it is determined whether a lambda value λ W determined by engine control 26 using lambda probe 22 is equal to 1.

Wenn der Lambda-Wert λW gleich 1 ist, kann gemäß Block I überprüft werden, ob eine Kalibrierung des Abgastemperaturmodells 28 erfolgen soll, und diese gegebenenfalls durchgeführt werden. Dazu wird zunächst überprüft, ob eine maximal zulässige Kalibrierabweichung KA zwischen einer mittels des Sensors 23 gemessenen oder bestimmten Temperatur TS und der mittels des Abgastemperaturmodells 28 (an der selben Position zur selben Zeit) bestimmten Temperatur TATM überschritten ist. Zu diesem Zweck kann eine Differenz zwischen der mittels des Sensors 23 gemessenen oder bestimmten Temperatur TS und der mittels des Abgastemperaturmodells 28 bestimmten Temperatur TATM gebildet werden. Wenn der Betrag der Differenz größer als eine maximal zulässige Kalibrierabweichung KA ist, wird eine Kalibrierung des Abgastemperaturmodells durchgeführt. Wenn die Differenz kleiner oder gleich der maximal zulässigen Kalibrierabweichung KA ist, kann mit der erneuten Überprüfung des Lambda-Werts gemäß Schritt 100 fortgefahren werden. Die Kalibrierung des Abgastemperaturmodells 28 erfolgt in Schritt 104. Dazu kann das Abgastemperaturmodell 28 so weit angepasst werden, dass eine neue Temperatur TATM der mittels des Sensors 23 gemessenen oder bestimmte Temperatur TS entspricht. Dies kann beispielsweise über eine geeignete Anwendung eines Korrekturfaktors auf Algorithmen des Abgastemperaturmodells 28 erfolgen. Alternativ kann es auch ausreichend sein, dass eine mittels der neuen Temperatur TATM ermittelte Abweichung eine maximal zulässige kalibrierte Abweichung kA (ungleich 0), welche kleiner als die Kalibrierabweichung ist, nicht überschreitet. Anschließend kann mit Schritt 100 fortgefahren werden.If the lambda value λ W is equal to 1, it can be checked according to block I whether a calibration of the exhaust gas temperature model 28 should take place and this can be carried out if necessary. For this purpose, it is first checked whether a maximum permissible calibration deviation KA between a temperature T S measured or determined by means of sensor 23 and the temperature TATM determined by means of exhaust gas temperature model 28 (at the same position at the same time) has been exceeded. For this purpose, a difference can be formed between the temperature T S measured or determined by means of the sensor 23 and the temperature TATM determined by means of the exhaust gas temperature model 28 . If the magnitude of the difference is greater than a maximum permissible calibration deviation KA, the exhaust gas temperature model is calibrated. If the difference is less than or equal to the maximum permissible calibration deviation KA, the lambda value can be checked again according to step 100 . The exhaust gas temperature model 28 is calibrated in step 104. For this purpose, the exhaust gas temperature model 28 can be adjusted to such an extent that a new temperature TATM corresponds to the temperature T S measured or determined by the sensor 23 . This can be done, for example, via a suitable application of a correction factor to algorithms of the exhaust gas temperature model 28 . Alternatively, it can also be sufficient that a deviation determined using the new temperature TATM does not exceed a maximum permissible calibrated deviation kA (not equal to 0), which is smaller than the calibration deviation. You can then continue with step 100.

Die Kalibrierung des Abgastemperaturmodells 28 bei einem Lambda-Wert gleich 1 ist deshalb möglich, da auch bei bereits gealterten Lambdasonden 22 ein Abgas-Lambda gleich 1 relativ exakt gemessen und somit die Verbrennungskraftmaschine 11 relativ exakt mit einem Verbrennungs-Lambda gleich 1 betrieben werden kann. Der Grund dafür ist in 2 ersichtlich. Wenn man jene Sondenspannung US, welche bei korrekter Sondentemperatur gemäß der durchgezogenen Linie einem Lambda-Wert λW gleich 1 entspricht, auf die untere gestrichelte Linie überträgt, ergibt sich nur eine minimale Abweichung des gemessenen Lambda-Wert λW zu dem tatsächlichen Abgas-Lambda. Somit kann bei einem gemessenen Lambda-Wert λW gleich 1 mit hoher Sicherheit davon ausgegangen werden, dass nicht eine mit falscher Temperatur betriebene Lambdasonde 22 der Grund für die Überschreitung der maximal zulässigen Kalibrierabweichung KA ist.The calibration of the exhaust gas temperature model 28 with a lambda value equal to 1 is possible because an exhaust gas lambda equal to 1 can be measured relatively exactly even with lambda probes 22 that have already aged, and the internal combustion engine 11 can therefore be operated relatively exactly with a combustion lambda equal to 1. The reason for this is in 2 evident. If the probe voltage U S , which corresponds to a lambda value λ W equal to 1 at the correct probe temperature according to the solid line, is transferred to the lower dashed line, there is only a minimal deviation of the measured lambda value λ W from the actual exhaust gas lambda. With a measured lambda value λ W equal to 1, it can thus be assumed with a high level of certainty that a lambda probe 22 operated at the wrong temperature is not the reason for exceeding the maximum permissible calibration deviation KA.

Als Beispiel für die Verfahrensschritte gemäß Block I kann bei einem Lambda-Wert gleich 1 die mittels des Sensors 23 gemessene oder bestimmte Temperatur TS 800 °C und die mittels des Abgastemperaturmodells 28 bestimmte Temperatur TATM 750 °C betragen. Bei einer maximal zulässigen Kalibrierabweichung von z. B. 20 °C bedeutet dies, dass eine Kalibrierung durchgeführt wird. Nach der Kalibrierung beträgt die mittels des Abgastemperaturmodells 28 bestimmte Temperatur TATM 800 °C.As an example of the method steps according to block I, with a lambda value equal to 1, the temperature T S measured or determined by the sensor 23 can be 800° C. and the temperature TATM determined by the exhaust gas temperature model 28 can be 750° C. With a maximum permissible calibration deviation of e.g. B. 20 °C this means that a calibration is being carried out. After the calibration, the temperature TATM determined using the exhaust gas temperature model 28 is 800°C.

Die mittels des Abgastemperaturmodells 28 bestimmbaren Temperaturen des Abgasstroms oder der allgemein Bauteile (an beliebiger Position) der Abgasanlage 17 sind voneinander abhängig. Somit wurden auch diese anderen bestimmbaren Temperaturen mitkalibriert. Dadurch wird z. B. auch eine von dem Abgastemperaturmodell 28 bestimmte Temperatur der Lambdasonde 22 kalibriert. Dies kann wiederum für eine genauere Beheizung der Lambdasonde 22 und/oder für eine genauere Auswahl einer passenden Kennlinie gemäß 2 genutzt werden.The temperatures of the exhaust gas flow or of the general components (at any position) of the exhaust gas system 17 that can be determined using the exhaust gas temperature model 28 are dependent on one another. Thus, these other determinable temperatures were also calibrated. This will e.g. For example, a temperature of the lambda probe 22 determined by the exhaust gas temperature model 28 is also calibrated. This can in turn be used for more precise heating of lambda probe 22 and/or for more precise selection of a suitable characteristic curve according to FIG 2 be used.

Wenn der Lambda-Wert λW ungleich 1 ist, kann gemäß Block II überprüft werden, ob eine Korrektur der Lambda-Messung, und/oder des Verbrennungs-Lambdas der Verbrennungskraftmaschine 11 durchgeführt werden soll. Dazu wird zunächst gemäß Schritt 110 überprüfen, ob eine maximal zulässige Justierabweichung JA zwischen der mittels des Sensors 23 gemessenen oder bestimmten Temperatur TS und der mittels des Abgastemperaturmodells 28 an der Position des Sensors 23 bestimmten Temperatur TATM überschritten ist. Zu diesem Zweck kann wiederum eine Differenz zwischen der mittels des Sensors 23 gemessenen oder bestimmten Temperatur TS und der mittels des Abgastemperaturmodells 28 bestimmten Temperatur TATM gebildet werden. Wenn der Betrag der Differenz größer als die maximal zulässige Justierabweichung JA ist, wird eine Korrektur der Lambda-Messung und/oder des Verbrennungs-Lambdas der Verbrennungskraftmaschine 11 gemäß dem Korrekturblock K durchgeführt. Wenn die Differenz kleiner oder gleich der maximal zulässigen Justierabweichung JA ist, kann mit der Überprüfung des Lambda-Werts gemäß Schritt 100 fortgefahren werden.If the lambda value λ W is not equal to 1, it can be checked according to block II whether the lambda measurement and/or the combustion lambda of the internal combustion engine 11 should be corrected. For this purpose, step 110 first checks whether a maximum permissible adjustment deviation YES between the temperature T S measured or determined by means of sensor 23 and the temperature TATM determined by means of exhaust gas temperature model 28 at the position of sensor 23 has been exceeded. For this purpose, a difference can again be formed between the temperature T S measured or determined by means of the sensor 23 and the temperature TATM determined by means of the exhaust gas temperature model 28 . If the absolute value of the difference is greater than the maximum permissible adjustment deviation YES, the lambda measurement and/or the combustion lambda of internal combustion engine 11 is corrected in accordance with correction block K. If the difference is less than or equal to the maximum permissible adjustment deviation YES, the lambda value can be checked according to step 100 .

Die Korrektur der Lambda-Messung gemäß Schritt 122 kann einen Schritt des Korrigierens der Beheizung der Lambdasonde 22 umfassen. Somit wird eine Abweichung des gemessenen Lambda-Werts λW aufgrund einer nicht korrekt geregelten Temperatur der Lambdasonde 22 behoben. Dies kann erfolgen, indem ein in der Motorsteuerung 26 hinterlegter (also aufgrund der Alterung fälschlich angenommener) Innenwiderstand der Lambdasonde 22 korrigiert wird. Diese Korrektur der Temperatur TS führt dazu, dass zur Bestimmung des Lambda-Werts λW der Motorsteuerung 26 bereits eine korrekte Sondenspannung US zur Verfügung steht.The correction of the lambda measurement according to step 122 can include a step of correcting the heating of the lambda probe 22 . A deviation in the measured lambda value λ W due to an incorrectly controlled temperature of the lambda probe 22 is thus corrected. This can be done by correcting an internal resistance of the lambda probe 22 that is stored in the engine controller 26 (that is, incorrectly assumed due to aging). This correction of the temperature T S leads to the determination of the lambda value λ W of the motor controller 26 already has a correct probe voltage U S available.

Eine weitere Möglichkeit der Korrektur der Lambda-Messung gemäß Schritt 122 kann erfolgen, indem die Messung der Lambdasonde 22 nicht direkt beeinflusst wird, sodass sie eine veränderte Sondenspannung US ausgibt, sondern die Korrektur erst nachträglich durch die Motorsteuerung 26 bei der Bestimmung des Lambda-Werts λW durchgeführt wird. Dies kann erfolgen, indem ein Korrekturfaktor auf die Sondenspannung US angewendet wird. Zudem kann der Lambda-Wert auch korrigiert werden, indem eine korrigierte Kennlinie verwendet wird (z. B. auf eine entsprechende Kennlinie gemäß 2 gewechselt wird).Another way of correcting the lambda measurement according to step 122 can be done by not directly influencing the measurement of the lambda probe 22, so that it outputs a changed probe voltage U S , but only making the correction later by the engine controller 26 when determining the lambda Value λ W is performed. This can be done by applying a correction factor to the probe voltage U S . In addition, the lambda value can also be corrected by using a corrected characteristic curve (e.g. based on a corresponding characteristic curve according to 2 is changed).

Eine weitere (alternative oder zusätzliche) Möglichkeit der Korrektur besteht in Schritt 124, welcher eine (direkte) Korrektur des Verbrennungs-Lambdas der Verbrennungskraftmaschine 11 umfasst. Dies kann durch eine Veränderung der Kraftstoffzufuhr zur Verbrennungskraftmaschine 11 erfolgen. Wenn die mittels des Abgastemperaturmodells 28 bestimmte Temperatur TATM größer als die mittels des Sensors 23 bestimmte Temperatur TS ist, kann dies mittels eines Anfettens korrigiert werden.A further (alternative or additional) possibility of correction is step 124, which includes a (direct) correction of the combustion lambda of internal combustion engine 11. This can be done by changing the fuel supply to internal combustion engine 11 . If the temperature TATM determined by means of the exhaust gas temperature model 28 is greater than the temperature T S determined by means of the sensor 23, this can be corrected by means of enrichment.

Um einen verbesserten Bauteilschutz zu gewährleisten, kann zudem vorgesehen sein, dass wenn die mittels des Sensors 23 gemessene oder bestimmte Temperatur TS oder eine mittels des Abgastemperaturmodells an einer beliebigen Position bestimmte Temperatur eine maximal zulässige Temperatur überschreitet, das Korrigieren des Verbrennungs-Lambdas einen Schritt des Anfettens umfasst. Dies kann kurzfristig erfolgen und somit die Bauteilsicherheit gewährleisten.In order to ensure improved component protection, it can also be provided that if the temperature T S measured or determined by means of sensor 23 or a temperature determined by means of the exhaust gas temperature model at any position exceeds a maximum permissible temperature, the correction of the combustion lambda takes one step of fattening. This can be done at short notice and thus ensure component safety.

Die Korrekturen können so lange durchgeführt werden, bis gemäß Schritt 112 eine maximal zulässige justierte Abweichung jA zwischen einer mittels des Sensors 23 gemessenen oder bestimmten Temperatur TS und der mittels des Abgastemperaturmodells 28 an der Position des Sensors 23 bestimmten Temperatur TATM nicht mehr überschritten ist. Die justierte Abweichung jA ist dabei kleiner als die Justierabweichung JA. Zu diesem Zweck kann eine Differenz zwischen der mittels des Sensors 23 gemessenen oder bestimmten Temperatur TS und der mittels des Abgastemperaturmodells 28 bestimmten Temperatur TATM gebildet werden. Wenn der Betrag der Differenz größer als die maximal zulässige justierte Abweichung jA ist, wird eine erneute Korrektur der Lambda-Messung und/oder des Verbrennungs-Lambdas der Verbrennungskraftmaschine 11 gemäß dem Korrekturblock K durchgeführt. Ansonsten ist die Korrektur abgeschlossen. Alternativ kann die Korrektur erfolgen, bis die Temperatur TATM gleich der Temperatur TS ist, was einen Spezialfall mit einer justierten Abweichung jA gleich 0 darstellt. Als weitere Alternative kann die Korrektur auch bereits beendet sein, wenn die Differenz kleiner oder gleich der maximal zulässigen Justierabweichung JA ist. Ferner kann der Block II auch gesteuert (also durch eine Steuerung) erfolgen.The corrections can be carried out until, according to step 112, a maximum permissible adjusted deviation jA between a temperature T S measured or determined by means of sensor 23 and the temperature TATM determined by means of exhaust gas temperature model 28 at the position of sensor 23 is no longer exceeded. The adjusted deviation jA is smaller than the adjustment deviation JA. For this purpose, a difference can be formed between the temperature T S measured or determined by means of the sensor 23 and the temperature TATM determined by means of the exhaust gas temperature model 28 . If the absolute value of the difference is greater than the maximum admissible adjusted deviation jA, the lambda measurement and/or the combustion lambda of the internal combustion engine 11 is corrected again in accordance with the correction block K. Otherwise the correction is complete. Alternatively, the correction can be made until the temperature TATM equals the temperature T S , which represents a special case with an adjusted deviation jA equal to 0. As a further alternative, the correction can also already be completed when the difference is less than or equal to the maximum permissible adjustment deviation YES. Furthermore, block II can also be controlled (ie by a controller).

Als Beispiel für die Verfahrensschritte gemäß Block 11 kann bei einem Lambda-Wert λW ungleich 1 die mittels des Sensors 23 gemessene oder bestimmte Temperatur TS 850 °C und die mittels des Abgastemperaturmodells 28 bestimmte Temperatur TATM 750 °C betragen. Bei einer maximal zulässigen Justierabweichung von z. B. 50 °C bedeutet dies, dass eine Korrektur durchgeführt wird. Dazu wird wenigstens eine der oben genannten Korrekturen durchgeführt, bis die Differenz der Temperaturen TS und TATM kleiner oder gleich als die maximal zulässige justierte Abweichung jA von z. B. 20 °C ist. Im Beispiel ist die Korrektur somit bei einer Temperatur TATM von 830 °C abgeschlossen.As an example of the method steps according to block 11, with a lambda value λ W not equal to 1, the temperature T S measured or determined by the sensor 23 can be 850° C. and the temperature TATM determined by the exhaust gas temperature model 28 can be 750° C. With a maximum permissible adjustment deviation of e.g. B. 50 °C this means that a correction is carried out. For this purpose, at least one of the corrections mentioned above is carried out until the difference between the temperatures T S and T ATM is less than or equal to the maximum permissible adjusted deviation jA from z. B. is 20 °C. In the example, the correction is thus completed at a temperature TATM of 830 °C.

Durch das beschriebene Verfahren ist eine Adaption des gemessenen Lambda-Wertes aufgrund einer Alterung der Lambdasonde 22 möglich. Zudem kann auch eine Adaption von Grenzlagensonden erfolgen. Grenzlagensonden sind Lambdasonden 22, welche Eigenschaften am äußeren Rand einer zulässigen Spezifikation (aufgrund einer Serienstreuung) aufweisen.The method described allows the measured lambda value to be adapted due to aging of the lambda probe 22 . Limit position probes can also be adapted. Boundary position sensors are lambda sensors 22 which have properties on the outer edge of a permissible specification (due to series scatter).

Zudem wurde bisher je nach Gegebenheit und Vertrauen des (evtl. auf anderem Wege adaptierten) Lambda-Wertes λW zur sicheren Erreichung eines gewünschten Bauteleschutzlambdas z. B. 4 % zusätzlich angefettet. Das bedeutet, dass bei einem einzuhaltenden Bauteilschutzlambda von z. B 0,9, welches aber auf Grund einer Abweichung in Wirklichkeit 0,92 beträgt, sich ein realer Lambda-Wert nach Anfettung von 0,88 ergibt. Somit wurde die Verbrennungskraftmaschine bisher fetter betrieben als eigentlich zum Bauteilschutz erforderlich. Der daraus resultierende Mehrverbrauch an Kraftstoff kann durch das erfindungsgemäße Verfahren verringert oder eliminiert werden.In addition, depending on the circumstances and trust in the (possibly adapted in a different way) lambda value λ W to reliably achieve a desired construction teleprotection lambda, e.g. B. 4% additionally fattened. This means that with a component protection lambda of z. B 0.9, which is actually 0.92 due to a deviation, resulting in a real lambda value of 0.88 after enrichment. Thus, the internal combustion engine has hitherto been operated richer than actually required for component protection. The resulting increased consumption of fuel can be reduced or eliminated by the method according to the invention.

Ist der Sensor 23 ein Temperatursensor, so ist dieser in der Regel träger als das Abgastemperaturmodell, das heißt, dass der Temperatursensor, welcher z. B. ein Thermoelement sein kann, aus robustheitsgründen einen relativ großen Durchmesser haben sollte und daher eine Durchwärmung des Thermoelements einen gewissen Zeitraum benötigt. Für das vorgeschlagene Verfahren ist die Dynamik des Sensors 23 jedoch nicht entscheidend, wenn dieses während einer Konstantfahrt durchgeführt wird. Ein Temperatursensor hat zudem den Vorteil, dass die Temperatur des Abgasstroms für einen konstanten Betriebspunkt sehr genau bestimmt werden kann. Auch bei Volllastfahrten sollte der Sensor 23 die reale Temperatur nach ca. 2 bis 3 Sekunden spätestens erreicht haben, sodass geprüft werden kann, ob die maximal zulässige Abgastemperatur nicht überschritten wird und anschließend gegebenenfalls eine gezielte Anfettung erfolgen kann.If the sensor 23 is a temperature sensor, it is usually more sluggish than the exhaust gas temperature model, which means that the temperature sensor, which z. B. can be a thermocouple, should have a relatively large diameter for reasons of robustness and therefore a thorough heating of the thermocouple requires a certain period of time. However, the dynamics of the sensor 23 are not decisive for the proposed method if this is carried out during constant travel. A temperature sensor also has the advantage that the temperature of the exhaust gas flow can be determined very precisely for a constant operating point. Even when driving under full load, the sensor 23 have reached the real temperature after approx. 2 to 3 seconds at the latest, so that it can be checked whether the maximum permissible exhaust gas temperature is not exceeded and then, if necessary, a targeted enrichment can take place.

Zusammenfassend kann festgestellt werden, dass es mithilfe des Sensors 23 (z. B. ein Temperatursensor) und der entsprechenden modellierten Temperatur TATM (an derselben Position wie der des Sensors 23) des Abgastemperaturmodells 28 möglich ist, im stöchiometrischen Betrieb das Abgastemperaturmodell 28 zu kalibrieren, da im stöchiometrischen Betrieb ein sehr genaues Verbrennungs-Lambda durch die Lambdasonde 22 (eine Sprunglambdasonde) einstellbar ist.In summary, it can be stated that using the sensor 23 (e.g. a temperature sensor) and the corresponding modeled temperature T ATM (at the same position as that of the sensor 23) of the exhaust gas temperature model 28, it is possible to calibrate the exhaust gas temperature model 28 in stoichiometric operation , since in stoichiometric operation a very precise combustion lambda can be set by the lambda probe 22 (a jump lambda probe).

Im nicht-stöchiometrischen Betrieb ist es nun möglich, durch einen Abgleich der (mittels des Abgastemperaturmodells 28) modellierten Temperatur TATM und der mittels des Sensors 23 gemessenen Temperatur TS eine Temperaturabweichung für eine Korrektur der Lambda-Messung (z. B. mittels einer Korrektur des Lambda-Wertes λW), und/oder eines Verbrennungs-Lambdas der Verbrennungskraftmaschine 11 zu verwenden. Zusätzlich kann kurzfristig bei einer Überschreitung einer, für eine bestimmte Position jeweils maximal zulässigen Temperatur des Abgasstroms oder der abgasführenden Bauteile eine Anfettung durchgeführt werden. Auch diese Temperaturen können mittels des Abgastemperaturmodells 28 modelliert werden. Anhand dieser Temperaturen kann auch zurückgeschlossen werden, wie warm die Lambdasonde 22 ist.In non-stoichiometric operation, it is now possible, by comparing the temperature TATM modeled (by means of the exhaust gas temperature model 28) and the temperature T S measured by means of sensor 23, to determine a temperature deviation for a correction of the lambda measurement (e.g. by means of a correction the lambda value λ W ), and/or a combustion lambda of the internal combustion engine 11 . In addition, enrichment can be carried out for a short time if a maximum permissible temperature of the exhaust gas flow or the exhaust gas-carrying components is exceeded for a specific position. These temperatures can also be modeled using the exhaust gas temperature model 28 . These temperatures can also be used to infer how warm lambda probe 22 is.

Dadurch ist zum einen eine Justage (Adaption) der Lambdasonde 22 im nicht-stöchiometrischen Betrieb mit einer hohen Genauigkeit möglich. Zum Anderen wird es ermöglicht, kurzfristige Überschneidungen einer zulässigen Bauteiltemperatur zu vermeiden. Daraus folgt ein besserer Bauteilschutz während einer zu gewährleistenden Lebensdauer und ein effizienterer Einsatz von Kraftstoff im hochlastigen Betrieb der Verbrennungskraftmaschine 11. Zusätzlich ist die Genauigkeit während einer Katalysatordiagnose, Sauerstoffspeicherfähigkeitsmessung und Lambdadiagnose höher. Der Sensor 23 kann zudem auch für eine Ladedruckregelung, Abgasnachbehandlung und Katalysatorheizen verwendet werden.As a result, an adjustment (adaptation) of the lambda probe 22 in non-stoichiometric operation is possible with a high level of accuracy. On the other hand, it is possible to avoid short-term overlapping of a permissible component temperature. This results in better component protection during a service life to be guaranteed and more efficient use of fuel during high-load operation of the internal combustion engine 11. In addition, the accuracy during a catalytic converter diagnosis, oxygen storage capacity measurement and lambda diagnosis is higher. The sensor 23 can also be used for boost pressure control, exhaust gas aftertreatment and catalytic converter heating.

Sinnvollerweise wird der Sensor 23 somit dort angeordnet, wo er auch außerhalb des erfindungsgemäßen Verfahrens von Nutzen ist. Eine sinnvolle Möglichkeit des Einbaus ist ein Einbau in einem Bereich, welcher von einem Krümmer der Abgasanlage bis in einen Trichter stromauf des Katalysators reicht. Idealerweise wird der Sensor 23 z. B. in der Nähe eines Sammlers (nicht dargestellt) der Abgasanlage 17 positioniert.It makes sense for the sensor 23 to be arranged where it is also useful outside of the method according to the invention. A sensible installation option is installation in an area that extends from a manifold of the exhaust system to a funnel upstream of the catalytic converter. Ideally, the sensor 23 z. B. in the vicinity of a collector (not shown) of the exhaust system 17 is positioned.

Das Verfahren kann neben einem Einsatz in einem Kraftfahrzeug auch überall dort eingesetzt werden, wo eine Lambdasonde verwendet wird, um ein insbesondere nicht-stöchiometrisches Gemisch zu regeln. Dazu zählen z. B. Motoren in der Schifffahrts-Industrie, Motorradmotoren und Gasmotoren für Heizungsanlagen von Gebäuden.In addition to being used in a motor vehicle, the method can also be used wherever a lambda probe is used in order to control a non-stoichiometric mixture in particular. These include e.g. B. Engines in the shipping industry, motorcycle engines and gas engines for heating systems in buildings.

BezugszeichenlisteReference List

1010
Regelvorrichtungcontrol device
1111
Verbrennungskraftmaschineinternal combustion engine
1212
Einspritzanlageinjection system
1414
Ansaugtraktintake tract
1616
Stellelementactuator
1717
Abgasanlageexhaust system
1818
Abgaskanalexhaust duct
2020
Katalysatorcatalyst
2222
Lambdasondelambda probe
2323
Sensorsensor
2424
weitere Lambdasondefurther lambda probe
2626
Motorsteuerungengine control
2828
Abgastemperaturmodell exhaust temperature model
λWλW
gemessener Lambda-Wertmeasured lambda value
USU.S
Sondenspannungprobe voltage
TSTS
mittels des Sensors gemessene oder bestimmte Temperaturtemperature measured or determined by the sensor
TATMTATM
mittels des Abgastemperaturmodells bestimmte Temperaturtemperature determined by means of the exhaust gas temperature model
KAKA
maximal zulässige Kalibrierabweichungmaximum allowable calibration deviation
kAno
maximal zulässige kalibrierte Abweichungmaximum allowable calibrated deviation
JAYES
maximal zulässige Justierabweichungmaximum permissible adjustment deviation
jAYes
maximal zulässige justierte Abweichung maximum allowable adjusted deviation
II
Block IBlock I
IIII
Block IIBlock II
KK
Korrekturblockcorrection block
YY
Bedingung erfüllt (yes / ja)Condition fulfilled (yes / ja)
NN
Bedingung nicht erfüllt (no / nein)Condition not met (no / no)

Claims (3)

Verfahren zur Lambda-Regelung einer Verbrennungskraftmaschine (11), umfassend die folgenden Schritte: - Messen oder Bestimmen einer Temperatur eines Abgasstroms oder eines abgasführenden Bauteils einer Abgasanlage (17) der Verbrennungskraftmaschine (11) an einer vorbestimmten Position mittels wenigstens eines Sensors (23); - Messen eines Abgas-Lambdas mittels einer in der Abgasanlage angeordneten Lambdasonde (22) und Übermitteln eines gemessenen Lambda-Wertes (λW) an ein Abgastemperaturmodell (28) der Verbrennungskraftmaschine (11); - Bestimmen der Temperatur des Abgasstroms oder des abgasführenden Bauteils an der vorbestimmten Position mittels des Abgastemperaturmodells (28) in Abhängigkeit des gemessenen Lambda-Wertes (λW); - Überprüfen, ob eine maximal zulässige Justierabweichung zwischen der mittels des Sensors (23) gemessenen oder bestimmten Temperatur (TS) und der mittels des Abgastemperaturmodells (28) bestimmten Temperatur (TATM) überschritten ist, - wenn die maximal zulässige Justierabweichung (JA) überschritten ist, Korrigieren - der Lambda-Messung, und/oder - eines Verbrennungs-Lambdas der Verbrennungskraftmaschine (11).Method for lambda control of an internal combustion engine (11), comprising the following steps: - measuring or determining a temperature of an exhaust gas flow or of an exhaust gas-carrying component an exhaust system (17) of the internal combustion engine (11) at a predetermined position by means of at least one sensor (23); - Measuring an exhaust gas lambda by means of a lambda probe (22) arranged in the exhaust system and transmitting a measured lambda value (λ W ) to an exhaust gas temperature model (28) of the internal combustion engine (11); - Determining the temperature of the exhaust gas flow or the exhaust gas-carrying component at the predetermined position by means of the exhaust gas temperature model (28) as a function of the measured lambda value (λ W ); - Check whether a maximum permissible adjustment deviation between the temperature (T S ) measured or determined by means of the sensor (23) and the temperature (T ATM ) determined by means of the exhaust gas temperature model (28) is exceeded, - if the maximum permissible adjustment deviation (YES) is exceeded, correcting - the lambda measurement, and/or - a combustion lambda of the internal combustion engine (11). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Verfahren bei einem nicht-stöchiometrischen Abgasstrom durchgeführt wird.procedure after claim 1 , characterized in that the method is carried out with a non-stoichiometric exhaust gas flow. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lambdasonde (22) eine Sprunglambdasonde ist. 4.Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lambda-Regelung eine stetige Lambda-Regelung ist. 5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Korrigieren der Lambda-Messung ein Korrigieren einer Beheizung der Lambdasonde (22) umfasst. 6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Korrigieren der Lambda-Messung ein Korrigieren des gemessenen Lambda-Wertes (λW) umfasst. 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren ferner, insbesondere bei einem stöchiometrischen Abgasstrom, folgende Schritte umfasst: - Messen oder Bestimmen der Temperatur des Abgasstroms oder des abgasführenden Bauteils der Abgasanlage (17) der Verbrennungskraftmaschine (11) an der vorbestimmten Position mittels des wenigstens einen Sensors (23); - Messen des Abgas-Lambdas mittels der in der Abgasanlage angeordneten Lambdasonde (22) und Übermitteln des gemessenen Lambda-Wertes (λW) an das Abgastemperaturmodell (28) der Verbrennungskraftmaschine (11); - Bestimmen der Temperatur des Abgasstroms oder des abgasführenden Bauteils an der vorbestimmten Position mittels des Abgastemperaturmodells (28) in Abhängigkeit des gemessenen Lambda-Wertes (λW); - Überprüfen, ob eine maximal zulässige Kalibrierabweichung zwischen der mittels des Sensors (23) gemessenen oder bestimmten Temperatur (TS) und der mittels des Abgastemperaturmodells bestimmten Temperatur (TATM) überschritten ist, - wenn die maximal zulässige Kalibrierabweichung überschritten ist, Kalibrieren des Abgastemperaturmodells (28). 8.Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren einen Schritt des Anfettens umfasst, wenn die mittels des Sensors (23) gemessene oder bestimmte Temperatur (TS) oder eine mittels des Abgastemperaturmodells bestimmte Temperatur an einer beliebigen Position eine maximal zulässige Temperatur überschreitet. 9. Regelvorrichtung (10), ausgebildet zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche.Method according to one of the preceding claims, characterized in that the lambda probe (22) is a jump lambda probe. 4.A method according to any one of the preceding claims, characterized in that the lambda control is a continuous lambda control. 5. The method according to any one of the preceding claims, characterized in that the correction of the lambda measurement comprises correcting a heating of the lambda probe (22). 6. The method according to any one of the preceding claims, characterized in that the correction of the lambda measurement includes a correction of the measured lambda value (λ W ). 7. The method according to any one of the preceding claims, characterized in that the method further comprises the following steps, in particular in the case of a stoichiometric exhaust gas flow: - measuring or determining the temperature of the exhaust gas flow or of the exhaust gas-carrying component of the exhaust system (17) of the internal combustion engine (11). the predetermined position by means of the at least one sensor (23); - Measuring the exhaust gas lambda by means of the lambda probe (22) arranged in the exhaust system and transmitting the measured lambda value (λ W ) to the exhaust gas temperature model (28) of the internal combustion engine (11); - Determining the temperature of the exhaust gas flow or the exhaust gas-carrying component at the predetermined position by means of the exhaust gas temperature model (28) as a function of the measured lambda value (λ W ); - Check whether a maximum permissible calibration deviation between the temperature (T S ) measured or determined by means of the sensor (23) and the temperature (T ATM ) determined using the exhaust gas temperature model is exceeded, - if the maximum permissible calibration deviation is exceeded, calibrating the exhaust gas temperature model (28). 8. The method according to any one of the preceding claims, characterized in that the method comprises a step of enriching when the temperature (T S ) measured or determined by means of the sensor (23) or a temperature determined by means of the exhaust gas temperature model at any position has a maximum permissible temperature is exceeded. 9. control device (10), designed to carry out the method according to any one of the preceding claims.
DE102013216024.0A 2013-08-13 2013-08-13 Method for lambda control of an internal combustion engine and control device Expired - Fee Related DE102013216024B4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102013216024.0A DE102013216024B4 (en) 2013-08-13 2013-08-13 Method for lambda control of an internal combustion engine and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013216024.0A DE102013216024B4 (en) 2013-08-13 2013-08-13 Method for lambda control of an internal combustion engine and control device

Publications (2)

Publication Number Publication Date
DE102013216024A1 DE102013216024A1 (en) 2015-02-19
DE102013216024B4 true DE102013216024B4 (en) 2022-01-27

Family

ID=52430208

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013216024.0A Expired - Fee Related DE102013216024B4 (en) 2013-08-13 2013-08-13 Method for lambda control of an internal combustion engine and control device

Country Status (1)

Country Link
DE (1) DE102013216024B4 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017107678A1 (en) 2017-04-10 2018-10-11 Volkswagen Aktiengesellschaft Method for starting up an internal combustion engine and motor vehicle with an internal combustion engine
DE102019201293A1 (en) * 2018-12-27 2020-07-02 Robert Bosch Gmbh Method for differentiating between model inaccuracies and lambda offsets for model-based control of the fill level of a catalytic converter
DE102019125961A1 (en) * 2019-09-26 2021-04-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft System and method for calibrating the exhaust gas temperature in an internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2649272A1 (en) 1976-05-22 1978-05-11 Bosch Gmbh Robert IC engine fuel mixture control - has filter circuit in feedback path of exhaust gas oxygen detector
DE102006043103A1 (en) 2005-11-14 2007-07-05 Robert Bosch Gmbh Lambda sensor calibration method for internal combustion engine of motor vehicle, involves determining corrected lambda signal from output signal of lambda sensor, calculated air ratio of gas flow and temperature of gas flow
US20110257871A1 (en) 2010-04-16 2011-10-20 Nikki Co., Ltd. Air fuel ratio control device of engine
DE102010035026A1 (en) 2010-08-20 2012-02-23 Fev Motorentechnik Gmbh Method for correcting injected fuel quantity in internal combustion engine e.g. petrol combustion engine, involves determining correction amount of fuel injection using temperature difference determined from amount of error

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2649272A1 (en) 1976-05-22 1978-05-11 Bosch Gmbh Robert IC engine fuel mixture control - has filter circuit in feedback path of exhaust gas oxygen detector
DE102006043103A1 (en) 2005-11-14 2007-07-05 Robert Bosch Gmbh Lambda sensor calibration method for internal combustion engine of motor vehicle, involves determining corrected lambda signal from output signal of lambda sensor, calculated air ratio of gas flow and temperature of gas flow
US20110257871A1 (en) 2010-04-16 2011-10-20 Nikki Co., Ltd. Air fuel ratio control device of engine
DE102010035026A1 (en) 2010-08-20 2012-02-23 Fev Motorentechnik Gmbh Method for correcting injected fuel quantity in internal combustion engine e.g. petrol combustion engine, involves determining correction amount of fuel injection using temperature difference determined from amount of error

Also Published As

Publication number Publication date
DE102013216024A1 (en) 2015-02-19

Similar Documents

Publication Publication Date Title
DE102012211687B4 (en) Method and control unit for detecting a voltage offset of a voltage lambda characteristic curve
DE112007003414B4 (en) Regulation of a motor vehicle internal combustion engine
DE102016222418A1 (en) Method for controlling a filling of a storage of a catalyst for an exhaust gas component
DE102012211683B4 (en) Method and device for correcting a characteristic curve of a two-point lambda sensor
DE102016206382B4 (en) Engine control device
DE102008005110B4 (en) Method and control for operating and adjusting a lambda probe
DE102018104983A1 (en) Method and systems for detecting an impairment of a lambda probe due to outgassing gas
DE102016219689A1 (en) Method and control device for controlling an oxygen loading of a three-way catalytic converter
DE102013216024B4 (en) Method for lambda control of an internal combustion engine and control device
DE102010022683A1 (en) Method for operation of exhaust-gas recycling plant attached to internal-combustion engine, involves heating lambda sensor on temperature given in advance in connection with beginning of internal-combustion engine
DE102014209174A1 (en) Method and device for controlling an air-fuel mixture for operating an internal combustion engine
WO2015185414A1 (en) Method for correcting a voltage-lambda characteristic plot
EP2786003B1 (en) Method and apparatus for controlling an air fuel ratio of an internal combustion engine
WO2003006810A1 (en) Method for compensating injection quantity in each individual cylinder in internal combustion engines
DE102012204332B4 (en) Device for operating an internal combustion engine
DE102008011833B4 (en) Method for controlling a lambda-controlled exhaust system of an internal combustion engine
EP3224464B1 (en) Method for detecting a voltage offset at least in a portion of a voltage lambda characteristic curve
DE102004044463B4 (en) Method and device for controlling an internal combustion engine
DE102013216595A1 (en) Method and device for correcting a characteristic curve of a lambda probe
DE102013217013B4 (en) Method and device for correcting a characteristic curve of a two-point lambda probe
DE10048926A1 (en) Method, computer program and control and / or regulating device for operating an internal combustion engine
EP2786133B1 (en) Method for determining a lambda value or an oxygen concentration of a gas mixture and corresponding combustion engine
DE19636465C1 (en) Method for regulating the fuel-air ratio of an internal combustion engine
DE102021125353B3 (en) Method for operating a drive device and corresponding drive device
WO2009135738A1 (en) Method and device for the diagnosis of the dynamics of a broadband lambda probe

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee