EP2786003B1 - Method and apparatus for controlling an air fuel ratio of an internal combustion engine - Google Patents

Method and apparatus for controlling an air fuel ratio of an internal combustion engine Download PDF

Info

Publication number
EP2786003B1
EP2786003B1 EP12795783.5A EP12795783A EP2786003B1 EP 2786003 B1 EP2786003 B1 EP 2786003B1 EP 12795783 A EP12795783 A EP 12795783A EP 2786003 B1 EP2786003 B1 EP 2786003B1
Authority
EP
European Patent Office
Prior art keywords
probe
exhaust gas
lambda
disturbance variable
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12795783.5A
Other languages
German (de)
French (fr)
Other versions
EP2786003A1 (en
Inventor
Hermann Hahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP2786003A1 publication Critical patent/EP2786003A1/en
Application granted granted Critical
Publication of EP2786003B1 publication Critical patent/EP2786003B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1479Using a comparator with variable reference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1487Correcting the instantaneous control value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1496Measurement of the conductivity of a sensor

Definitions

  • the invention relates to a method for controlling an air-fuel ratio of an internal combustion engine as a function of a composition of its exhaust gas and a correspondingly configured control device.
  • the probe signal not only depends on the exhaust gas composition but is also influenced by additional disturbing influences which cause the characteristic curve not to be constant under all conditions.
  • the probe temperature that is to say the temperature of the measuring element of the probe
  • the accuracy of the conversion rule or the characteristic curve This has an effect especially in the rich lambda range, ie at lambda values ⁇ 1.
  • changes in the characteristic curve resulting from increasing aging of the measuring element of the probe over the operating time can cause progressive poisoning of the measuring element and thus to a change in the characteristic curve.
  • the probe temperature is determined as a function of the internal resistance of the probe from a stored characteristic curve.
  • DE 199 19 427 A describes a method for correcting a characteristic curve of a broadband lambda probe which is installed upstream of an exhaust gas catalytic converter, wherein in a fuel cut-off phase of the internal combustion engine the sensor signal of the lambda probe is evaluated and the signal level thus determined is used for the correction of the slope of the characteristic curve.
  • a disadvantage of all known methods is that even the corrections have only a limited accuracy and therefore deviations of the corrected characteristic of the exact characteristic can remain. This circumstance is taken into account in the prior art in that lambda desired values or lambda threshold values to be regulated, the achievement of which trigger a change in the air-fuel mixture, are defined with a safety margin taking into account the uncertainty. This safety distance is usually dimensioned so that the largest assumed inaccuracy of the characteristic is taken into account.
  • a typical example of this procedure is the enrichment of a motor, which is made to protect components from overheating.
  • the combustion and thus the exhaust gas temperature is lowered by additional addition of fuel and thus prevents overheating example of turbochargers or catalysts.
  • the Gemischanfettung for component protection usually takes place when reaching a permissible limit temperature, for example, of 900 ° C, with a target lambda value of, for example, 0.9 is set by additional fuel addition, which ensures an effective cooling effect.
  • a maximum tolerance band of 2% is calculated for the lambda probe used
  • the lambda threshold of 0.88 is conventionally set for the engine in order to remain safely below the necessary limit of lambda 0.9 under all conditions.
  • the object of the present invention is therefore to provide a method and a device for regulating an air-fuel ratio of an internal combustion engine and in which the safety distance to be maintained by threshold values for the exhaust gas composition, in particular lambda threshold values, is determined according to actual requirements and thus the fuel consumption is reduced.
  • an assessment of a current accuracy of the at least one disturbance variable and / or an actual influence of the at least one disturbance variable on the probe signal is undertaken and the safety distance caused by the at least one disturbance variable is established as a function of the result of the evaluation.
  • the safety margin is thus always set constant and in the amount of its highest possible value in the sense of a worst-case scenario, according to the invention, its variable definition.
  • the method thus not only allows a higher accuracy of the regulation of a desired value, but also a fuel economy.
  • the disturbance value evaluated in the context of the invention comprises a temperature of the exhaust gas probe and / or an aging of the exhaust gas probe and / or a chemical poisoning of the exhaust gas probe.
  • the influence of these disturbances on the probe signal, in particular of lambda probes, is known in the prior art. As already described above, according to the invention, however, it is not assumed that their greatest possible uncertainty or their greatest possible influence on the probe signal for these disturbances, but this / this is currently evaluated.
  • a spread is determined for the evaluation of the current accuracy of the at least one disturbance, within which values of this disturbance lie, which were detected in a past period.
  • the safety distance is then determined as a function of the spread, it being understood that the safety level is chosen the greater, the greater the spread. For example, if the disturbance is the temperature of the probe, then for a predetermined past period of time it is determined what variance the sensed temperature values had from the true value. If only a small variance of the determined temperature has been found in the past, the safety distance can be set correspondingly small.
  • a duration is determined for the assessment of the current accuracy of the at least one disturbance, which has elapsed since a past calibration of a detection system of this disturbance.
  • the safety distance is then determined as a function of the duration determined in this way, the safety distance being chosen to be greater with increasing duration, since an increasingly imprecise disturbance variable detection can be assumed.
  • an absolute height of the currently detected disturbance variable is determined for the evaluation of the current influence of the at least one disturbance variable on the probe signal, and the safety distance is established as a function of the absolute altitude. For example, if the absolute value of the internal resistance of the measuring element of the probe in a range in which a temperature determination can be very inaccurate, for example at resistance values close to zero, is assumed by a relatively high error of the temperature determination and set a correspondingly high safety margin.
  • the safety distance is also determined depending on an operating point of the internal combustion engine, in particular as a function of an engine speed and / or an engine load.
  • a map can be used which represents the safety distance as a function of the speed and / or the load. In this way influences can be taken into account which can not be quantified in the evaluation.
  • the method can be used particularly advantageously in connection with the performance of a mixture enrichment for component protection of the internal combustion engine and / or the exhaust system against overheating.
  • the lambda input provided for the mixture enrichment is preferably determined according to the method.
  • the method makes it possible to set the lambda input for component protection as lean as possible, that is to say with the smallest possible safety distance to the target value, thereby minimizing the additional fuel consumption required for component protection.
  • the method according to the invention can advantageously also be used within the scope of the lambda control of the internal combustion engine, wherein the lambda desired value to be adjusted is determined in the manner according to the invention.
  • the invention enables a particularly precise lambda control.
  • the invention further relates to a control device for controlling an air-fuel ratio of an internal combustion engine, which is set up to carry out the method according to the invention as described above.
  • FIG. 1 shows an internal combustion engine 10, the fuel supply via a fuel injection system 12 takes place.
  • the injection system 12 may be a port injection or a cylinder direct injection.
  • the internal combustion engine 10 is also supplied via an intake manifold 14 with combustion air.
  • the amount of air supplied via a arranged in the intake manifold 14 controllable actuator 16, such as a throttle valve, are regulated.
  • An exhaust gas generated by the internal combustion engine 10 is released into the environment via an exhaust passage 18, whereby environmentally relevant exhaust gas constituents are converted by a catalyst 20.
  • an exhaust gas probe 22 is arranged at a position close to the engine, which is in particular a lambda probe, typically a jump lambda probe.
  • a further exhaust gas probe 24 may be arranged downstream of the catalytic converter 20, which may likewise be a lambda probe, in particular a broadband lambda probe, or an NO x sensor.
  • the signals of the exhaust probes 22 and 24 are transmitted to a motor controller 26. Other signals not shown sensors also go into the engine control 26.
  • the engine controller 26 controls in dependence on the incoming signals in a known manner to various components of the internal combustion engine 10.
  • the engine controller 26 includes a control device 28, which for carrying out the method according to the invention for controlling the Air-fuel ratio of the internal combustion engine 10 is set up.
  • the control device 28 includes a corresponding algorithm in computer-readable form and suitable characteristics and maps.
  • the present method is described below using the example of the motor control to perform the component protection against overheating based on FIG. 2 explained.
  • the illustrated method starts from a state in which the temperature T M (see FIG. 1 ) of a component, for example of intake or exhaust valves of the engine 10 or an exhaust gas turbocharger or the catalyst 20, exceeds a permissible temperature, and thus the implementation of a Gemischanfettung for the purpose of component protection is required.
  • T M see FIG. 1
  • the method starts in step 100, where, for the purpose of detecting the temperature of the lambda probe 22, the internal resistance R i of the measuring element of the probe 22 is read in.
  • the sensor temperature T S of the probe 22 is determined as a function of the internal resistance R i .
  • a characteristic curve which maps the probe temperature T S as a function of the internal resistance R i .
  • Such a method for determining the probe temperature is for example off DE 100 36 129 A1 known. Of course, however, other methods for determining the probe temperature can be used in the context of the present invention.
  • the exhaust gas composition-dependent probe signal U actual of the lambda probe 22 is read.
  • the determination of the exhaust gas composition, in particular of the actual lambda value ⁇ actual in dependence on the probe signal U actual as well as the probe temperature T S determined in step 102.
  • a stored characteristic map which maps the lambda value ⁇ actual as a function of the probe signal U actual and the probe temperature T S.
  • FIG. 3 shows an example of such a map in which the characteristics of the jump lambda probe for three different probe temperatures T S are shown. It can be seen that, in particular for fat lambda values ⁇ actual ⁇ 1, the probe voltage U actual depends strongly on the temperature.
  • a step 104 following step 102 an assessment is made of a current accuracy of the disturbing probe temperature ⁇ T S or an actual influence of this disturbance variable on the probe signal U actual .
  • the spread of the measured resistance value ⁇ R i or the derived probe temperature ⁇ T S are determined in a predetermined past period. Further embodiments of the evaluation carried out in step 104 have already been explained above.
  • the safety distance ⁇ S is determined in a subsequent step 106, the safety distance ⁇ S being selected to be greater, the greater the spread ⁇ T S of the probe temperature.
  • a linear relationship can be used.
  • step 108 a setpoint for the lambda preset ⁇ setpoint for the mixture enrichment for the purpose of component protection is determined.
  • the previously determined safety distance .DELTA.S is deducted from the lambda target specification .lambda.- target to be maintained for the component protection. If the target ⁇ target for component protection is, for example, 0.9 and if a safety distance ⁇ S of 0.02 has been determined in step 106, the lambda setpoint ⁇ setpoint is 0.88. Notwithstanding the embodiment described above, it is understood that the lambda deviation .DELTA.S can also be a factor which is multiplied by the lambda target.
  • a control of the air-fuel mixture to be supplied to the internal combustion engine 10 takes place in accordance with the lambda desired preset ⁇ set determined in step 108, as is generally known in the prior art.
  • a query takes place in step 114, in which the actual lambda value ⁇ actual determined in step 112 is compared with the desired lambda value ⁇ Soll determined in step 108.
  • it can be checked in step 114 whether the difference ⁇ actual - ⁇ setpoint > 0.
  • step 116 an amount of fuel m KS supplied to the internal combustion engine 10 is increased by a predetermined increment of the fuel quantity ⁇ KS in order to enrich the air To achieve fuel mixture. Otherwise, if the query is denied in step 114, that is, the actual lambda value ⁇ actual is smaller (richer) than the desired lambda value ⁇ setpoint , the method proceeds to step 118, where the fuel quantity m KS is decreased by a corresponding increment ⁇ KS in order to achieve a leaning of the engine. In step 120, the supply of the fuel to the internal combustion engine 10 takes place in accordance with the fuel quantity m KS ascertained in step 116 or 118.
  • the method then returns to step 110 in order to detect the probe signal U actual again, in step 112 to determine the actual lambda value ⁇ actual as a function of the probe signal U actual and in step 114, the actual lambda value ⁇ actual again to be compared with the target specification ⁇ target .
  • This cycle is repeated during the entire component protection measure until the component temperature T M has reached a permissible value.
  • the query cycle for checking the component temperature T M is in FIG. 2 not shown.
  • steps 104 to 108 it is possible, but not necessary, for steps 104 to 108 to be carried out during each passage, since a change in the safety distance ⁇ S and thus of the desired lambda value ⁇ nominal does not usually change in the short term.
  • steps 100 and 102 for determining the probe temperature T S in each interrogation cycle especially in the case of the mixture enrichment for component protection makes sense, since a sinking temperature is also to be expected from the sensor.
  • the safety distance .DELTA.S is applied to the target lambda value ⁇ target , so as to set the desired lambda value ⁇ target for the lambda control.
  • a corresponding safety distance ⁇ S can also be applied to the characteristic curve used in step 112 in order to adapt it to take account of a lambda scattering which reflects the uncertainty of the temperature determination.
  • the safety distance .DELTA.S is additionally made dependent on which absolute value assumes the current desired lambda value of the engine. This can take into account that some disturbances gain influence in certain areas. For example, the probe temperature T S influences the characteristic curve significantly more with rich lambda values than with lean lambda values (see FIG FIG. 3 ). Thus, in step 106 in FIG. 2 The function used to determine the safety distance ⁇ S takes into account the current lambda value in such a way that as the lambda values decrease, the safety distance ⁇ S is increased.
  • the consideration of the probe temperature TS was shown as a disturbance in the lambda detection, this can alternatively or additionally also for the disturbance variable of the aging of the lambda probe 22.
  • the aging of the lambda probe 22 for example by means of the downstream lambda probe 24 (see FIG. 1 ), which acts as a reference probe here.
  • a deviation from the average mixture value can be determined via the signal of the Breibandlambdasonde 24 and the characteristic curve of the lambda probe 22 are corrected accordingly.
  • Corresponding methods for taking account of such aging effects and for correcting the characteristic are known in the prior art. Other methods for determining an aging correction value may also be used within the scope of the present invention.
  • the inaccuracies of the aging of the exhaust gas probe in spite of the characteristic curve correction in the conversion of the probe signal U actual into the actual lambda value ⁇ actual , can now be evaluated on the basis of the thus determined aging correction value. If, for example, the probe 22 has not yet aged and the conversion rule or characteristic curve used in step 112 is stored correctly, there will be virtually no deviation of the actual value determined in step 112 from an actual lambda value. Thus, there is no need to correct the target lambda value ⁇ target to be set for the component protection. Thus, the safety distance .DELTA.S can be set equal to zero in step 106 in extreme cases.
  • an aging correction value will result on aging of the lambda probe 22 and concomitant correction of the probe characteristic. From the extent of this correction value is now inventively evaluated, for example, which tolerance in the determined actual lambda value despite characteristic correction can still remain. Depending on this, the safety distance .DELTA.S, that is the additionally necessary enrichment for the component protection is determined.
  • influences which can not be quantified explicitly with evaluation variables but nevertheless can disturb the lambda determination are taken into account.
  • the influence of the operating point of the internal combustion engine 10 can be evaluated here, for example by determining an additional safety distance operating point-dependent from a speed-load characteristic map.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses eines Verbrennungsmotors in Abhängigkeit einer Zusammensetzung seines Abgases sowie eine entsprechend eingerichtete Steuervorrichtung.The invention relates to a method for controlling an air-fuel ratio of an internal combustion engine as a function of a composition of its exhaust gas and a correspondingly configured control device.

Es ist bekannt, Verbrennungsmotoren in Abhängigkeit einer Zusammensetzung ihrer Abgase zu steuern oder zu regeln, wobei die entsprechende Abgaskomponente mittels einer geeigneten Abgassonde gemessen wird. Insbesondere wird das Luft-Kraftstoff-Verhältnis, mit dem der Motor betrieben wird, geregelt, indem der Sauerstoffgehalt des Abgases mittels einer Lambdasonde im Abgastrakt gemessen wird. Diese Vorgehensweise wird im Allgemeinen als Lambdaregelung bezeichnet. Dabei stellt die Lambdasonde ein von dem Sauerstoffgehalt des Abgases abhängiges Ist-Sondensignal bereit, bei dem es sich üblicherweise um eine Sondenspannung handelt. Dieses Sondensignal wird mittels einer gespeicherten Kennlinie oder einer entsprechenden Rechenvorschrift in den Lambdawert umgerechnet und dieser für die Regelung genutzt.It is known to control internal combustion engines depending on a composition of their exhaust gases or regulate, wherein the corresponding exhaust gas component is measured by means of a suitable exhaust gas probe. In particular, the air-fuel ratio with which the engine is operated, regulated by the oxygen content of the exhaust gas is measured by means of a lambda probe in the exhaust system. This procedure is generally referred to as lambda control. In this case, the lambda probe provides an actual probe signal which is dependent on the oxygen content of the exhaust gas and which is usually a probe voltage. This probe signal is converted by means of a stored characteristic or a corresponding calculation rule into the lambda value and this is used for the control.

Eine Umrechnung des Sondensignals in einen Lambdawert ist in der Praxis jedoch dadurch erschwert, dass das Sondensignal nicht nur von der Abgaszusammensetzung abhängt, sondern auch durch zusätzliche Störeinflüsse beeinflusst wird, welche bewirken, dass die Kennlinie nicht unter allen Bedingungen konstant ist. Im Falle von Sprungsonden ist beispielsweise bekannt, dass die Sondentemperatur, das heißt die Temperatur des Messelementes der Sonde, einen Einfluss auf die Genauigkeit der Umrechnungsvorschrift beziehungsweise der Kennlinie hat. Dies wirkt sich insbesondere im fetten Lambdabereich, das heißt bei Lambdawerten < 1, aus. Ferner ergeben sich Änderungen der Kennliniencharakteristik durch zunehmende Alterung des Messelementes der Sonde über die Betriebszeit. Darüber hinaus können verschiedene Abgasbestandteile wie Blei, Mangan, Phosphor oder Zink eine fortschreitende Vergiftung des Messelementes und somit zu einer Veränderung der Kennlinie verursachen.However, a conversion of the probe signal into a lambda value is made more difficult in practice by the fact that the probe signal not only depends on the exhaust gas composition but is also influenced by additional disturbing influences which cause the characteristic curve not to be constant under all conditions. In the case of jump probes, for example, it is known that the probe temperature, that is to say the temperature of the measuring element of the probe, has an influence on the accuracy of the conversion rule or the characteristic curve. This has an effect especially in the rich lambda range, ie at lambda values <1. Furthermore, changes in the characteristic curve resulting from increasing aging of the measuring element of the probe over the operating time. In addition, various exhaust gas components such as lead, manganese, phosphorus or zinc can cause progressive poisoning of the measuring element and thus to a change in the characteristic curve.

Aus DE 100 36 129 A ist bekannt, Einflüsse der Temperatur auf das Sondensignal zu kompensieren. Zu diesem Zweck wird die Sondentemperatur in Abhängigkeit des Innenwiderstandes der Sonde aus einer gespeicherten Kennlinie ermittelt. Unter Verwendung eines dreidimensionalen Kennfeldes, das eine Korrekturspannung in Abhängigkeit von einer aktuellen Sondenistspannung und der zuvor ermittelten Sondentemperatur abbildet, wird sodann die aktuelle Korrekturspannung bestimmt, welche der aktuellen Sondenistspannung zuaddiert wird, um eine korrigierte Sondenspannung zu erhalten.Out DE 100 36 129 A it is known to compensate for influences of temperature on the probe signal. For this purpose, the probe temperature is determined as a function of the internal resistance of the probe from a stored characteristic curve. Using a three-dimensional Characteristic map, which maps a correction voltage in dependence on a current probe actual voltage and the previously determined probe temperature, is then used to determine the actual correction voltage, which is added to the actual probe actual voltage, in order to obtain a corrected probe voltage.

DE 199 19 427 A beschreibt ein Verfahren zur Korrektur einer Kennlinie einer Breitband-Lambdasonde, die stromauf eines Abgaskatalysators verbaut ist, wobei in einer Schubabschaltungsphase des Verbrennungsmotors das Sensorsignal der Lambdasonde ausgewertet und der so ermittelte Signalpegel für die Korrektur der Steigung der Kennlinie verwendet wird. DE 199 19 427 A describes a method for correcting a characteristic curve of a broadband lambda probe which is installed upstream of an exhaust gas catalytic converter, wherein in a fuel cut-off phase of the internal combustion engine the sensor signal of the lambda probe is evaluated and the signal level thus determined is used for the correction of the slope of the characteristic curve.

Aus DE 10 2007 015 362 A ist ein Verfahren zur Kalibrierung einer stromauf eines Katalysators angeordneten Sprung-Lambdasonde bekannt. Hierzu wird aus einem durch eine nachgeschaltete Referenz-Lambdasonde bereitgestellten Messsignal ein Korrektursignal ermittelt und zur Kennlinienanpassung der Sprung-Lambdasonde verwendet.Out DE 10 2007 015 362 A For example, a method for calibrating a jump lambda probe arranged upstream of a catalytic converter is known. For this purpose, a correction signal is determined from a measurement signal provided by a downstream reference lambda probe and used for the characteristic adaptation of the jump lambda probe.

Nachteilig bei allen bekannten Verfahren ist, dass auch die Korrekturen nur eine begrenzte Genauigkeit aufweisen und daher Abweichungen der korrigierten Kennlinie von der exakten Kennlinie verbleiben können. Dieser Umstand wird im Stand der Technik berücksichtigt, indem einzuregelnde Lambdasollwerte oder Lambdaschwellenwerte, deren Erreichen eine Veränderung des Luftkraftstoffgemischs auslösen, mit einem die Unsicherheit berücksichtigenden Sicherheitsabstand festgelegt werden. Dieser Sicherheitsabstand wird üblicherweise so bemessen, dass auch die größte anzunehmende Ungenauigkeit der Kennlinie berücksichtigt wird.A disadvantage of all known methods is that even the corrections have only a limited accuracy and therefore deviations of the corrected characteristic of the exact characteristic can remain. This circumstance is taken into account in the prior art in that lambda desired values or lambda threshold values to be regulated, the achievement of which trigger a change in the air-fuel mixture, are defined with a safety margin taking into account the uncertainty. This safety distance is usually dimensioned so that the largest assumed inaccuracy of the characteristic is taken into account.

Ein typisches Beispiel für diese Vorgehensweise ist die Anfettung eines Motors, die zum Schutz von Bauteilen vor Überhitzung vorgenommen wird. Hierbei wird durch zusätzliche Kraftstoffzugabe die Verbrennungs- und damit die Abgastemperatur gesenkt und damit die Überhitzung beispielsweise von Turboladern oder Katalysatoren verhindert. Die Gemischanfettung zum Bauteileschutz erfolgt üblicherweise bei Erreichen einer zulässigen Grenztemperatur, beispielsweise von 900 °C, wobei ein Ziel-Lambdawert von beispielsweise 0,9 durch zusätzlich Kraftstoffzugabe eingestellt wird, der eine effektive Kühlwirkung sicherstellt. Wird bei der verwendeten Lambdasonde beispielsweise mit einem maximalen Toleranzband von 2 % gerechnet, so wird herkömmlich dem Motor eine Lambdaschwelle von 0,88 vorgegeben, um unter allen Bedingungen sicher unter der notwendigen Grenze von Lambda 0,9 zu bleiben. Damit ergibt sich jedoch bei der Mehrheit der Motoren, die eine Lambdasonde mit geringerer Toleranzabweichung aufweisen, eine stärkere Anfettung und mithin ein höherer Kraftstoffverbrauch, als tatsächlich nötig wäre.A typical example of this procedure is the enrichment of a motor, which is made to protect components from overheating. In this case, the combustion and thus the exhaust gas temperature is lowered by additional addition of fuel and thus prevents overheating example of turbochargers or catalysts. The Gemischanfettung for component protection usually takes place when reaching a permissible limit temperature, for example, of 900 ° C, with a target lambda value of, for example, 0.9 is set by additional fuel addition, which ensures an effective cooling effect. If, for example, a maximum tolerance band of 2% is calculated for the lambda probe used, the lambda threshold of 0.88 is conventionally set for the engine in order to remain safely below the necessary limit of lambda 0.9 under all conditions. However, this results in the majority of the engines that have a Lambda probe with lower tolerance deviation, a higher enrichment and thus a higher fuel consumption than would actually be needed.

Aufgabe der vorliegenden Erfindung ist daher, ein Verfahren sowie eine Vorrichtung zur Regelung eines Luft-Kraftstoff-Verhältnisses eines Verbrennungsmotors sowie zu schaffen, bei denen der einzuhaltende Sicherheitsabstand von Schwellenwerten für die Abgaszusammensetzung, insbesondere von Lambdaschwellenwerten, gemäß tatsächlichen Erfordernissen festgelegt wird und somit der Kraftstoffverbrauch verringert wird.The object of the present invention is therefore to provide a method and a device for regulating an air-fuel ratio of an internal combustion engine and in which the safety distance to be maintained by threshold values for the exhaust gas composition, in particular lambda threshold values, is determined according to actual requirements and thus the fuel consumption is reduced.

Diese Aufgabe wird durch ein Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses eines Verbrennungsmotors sowie durch eine entsprechende Regelvorrichtung mit den Merkmalen der unabhängigen Ansprüche gelöst.This object is achieved by a method for controlling an air-fuel ratio of an internal combustion engine and by a corresponding control device having the features of the independent claims.

Das erfindungsgemäße Verfahren umfasst die Schritte:

  • Bestimmung der Abgaszusammensetzung, indem mittels einer Abgassonde ein von der Abgaszusammensetzung abhängiges Ist-Sondensignal erfasst wird und mittels einer Kennlinie oder einer Rechenvorschrift die Abgaszusammensetzung in Abhängigkeit von dem Ist-Sondensignal bestimmt wird,
  • Vergleich der ermittelten Abgaszusammensetzung mit einem Soll- oder Schwellenwert, wobei zur Berücksichtigung zumindest einer Störgröße auf das Ist-Sondensignal ein Sicherheitsabstand festgelegt wird, der auf die Kennlinie oder Rechenvorschrift, auf das Ist-Sondensignal oder auf den Soll- oder Schwellenwert angewendet wird, und
  • Auslösen einer Beeinflussung des dem Verbrennungsmotor zugeführten Luft-Kraftstoff-Verhältnisses, wenn die ermittelte Abgaszusammensetzung den Soll- oder Schwellenwert erreicht.
The method according to the invention comprises the steps:
  • Determination of the exhaust gas composition by detecting an exhaust gas composition-dependent actual probe signal by means of an exhaust gas probe and determining the exhaust gas composition as a function of the actual probe signal by means of a characteristic curve or a calculation rule;
  • Comparison of the determined exhaust gas composition with a setpoint or threshold value, wherein a safety distance is set to take into account at least one disturbance on the actual probe signal, which is applied to the characteristic or calculation rule, to the actual probe signal or to the setpoint or threshold, and
  • Triggering an influence on the air-fuel ratio supplied to the internal combustion engine if the determined exhaust gas composition reaches the setpoint or threshold value.

Erfindungsgemäß wird dabei eine Bewertung einer aktuellen Genauigkeit der zumindest einen Störgröße und/oder eines aktuellen Einflusses der zumindest einen Störgröße auf das Sondensignal vorgenommen und der durch die zumindest eine Störgröße bedingte Sicherheitsabstand in Abhängigkeit von dem Ergebnis der Bewertung wie in Anspruch 1 dargestellt festgelegt.According to the invention, an assessment of a current accuracy of the at least one disturbance variable and / or an actual influence of the at least one disturbance variable on the probe signal is undertaken and the safety distance caused by the at least one disturbance variable is established as a function of the result of the evaluation.

Während im Stand der Technik somit der Sicherheitsabstand immer konstant und zwar in Höhe seines höchstmöglichen Wertes im Sinne eines Worst-Case-Szenarios festgelegt wird, erfolgt erfindungsgemäß seine variable Festlegung. Dies ermöglicht, den Sicherheitsabstand so minimal, wie die vorliegende Situation es zulässt, zu dem tatsächlich einzuhaltenden Zielwert (beispielsweise den Soll- oder Schwellenwert) festzulegen. Das Verfahren erlaubt somit nicht nur eine höhere Genauigkeit der Regelung eines Sollwertes, sondern auch eine Kraftstoffersparnis. Vorzugsweise umfasst die im Rahmen der Erfindung bewertete Störgröße auf das Sondensignal eine Temperatur der Abgassonde und/oder eine Alterung der Abgassonde und/oder eine chemische Vergiftung der Abgassonde. Der Einfluss dieser Störgrößen auf das Sondensignal, insbesondere von Lambdasonden, ist im Stand der Technik bekannt. Wie bereits zuvor geschildert, wird für diese Störgrößen erfindungsgemäß jedoch nicht ihre größtmögliche Unsicherheit beziehungsweise ihr größtmöglicher Einfluss auf das Sondensignal angenommen, sondern diese/dieser wird aktuell bewertet.While in the prior art, the safety margin is thus always set constant and in the amount of its highest possible value in the sense of a worst-case scenario, according to the invention, its variable definition. This makes it possible to set the safety margin as minimal as the present situation allows, to the target value actually to be met (for example, the target or threshold value). The method thus not only allows a higher accuracy of the regulation of a desired value, but also a fuel economy. Preferably, the disturbance value evaluated in the context of the invention comprises a temperature of the exhaust gas probe and / or an aging of the exhaust gas probe and / or a chemical poisoning of the exhaust gas probe. The influence of these disturbances on the probe signal, in particular of lambda probes, is known in the prior art. As already described above, according to the invention, however, it is not assumed that their greatest possible uncertainty or their greatest possible influence on the probe signal for these disturbances, but this / this is currently evaluated.

Nach einer bevorzugten Ausgestaltung der Erfindung wird für die Bewertung der aktuellen Genauigkeit der zumindest eine Störgröße eine Streubreite bestimmt, innerhalb welcher Werte dieser Störgröße liegen, die in einem zurückliegenden Zeitraum erfasst wurden. Der Sicherheitsabstand wird sodann in Abhängigkeit von der Streubreite festgelegt, wobei es sich versteht, dass der Sicherheitsstand umso größer gewählt wird, je größer die Streubreite ist. Handelt es sich bei der Störgröße beispielsweise um die Temperatur der Sonde, so wird für einen vorbestimmten zurückliegenden Zeitraum bestimmt, welche Varianz die erfassten Temperaturwerte vom wahren Wert aufwiesen. Zeigte sich in der Vergangenheit eine nur geringe Varianz der ermittelten Temperatur, so kann der Sicherheitsabstand entsprechend klein festgelegt werden.According to a preferred embodiment of the invention, a spread is determined for the evaluation of the current accuracy of the at least one disturbance, within which values of this disturbance lie, which were detected in a past period. The safety distance is then determined as a function of the spread, it being understood that the safety level is chosen the greater, the greater the spread. For example, if the disturbance is the temperature of the probe, then for a predetermined past period of time it is determined what variance the sensed temperature values had from the true value. If only a small variance of the determined temperature has been found in the past, the safety distance can be set correspondingly small.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung wird für die Bewertung der aktuellen Genauigkeit der zumindest einen Störgröße eine Dauer bestimmt, die seit einer zurückliegenden Kalibrierung eines Erfassungssystems dieser Störgröße vergangen ist. Der Sicherheitsabstand wird sodann in Abhängigkeit von der so ermittelten Dauer festgelegt, wobei der Sicherheitsabstand mit zunehmender Dauer größer gewählt wird, da von einer zunehmend ungenauen Störgrößenerfassung auszugehen ist. Am Beispiel der Sondentemperatur als Störgröße bedeutet dies, dass überprüft wird, wie lange die letzte Kalibrierung der Temperaturerfassung zurückliegt. Erfolgt die Temperaturerfassung beispielsweise über den Innenwiderstand des Messelements der Sonde gemäß DE 100 36 129 A , so wird ermittelt, wann die letzte Kalibrierung der Temperatur-Innenwiderstand-Kennlinie erfolgt ist. Dabei wird der Sicherheitsabstand umso größer gewählt, je länger die Kalibrierung zurückliegt.According to a further advantageous embodiment of the invention, a duration is determined for the assessment of the current accuracy of the at least one disturbance, which has elapsed since a past calibration of a detection system of this disturbance. The safety distance is then determined as a function of the duration determined in this way, the safety distance being chosen to be greater with increasing duration, since an increasingly imprecise disturbance variable detection can be assumed. Using the example probe temperature as a disturbance variable, this means that it is checked how long the last calibration of the temperature measurement took place. If the temperature detection takes place, for example, via the internal resistance of the measuring element of the probe according to FIG DE 100 36 129 A , it is determined when the last calibration of the internal temperature resistance characteristic curve has taken place. The longer the calibration, the greater the safety margin.

In diesem Zusammenhang kann auch überprüft werden, ob in der Vergangenheit eine Notwendigkeit einer Kalibrierung festgestellt wurde, diese jedoch bislang noch nicht erfolgt ist. In einem solchen Fall wird eine hohe Unsicherheit der aktuell bestimmten Störgröße angenommen und der Sicherheitsabstand entsprechend groß festgelegt.In this context, it can also be checked whether in the past a need for a calibration was found, but this has not been done yet. In such a case, a high uncertainty of the currently determined disturbance is assumed and set the safety distance correspondingly large.

Gemäß einer weiteren vorteilhaften Ausgestaltung des Verfahrens wird für die Bewertung des aktuellen Einflusses der zumindest einen Störgröße auf das Sondensignal eine absolute Höhe der aktuell erfassten Störgröße bestimmt und der Sicherheitsabstand in Abhängigkeit von der absoluten Höhe festgelegt. Liegt beispielsweise der Absolutwert des Innenwiderstandes des Messelements der Sonde in einem Bereich, in dem eine Temperaturermittlung nur sehr ungenau sein kann, beispielsweise bei Widerstandswerten nahe Null, wird von einem relativ hohen Fehler der Temperaturermittlung ausgegangen und ein entsprechend hoher Sicherheitsabstand festgelegt.According to a further advantageous embodiment of the method, an absolute height of the currently detected disturbance variable is determined for the evaluation of the current influence of the at least one disturbance variable on the probe signal, and the safety distance is established as a function of the absolute altitude. For example, if the absolute value of the internal resistance of the measuring element of the probe in a range in which a temperature determination can be very inaccurate, for example at resistance values close to zero, is assumed by a relatively high error of the temperature determination and set a correspondingly high safety margin.

Nach einer weiteren Ausgestaltung des Verfahrens wird der Sicherheitsabstand ferner abhängig von einem Betriebspunkt des Verbrennungsmotors, insbesondere in Abhängigkeit von einer Motordrehzahl und/oder einer Motorlast, festgelegt. Zu diesem Zweck kann ein Kennfeld verwendet werden, welches den Sicherheitsabstand in Abhängigkeit von der Drehzahl und/oder der Last darstellt. Auf diese Weise können Einflüsse berücksichtigt werden, welche nicht in der Bewertung quantifiziert werden können.According to a further embodiment of the method, the safety distance is also determined depending on an operating point of the internal combustion engine, in particular as a function of an engine speed and / or an engine load. For this purpose, a map can be used which represents the safety distance as a function of the speed and / or the load. In this way influences can be taken into account which can not be quantified in the evaluation.

Das Verfahren kann besonders vorteilhaft im Zusammenhang mit der Durchführung einer Gemischanfettung zum Bauteileschutz des Verbrennungsmotors und/oder der Abgasanlage vor Überhitzung eingesetzt werden. In diesem Fall wird bevorzugt die für die Gemischanfettung vorgesehene Lambdavorgabe entsprechend dem Verfahren festgelegt. In diesem Zusammenhang ermöglicht das Verfahren, die Lambdavorgabe für den Bauteileschutz so mager wie möglich festzulegen, das heißt mit dem geringstmöglichen Sicherheitsabstand zum Zielwert, wodurch der für den Bauteileschutz aufzuwendende Kraftstoffmehrverbrauch minimiert wird.The method can be used particularly advantageously in connection with the performance of a mixture enrichment for component protection of the internal combustion engine and / or the exhaust system against overheating. In this case, the lambda input provided for the mixture enrichment is preferably determined according to the method. In this context, the method makes it possible to set the lambda input for component protection as lean as possible, that is to say with the smallest possible safety distance to the target value, thereby minimizing the additional fuel consumption required for component protection.

Des Weiteren kann das erfindungsgemäße Verfahren mit Vorteil auch im Rahmen der Lambdaregelung des Verbrennungsmotors eingesetzt werden, wobei der einzuregelnde Lambdasollwert auf die erfindungsgemäße Weise festgelegt wird. Hier ermöglicht die Erfindung eine besonders präzise Lambdaregelung.Furthermore, the method according to the invention can advantageously also be used within the scope of the lambda control of the internal combustion engine, wherein the lambda desired value to be adjusted is determined in the manner according to the invention. Here, the invention enables a particularly precise lambda control.

Die Erfindung betrifft ferner eine Regelvorrichtung zur Regelung eines Luft-Kraftstoff-Verhältnisses eines Verbrennungsmotors, welche zur Ausführung des erfindungsgemäßen Verfahrens gemäß vorstehender Beschreibung eingerichtet ist.The invention further relates to a control device for controlling an air-fuel ratio of an internal combustion engine, which is set up to carry out the method according to the invention as described above.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der übrigen Unteransprüche.Further advantageous embodiments of the invention are the subject of the remaining dependent claims.

Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine Verbrennungskraftmaschine mit einer Regelvorrichtung gemäß der vorliegenden Erfindung,
Figur 2
ein Fließdiagramm eines Verfahrensablaufs zur Durchführung einer Gemischanfettung zum Bauteileschutz vor Überhitzung und
Figur 3
Kennlinien einer Sprung-Lambdasonde für verschiedene Temperaturen.
The invention will be explained in more detail in embodiments with reference to the accompanying drawings. Show it:
FIG. 1
an internal combustion engine with a control device according to the present invention,
FIG. 2
a flow diagram of a procedure for performing a mixture enrichment for component protection against overheating and
FIG. 3
Characteristics of a jump lambda probe for different temperatures.

Figur 1 zeigt einen Verbrennungsmotor 10, dessen Kraftstoffversorgung über eine Kraftstoffeinspritzanlage 12 erfolgt. Bei der Einspritzanlage 12 kann es sich um eine Saugrohreinspritzung oder eine Zylinderdirekteinspritzung handeln. Der Verbrennungsmotor 10 wird ferner über ein Ansaugrohr 14 mit Verbrennungsluft versorgt. Gegebenenfalls kann die zugeführte Luftmenge über ein in dem Ansaugrohr 14 angeordnetes steuerbares Stellelement 16, beispielsweise einer Drosselklappe, reguliert werden. FIG. 1 shows an internal combustion engine 10, the fuel supply via a fuel injection system 12 takes place. In the injection system 12 may be a port injection or a cylinder direct injection. The internal combustion engine 10 is also supplied via an intake manifold 14 with combustion air. Optionally, the amount of air supplied via a arranged in the intake manifold 14 controllable actuator 16, such as a throttle valve, are regulated.

Ein von dem Verbrennungsmotor 10 erzeugtes Abgas wird über einen Abgaskanal 18 in die Umgebung entlassen, wobei umweltrelevante Abgasbestandteile durch einen Katalysator 20 umgesetzt werden.An exhaust gas generated by the internal combustion engine 10 is released into the environment via an exhaust passage 18, whereby environmentally relevant exhaust gas constituents are converted by a catalyst 20.

Innerhalb des Abgaskanals 18 ist an einer motornahen Position eine Abgassonde 22 angeordnet, bei der es sich insbesondere um eine Lambdasonde, typischerweise um eine Sprung-Lambdasonde, handelt. Gegebenenfalls kann eine weitere Abgassonde 24 stromab des Katalysators 20 angeordnet sein, bei der es sich ebenfalls um eine Lambdasonde, insbesondere eine Breitband-Lambdasonde, oder um einen NOx-Sensor handeln kann. Die Signale der Abgassonden 22 und 24 werden an eine Motorsteuerung 26 übermittelt. Weitere Signale nicht dargestellter Sensoren gehen ebenfalls in die Motorsteuerung 26 ein. Die Motorsteuerung 26 steuert in Abhängigkeit der eingehenden Signale in bekannter Weise verschiedene Komponenten des Verbrennungsmotors 10 an. Insbesondere erfolgt in Abhängigkeit von dem Sondensignal UIst (Sondenspannung) der motornahen Lambdasonde 22 eine Regelung des den Verbrennungsmotor zuzuführenden Luft-Kraftstoff-Gemischs, wofür die Motorsteuerung 26 eine über die Kraftstoffeinspritzanlage 12 zuzuführende Kraftstoffmenge und/oder eine über die Ansauganlage 14 zuzuführende Luftmenge regelt. Die Motorsteuerung 26 umfasst eine Regelvorrichtung 28, welche zur Ausführung des erfindungsgemäßen Verfahrens zur Regelung des Luft-Kraftstoff-Verhältnisses des Verbrennungsmotors 10 eingerichtet ist. Zu diesem Zweck enthält die Regelvorrichtung 28 einen entsprechenden Algorithmus in computerlesbarer Form sowie geeignete Kennlinien und Kennfelder.Within the exhaust duct 18, an exhaust gas probe 22 is arranged at a position close to the engine, which is in particular a lambda probe, typically a jump lambda probe. If appropriate, a further exhaust gas probe 24 may be arranged downstream of the catalytic converter 20, which may likewise be a lambda probe, in particular a broadband lambda probe, or an NO x sensor. The signals of the exhaust probes 22 and 24 are transmitted to a motor controller 26. Other signals not shown sensors also go into the engine control 26. The engine controller 26 controls in dependence on the incoming signals in a known manner to various components of the internal combustion engine 10. In particular, as a function of the probe signal U actual (probe voltage) of the lambda probe 22 close to the engine, a control of the air-fuel mixture to be supplied to the internal combustion engine is effected, for which the engine control 26 regulates a fuel quantity to be supplied via the fuel injection system 12 and / or an air quantity to be supplied via the intake system 14 , The engine controller 26 includes a control device 28, which for carrying out the method according to the invention for controlling the Air-fuel ratio of the internal combustion engine 10 is set up. For this purpose, the control device 28 includes a corresponding algorithm in computer-readable form and suitable characteristics and maps.

Das vorliegende Verfahren wird nachfolgend am Beispiel der Motorregelung zur Durchführung des Bauteileschutzes vor Überhitzung anhand von Figur 2 erläutert.The present method is described below using the example of the motor control to perform the component protection against overheating based on FIG. 2 explained.

Das in Figur 2 dargestellte Verfahren geht von einem Zustand aus, in dem die Temperatur TM (siehe Figur 1) eines Bauteiles, beispielsweise von Ein- oder Auslassventilen des Motors 10 oder eines Abgasturboladers oder des Katalysators 20, eine zulässige Temperatur überschreitet, und somit die Durchführung einer Gemischanfettung zum Zwecke des Bauteileschutzes angefordert ist.This in FIG. 2 The illustrated method starts from a state in which the temperature T M (see FIG. 1 ) of a component, for example of intake or exhaust valves of the engine 10 or an exhaust gas turbocharger or the catalyst 20, exceeds a permissible temperature, and thus the implementation of a Gemischanfettung for the purpose of component protection is required.

Das Verfahren startet in Schritt 100, wo zum Zwecke der Erfassung der Temperatur der Lambdasonde 22 der Innenwiderstand Ri des Messelementes der Sonde 22 eingelesen wird. Im anschließenden Schritt 102 wird die Sensortemperatur TS der Sonde 22 als eine Funktion des Innenwiderstandes Ri bestimmt. Zu diesem Zweck kann etwa auf eine Kennlinie zurückgegriffen werden, welche die Sondentemperatur TS in Abhängigkeit des Innenwiderstandes Ri abbildet. Ein solches Verfahren zur Ermittlung der Sondentemperatur ist beispielsweise aus DE 100 36 129 A1 bekannt. Selbstverständlich können im Rahmen der vorliegenden Erfindung jedoch auch andere Verfahren zur Ermittlung der Sondentemperatur Einsatz finden.The method starts in step 100, where, for the purpose of detecting the temperature of the lambda probe 22, the internal resistance R i of the measuring element of the probe 22 is read in. In the subsequent step 102, the sensor temperature T S of the probe 22 is determined as a function of the internal resistance R i . For this purpose, it is possible, for example, to resort to a characteristic curve which maps the probe temperature T S as a function of the internal resistance R i . Such a method for determining the probe temperature is for example off DE 100 36 129 A1 known. Of course, however, other methods for determining the probe temperature can be used in the context of the present invention.

In einem parallelen (oder anschließenden) Verfahrensstrang wird das von der Abgaszusammensetzung abhängige Sondensignal UIst der Lambdasonde 22 eingelesen. Anschließend erfolgt in Schritt 112 die Bestimmung der Abgaszusammensetzung, insbesondere des Ist-Lambdawertes λIst, in Abhängigkeit von dem Sondensignal UIst sowie der in Schritt 102 bestimmten Sondentemperatur TS. Zu diesem Zweck kann auf ein abgespeichertes Kennfeld zurückgegriffen werden, welches den Lambdawert λIst in Abhängigkeit von dem Sondensignal UIst sowie der Sondentemperatur TS abbildet. Figur 3 zeigt exemplarisch ein solches Kennfeld, in dem die Kennlinien der Sprung-Lambdasonde für drei verschiedene Sondentemperaturen TS dargestellt sind. Es ist ersichtlich, dass insbesondere für fette Lambdawerte λIst < 1 die Sondenspannung UIst stark von der Temperatur abhängt.In a parallel (or subsequent) process train, the exhaust gas composition-dependent probe signal U actual of the lambda probe 22 is read. Subsequently, in step 112, the determination of the exhaust gas composition, in particular of the actual lambda value λ actual , in dependence on the probe signal U actual as well as the probe temperature T S determined in step 102. For this purpose, it is possible to resort to a stored characteristic map which maps the lambda value λ actual as a function of the probe signal U actual and the probe temperature T S. FIG. 3 shows an example of such a map in which the characteristics of the jump lambda probe for three different probe temperatures T S are shown. It can be seen that, in particular for fat lambda values λ actual <1, the probe voltage U actual depends strongly on the temperature.

In einem an Schritt 102 anschließenden Schritt 104 wird erfindungsgemäß eine Bewertung einer aktuellen Genauigkeit der Störgroße Sondentemperatur ΔTS oder eines aktuellen Einflusses dieser Störgroße auf das Sondensignal UIst vorgenommen. Beispielsweise kann an dieser Stelle die Streubreite des gemessenen Widerstandswertes δRi oder der daraus abgeleiteten Sondentemperatur δTS in einem vorbestimmten zurückliegenden Zeitraum bestimmt werden. Weitere Ausgestaltungen der in Schritt 104 erfolgenden Bewertung wurden vorstehend bereits erläutert. In Abhängigkeit von der in Schritt 104 ermittelten Streubreite δTS der Sondentemperatur wird in einem anschließenden Schritt 106 der Sicherheitsabstand ΔS bestimmt, wobei der Sicherheitsabstand ΔS umso größer gewählt wird, je größer die Streubreite δTS der Sondentemperatur. Hier kann beispielsweise ein linearer Zusammenhang verwendet werden.In a step 104 following step 102, according to the invention, an assessment is made of a current accuracy of the disturbing probe temperature ΔT S or an actual influence of this disturbance variable on the probe signal U actual . For example, on this location, the spread of the measured resistance value δR i or the derived probe temperature δT S are determined in a predetermined past period. Further embodiments of the evaluation carried out in step 104 have already been explained above. In dependence on the scattering range ΔT S of the probe temperature determined in step 104, the safety distance ΔS is determined in a subsequent step 106, the safety distance ΔS being selected to be greater, the greater the spread ΔT S of the probe temperature. Here, for example, a linear relationship can be used.

Das Verfahren geht dann zu Schritt 108 über, wo ein Sollwert für die Lambdavorgabe λSoll für die Gemischanfettung zum Zwecke des Bauteileschutzes festgelegt wird. Insbesondere wird in Schritt 108 der zuvor ermittelte Sicherheitsabstand ΔS von der für den Bauteileschutz einzuhaltende Lambdazielvorgabe λZiel abgezogen. Beträgt die Zielvorgabe λZiel für den Bauteileschutz beispielsweise 0,9 und wurde in Schritt 106 ein Sicherheitsabstand ΔS von 0,02 ermittelt, so ergibt sich eine Lambdasollvorgabe λSoll von 0,88. Abweichend von der vorstehend beschriebenen Ausführung versteht es sich, dass die Lambdaabweichung ΔS auch ein Faktor sein kann, welcher mit der Lambdazielvorgabe multipliziert wird.The method then proceeds to step 108, where a setpoint for the lambda preset λ setpoint for the mixture enrichment for the purpose of component protection is determined. In particular, in step 108, the previously determined safety distance .DELTA.S is deducted from the lambda target specification .lambda.- target to be maintained for the component protection. If the target λ target for component protection is, for example, 0.9 and if a safety distance ΔS of 0.02 has been determined in step 106, the lambda setpoint λ setpoint is 0.88. Notwithstanding the embodiment described above, it is understood that the lambda deviation .DELTA.S can also be a factor which is multiplied by the lambda target.

In den nun anschließenden Schritten 114 bis 120 erfolgt eine Regelung des dem Verbrennungsmotor 10 zuzuführenden Luft-Kraftstoff-Gemischs entsprechend der in Schritt 108 ermittelten Lambdasollvorgabe λSoll, wie er im Stand der Technik allgemein bekannt ist. Zu diesem Zweck erfolgt in Schritt 114 eine Abfrage, bei welcher der in Schritt 112 ermittelte Ist-Lambdawert λIst mit dem in Schritt 108 bestimmten Soll-Lambdawert λSoll verglichen wird. Insbesondere kann in Schritt 114 überprüft werden, ob die Differenz λIst - λSoll > 0 ist. Wird diese Abfrage bejaht, d.h. der aktuelle Lambdawert ist größer (magerer) als gewünscht, geht das Verfahren zu Schritt 116 über, wo eine dem Verbrennungsmotor 10 zugeführte Kraftstoffmenge mKS um ein vorbestimmtes Inkrement der Kraftstoffmenge ΔKS erhöht wird, um eine Anfettung des Luft-Kraftstoff-Gemischs zu erzielen. Wird die Abfrage in Schritt 114 andernfalls verneint, das heißt der Ist-Lambdawert λIst ist kleiner (fetter) als der Soll-Lambdawert λSoll, geht das Verfahren zu Schritt 118 über, wo die Kraftstoffmenge mKS um ein entsprechendes Inkrement ΔKS erniedrigt wird, um eine Abmagerung des Motors zu erzielen. In Schritt 120 erfolgt die Zuführung des Kraftstoffs zum Verbrennungsmotor 10 entsprechend der in Schritt 116 oder 118 ermittelten Kraftstoffmenge mKS.In the subsequent steps 114 to 120, a control of the air-fuel mixture to be supplied to the internal combustion engine 10 takes place in accordance with the lambda desired preset λ set determined in step 108, as is generally known in the prior art. For this purpose, a query takes place in step 114, in which the actual lambda value λ actual determined in step 112 is compared with the desired lambda value λ Soll determined in step 108. In particular, it can be checked in step 114 whether the difference λ actualsetpoint > 0. If this query is affirmative, ie the actual lambda value is greater (leaner) than desired, the method proceeds to step 116, where an amount of fuel m KS supplied to the internal combustion engine 10 is increased by a predetermined increment of the fuel quantity ΔKS in order to enrich the air To achieve fuel mixture. Otherwise, if the query is denied in step 114, that is, the actual lambda value λ actual is smaller (richer) than the desired lambda value λ setpoint , the method proceeds to step 118, where the fuel quantity m KS is decreased by a corresponding increment ΔKS in order to achieve a leaning of the engine. In step 120, the supply of the fuel to the internal combustion engine 10 takes place in accordance with the fuel quantity m KS ascertained in step 116 or 118.

Das Verfahren geht sodann zu Schritt 110 zurück, um das Sondensignal UIst erneut zu erfassen, in Schritt 112 den Ist-Lambdawert λIst in Abhängigkeit des Sondensignals UIst zu ermitteln und in Schritt 114 den Ist-Lambdawert λIst erneut mit der Sollvorgabe λSoll zu vergleichen. Dieser Zyklus wird während der gesamten Bauteileschutzmaßnahme solange wiederholt, bis die Bauteiltemperatur TM einen zulässigen Wert erreicht hat. Der Abfragezyklus zur Überprüfung des Bauteiltemperatur TM ist in Figur 2 nicht dargestellt.The method then returns to step 110 in order to detect the probe signal U actual again, in step 112 to determine the actual lambda value λ actual as a function of the probe signal U actual and in step 114, the actual lambda value λ actual again to be compared with the target specification λ target . This cycle is repeated during the entire component protection measure until the component temperature T M has reached a permissible value. The query cycle for checking the component temperature T M is in FIG. 2 not shown.

Dabei ist es möglich, jedoch nicht notwendig, dass bei jedem Durchgang die Schritte 104 bis 108 durchgeführt werden, da eine Veränderung des Sicherheitsabstandes ΔS und damit des Soll-Lambdawertes λSoll sich üblicherweise nicht kurzfristig ändert. Hingegen ist die Durchführung der Schritt 100 und 102 zur Bestimmung der Sondentemperatur TS in jedem Abfragezyklus gerade im Falle der Gemischanfettung zum Bauteileschutz sinnvoll, da hier eine sinkende Temperatur auch des Sensors zu erwarten ist.In this case, it is possible, but not necessary, for steps 104 to 108 to be carried out during each passage, since a change in the safety distance ΔS and thus of the desired lambda value λ nominal does not usually change in the short term. By contrast, the implementation of steps 100 and 102 for determining the probe temperature T S in each interrogation cycle, especially in the case of the mixture enrichment for component protection makes sense, since a sinking temperature is also to be expected from the sensor.

In dem in Figur 2 dargestellten Verfahrensablauf wird der Sicherheitsabstand ΔS auf den Ziel-Lambdawert λZiel angewendet, um so den Soll-Lambdawert λSoll für die Lambdaregelung festzulegen. Es versteht sich jedoch, dass in Abweichung zu diesem Beispiel ein entsprechender Sicherheitsabstand ΔS auch auf die in Schritt 112 angewendete Kennlinie angewendet werden kann, um diese so zu adaptieren, dass eine die Unsicherheit der Temperaturermittlung reflektierende Lambdastreuung berücksichtigt wird. Alternativ ist auch denkbar, den in Schritt 112 ermittelten Ist-Lambdawert λIst wie vorstehend beschrieben zu ermitteln und den Sicherheitsabstand ΔS auf den so ermittelten Ist-Lambdawert λIst anzuwenden. Sämtliche dieser Varianten sind als gleichwertig anzusehen.In the in FIG. 2 the process sequence shown, the safety distance .DELTA.S is applied to the target lambda value λ target , so as to set the desired lambda value λ target for the lambda control. However, it is understood that, in deviation from this example, a corresponding safety distance ΔS can also be applied to the characteristic curve used in step 112 in order to adapt it to take account of a lambda scattering which reflects the uncertainty of the temperature determination. Alternatively, it is also conceivable to determine the actual lambda value λ actual determined in step 112 as described above and to apply the safety distance ΔS to the actual lambda value λ actual thus determined. All of these variants are to be regarded as equivalent.

In einer bevorzugten Ausgestaltung der Erfindung wird der Sicherheitsabstand ΔS zusätzlich davon abhängig gemacht, welchen absoluten Wert der aktuelle Soll-Lambdawert des Motors annimmt. Damit kann berücksichtigt werden, dass manche Störgroßen in bestimmten Bereichen an Einfluss gewinnen. Beispielsweise beeinflusst die Sondentemperatur TS die Kennliniencharakteristik bei fetten Lambdawerten wesentlich stärker als bei mageren (siehe Figur 3). Somit kann die in Schritt 106 in Figur 2 angewendete Funktion zur Ermittlung des Sicherheitsabstandes ΔS den aktuellen Lambdawert dergestalt berücksichtigen, dass mit niedriger werdenden Lambdawerten eine Verstärkung des Sicherheitsabstandes ΔS erfolgt.In a preferred embodiment of the invention, the safety distance .DELTA.S is additionally made dependent on which absolute value assumes the current desired lambda value of the engine. This can take into account that some disturbances gain influence in certain areas. For example, the probe temperature T S influences the characteristic curve significantly more with rich lambda values than with lean lambda values (see FIG FIG. 3 ). Thus, in step 106 in FIG FIG. 2 The function used to determine the safety distance ΔS takes into account the current lambda value in such a way that as the lambda values decrease, the safety distance ΔS is increased.

Während anhand der Figur 2 die Berücksichtigung der Sondentemperatur TS als eine Störgröße bei der Lambdaerfassung dargestellt wurde, kann dies alternativ oder zusätzlich auch für die Störgröße der Alterung der Lambdasonde 22 erfolgen. Zu diesem Zweck wird die Alterung der Lambdasonde 22 beispielsweise mittels der nachgeschalteten Lambdasonde 24 (siehe Figur 1), die hier als Referenzsonde fungiert, erfasst. Insbesondere kann eine Abweichung vom mittleren Gemischwert über das Signal der Breibandlambdasonde 24 ermittelt werden und die Kennlinie der Lambdasonde 22 entsprechend korrigiert werden. Entsprechende Verfahren zur Berücksichtigung solcher Alterungseffekte und zur Korrektur der Kennlinie sind im Stand der Technik bekannt. Andere Verfahren zur Ermittlung eines Alterungskorrekturwertes können im Rahmen der vorliegenden Erfindung ebenfalls Anwendung finden.While based on the FIG. 2 the consideration of the probe temperature TS was shown as a disturbance in the lambda detection, this can alternatively or additionally also for the disturbance variable of the aging of the lambda probe 22. For this purpose, the aging of the lambda probe 22, for example by means of the downstream lambda probe 24 (see FIG. 1 ), which acts as a reference probe here. In particular, a deviation from the average mixture value can be determined via the signal of the Breibandlambdasonde 24 and the characteristic curve of the lambda probe 22 are corrected accordingly. Corresponding methods for taking account of such aging effects and for correcting the characteristic are known in the prior art. Other methods for determining an aging correction value may also be used within the scope of the present invention.

Erfindungsgemäß wird nun anhand des so ermittelten Alterungskorrekturwertes bewertet, welche Ungenauigkeiten die Alterung der Abgassonde trotz der Kennlinienkorrektur bei der Umrechnung des Sondensignals UIst in den Ist-Lambdawert λIst sich ergeben können. Ist die Sonde 22 beispielsweise noch gar nicht gealtert und ist die in Schritt 112 verwendete Umrechnungsvorschrift beziehungsweise Kennlinie korrekt hinterlegt, so wird es praktisch keine Abweichung des in Schritt 112 bestimmten Ist-Wertes von einem tatsächlichen Lambdawert geben. Somit bedarf es keiner Korrektur des für den Bauteileschutz einzuregelnden Ziel-Lambdawertes λZiel. Somit kann der Sicherheitsabstand ΔS in Schritt 106 im Extremfall gleich Null gesetzt werden.According to the present invention, the inaccuracies of the aging of the exhaust gas probe, in spite of the characteristic curve correction in the conversion of the probe signal U actual into the actual lambda value λ actual , can now be evaluated on the basis of the thus determined aging correction value. If, for example, the probe 22 has not yet aged and the conversion rule or characteristic curve used in step 112 is stored correctly, there will be virtually no deviation of the actual value determined in step 112 from an actual lambda value. Thus, there is no need to correct the target lambda value λ target to be set for the component protection. Thus, the safety distance .DELTA.S can be set equal to zero in step 106 in extreme cases.

Demgegenüber wird sich bei Alterung der Lambdasonde 22 und einhergehender Korrektur der Sondenkennlinie ein Alterungskorrekturwert ergeben. Vom Maß dieses Korrekturwertes wird nun erfindungsgemäß beispielsweise bewertet, welche Toleranz im ermittelten Ist-Lambdawert trotz Kennlinienkorrektur noch verbleiben kann. Abhängig hiervon wird der Sicherheitsabstand ΔS, das heißt die zusätzlich notwendige Anfettung für den Bauteileschutz festgelegt.In contrast, an aging correction value will result on aging of the lambda probe 22 and concomitant correction of the probe characteristic. From the extent of this correction value is now inventively evaluated, for example, which tolerance in the determined actual lambda value despite characteristic correction can still remain. Depending on this, the safety distance .DELTA.S, that is the additionally necessary enrichment for the component protection is determined.

In einer weiteren Ausgestaltung werden Einflüsse, welche nicht explizit mit Bewertungsgrößen quantifiziert werden können, aber dennoch die Lambdaermittlung störend beeinflussen können, berücksichtigt. Insbesondere kann hier der Einfluss des Betriebspunktes des Verbrennungsmotors 10 bewertet werden, beispielsweise indem ein zusätzlicher Sicherheitsabstand betriebspunktabhängig aus einem Drehzahl-Last-Kennfeld ermittelt wird.In a further embodiment, influences which can not be quantified explicitly with evaluation variables but nevertheless can disturb the lambda determination are taken into account. In particular, the influence of the operating point of the internal combustion engine 10 can be evaluated here, for example by determining an additional safety distance operating point-dependent from a speed-load characteristic map.

Der besondere Vorteil des erfindungsgemäßen Verfahrens kann somit darin gesehen werden, dass für die statistische Mehrheit der Sonden, welche keine oder nur geringe Alterung aufweisen, sowie für die Mehrheit der Betriebsbedingungen, an denen der Einfluss von signalverfälschenden Störgrößen gering ist, eine Kraftstoffersparnis erzielt wird. Dies wird dadurch erreicht, dass nicht pauschal das volle theoretisch mögliche Toleranzband des Messfehlers berücksichtigt wird, sondern stets das gerade nötige.The particular advantage of the method according to the invention can therefore be seen in the fact that fuel savings are achieved for the statistical majority of the probes which have little or no aging and for the majority of the operating conditions in which the influence of signal-distorting disturbance variables is small. This is achieved by not considering the full theoretically possible tolerance band of the measuring error, but always the one that is needed.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Verbrennungsmotorinternal combustion engine
1212
KraftstoffeinspritzanlageFuel injection system
1414
AnsauganlageIntake
1616
Stellelementactuator
1818
Abgaskanalexhaust duct
2020
Katalysatorcatalyst
2222
Abgassonde/LambdasondeExhaust gas sensor / oxygen sensor
2424
Abgassondegas probe
2626
Motorsteuerungmotor control
2828
Regelvorrichtungcontrol device

Claims (7)

  1. A method for regulating an air-fuel ratio of an internal combustion engine (10), comprising the steps:
    Detection (110) of an actual probe signal (UIst) of an exhaust gas probe (22) dependent on the exhaust gas composition of the exhaust gas of an internal combustion engine (10),
    determination (112) of the exhaust gas composition (λIst) as a function the actual probe signal (UIst) by means of a characteristic curve or a calculation rule,
    comparison (114) of the determined exhaust gas composition (λIst) with a target value (ASoll) or threshold value,
    manipulation (116, 118, 120) of the air-fuel ratio supplied to the internal combustion engine (10), if the determined exhaust gas composition (λIst) attains or exceeds the target value (λSoll) or threshold value,
    wherein a safety margin (ΔS), which takes into account an impact of at least one disturbance variable on the actual probe signal (UIst), is defined (106), and
    the safety margin (ΔS) is applied (108) to the characteristic curve, the calculation rule, the actual probe signal (UIst), the target value (λSoll) or threshold value,
    characterized in that
    an evaluation (104) of the current accuracy of the at least one disturbance variable and/or a current impact of the at least one disturbance variable on the probe signal (UIst) is performed and
    the safety margin (ΔS) owing to the at least one disturbance variable as a function of the evaluation is variably defined (106), wherein
    for the evaluation of the current accuracy of the at least one disturbance variable a spreading width of detected values of said disturbance variable in a past period of time is determined and the safety margin (ΔS) is defined as a function of the spreading width, or
    for the evaluation of the current accuracy of the at least one disturbance variable a duration is determined, which has elapsed since a past calibration of a detection system of said disturbance variable, and the safety margin (ΔS) is defined as a function of the duration, or
    for the evaluation of the current impact of the at least one disturbance variable on the probe signal an absolute height of the currently detected disturbance variable is determined and the safety margin (ΔS) is defined as a function of the absolute height.
  2. The method according to Claim 1, characterized in that the disturbance variable comprises at least one of the following: Temperature of the exhaust gas probe (22), aging of the exhaust gas probe (22) and a chemical poisoning of the exhaust gas probe (22).
  3. The method according to any one of the preceding claims, characterized in that the target value or threshold value is a lambda specification for a mixture enrichment for component protection against overheating.
  4. The method according to any one of the preceding claims, characterized in that the target value comprises a lambda specification to be regulated as part of a lambda regulation.
  5. The method according to any one of the preceding claims, characterized in that the safety margin (ΔS) is further defined as a function of an operating point of the internal combustion engine (10), in particular as a function of an engine speed and/or an engine load.
  6. The method according to any one of the preceding claims, characterized in that the exhaust gas probe (22) is a lambda probe, in particular a jump lambda probe.
  7. A regulating device (28) for regulating an air-fuel ratio of an internal combustion engine (10), which is configured for implementing the method according to any one of Claims 1 to 6.
EP12795783.5A 2011-11-28 2012-11-27 Method and apparatus for controlling an air fuel ratio of an internal combustion engine Active EP2786003B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011087213A DE102011087213A1 (en) 2011-11-28 2011-11-28 Method and device for controlling an air-fuel ratio of an internal combustion engine
PCT/EP2012/073690 WO2013079468A1 (en) 2011-11-28 2012-11-27 Method and device for regulating an air-fuel ratio of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2786003A1 EP2786003A1 (en) 2014-10-08
EP2786003B1 true EP2786003B1 (en) 2019-09-18

Family

ID=47294875

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12795783.5A Active EP2786003B1 (en) 2011-11-28 2012-11-27 Method and apparatus for controlling an air fuel ratio of an internal combustion engine

Country Status (5)

Country Link
US (1) US9714623B2 (en)
EP (1) EP2786003B1 (en)
CN (1) CN103958867B (en)
DE (1) DE102011087213A1 (en)
WO (1) WO2013079468A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108240268B (en) * 2016-12-27 2020-07-14 上海汽车集团股份有限公司 Electronic actuator in vehicle and control method thereof
CN113217210B (en) * 2021-04-16 2023-05-12 联合汽车电子有限公司 Optimization method and system for oxygen sensor low-temperature closed-loop control, engine closed-loop control system and readable storage medium
FR3123089A1 (en) * 2021-05-20 2022-11-25 Psa Automobiles Sa METHOD FOR IMPROVING A MEASUREMENT SIGNAL OF AN OXYGEN SENSOR

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1048834A2 (en) * 1999-04-28 2000-11-02 Siemens Aktiengesellschaft Method for correcting the characteristic curve of a linear lambda sensor
WO2003010497A1 (en) * 2001-07-11 2003-02-06 Robert Bosch Gmbh Method and device for the correction of the dynamic error of a sensor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19629552C1 (en) * 1996-07-22 1997-12-18 Siemens Ag IC engine exhaust gas probe temp. drift compensation device
DE10036129B4 (en) 2000-07-25 2009-12-17 Volkswagen Ag Method for measuring an exhaust gas composition
DE102006053110B3 (en) * 2006-11-10 2008-04-03 Audi Ag Lambda value verifying method for lambda sensor, involves comparing hops of temporal deflection occurring at inflection points of voltage signal with each other, and carrying out verification of indicated lambda value based on comparison
DE102007015362A1 (en) 2007-03-30 2008-10-02 Volkswagen Ag Method for lambda control in combustion engine of motor vehicle, involves using measuring signal on two points of range of lambda-values, and correcting measuring signal on one of two points
DE102007038478A1 (en) * 2007-08-14 2009-02-19 Volkswagen Ag Method for λ control in fuel-shortage or excess fuel areas in a Nernst probe
DE102007038487A1 (en) 2007-08-14 2009-02-19 Basf Coatings Ag Aqueous coating material, process for its preparation and its use
CN102239322B (en) 2008-12-05 2014-04-30 丰田自动车株式会社 Device for judging imbalance of air/fuel ratio among cylinders of multicylinder internal combustion engine
DE102009053411A1 (en) * 2009-11-14 2011-05-19 Volkswagen Ag Method for processing a measured, ohmic resistance R (t) of a measuring element with temperature-dependent, ohmic resistance
DE102010003143B4 (en) 2010-03-23 2014-08-28 Ford Global Technologies, Llc Method for operating a spark-ignited internal combustion engine and internal combustion engine for carrying out such a method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1048834A2 (en) * 1999-04-28 2000-11-02 Siemens Aktiengesellschaft Method for correcting the characteristic curve of a linear lambda sensor
WO2003010497A1 (en) * 2001-07-11 2003-02-06 Robert Bosch Gmbh Method and device for the correction of the dynamic error of a sensor

Also Published As

Publication number Publication date
US20150096544A1 (en) 2015-04-09
CN103958867A (en) 2014-07-30
EP2786003A1 (en) 2014-10-08
DE102011087213A1 (en) 2013-05-29
US9714623B2 (en) 2017-07-25
CN103958867B (en) 2017-08-15
WO2013079468A1 (en) 2013-06-06

Similar Documents

Publication Publication Date Title
DE102008001244B4 (en) Oxygen sensor output correction device for an internal combustion engine
DE102012211687B4 (en) Method and control unit for detecting a voltage offset of a voltage lambda characteristic curve
DE102012211683B4 (en) Method and device for correcting a characteristic curve of a two-point lambda sensor
DE102016222418A1 (en) Method for controlling a filling of a storage of a catalyst for an exhaust gas component
DE112015004509B4 (en) Control device for an internal combustion engine
DE102008042549A1 (en) Method and device for diagnosing an exhaust gas probe
DE102012208092B4 (en) Method and control unit for compensating for a voltage offset of a two-point lambda probe
DE102011085115A1 (en) Method and device for adapting a lambda control
DE102013202989A1 (en) DYNAMIC CATALYST CONTROL AND REGULATION
EP2786003B1 (en) Method and apparatus for controlling an air fuel ratio of an internal combustion engine
DE102013216024B4 (en) Method for lambda control of an internal combustion engine and control device
EP3224464B1 (en) Method for detecting a voltage offset at least in a portion of a voltage lambda characteristic curve
DE102008011833B4 (en) Method for controlling a lambda-controlled exhaust system of an internal combustion engine
DE102014202002B4 (en) Method for operating an internal combustion engine
DE102012204332A1 (en) Device i.e. control device, for operating combustion engine of motor car, has indirect injection valve whose respective actuating signal is activated based on respective indirect adaptation value in respective mode of operation of valve
DE102009047898A1 (en) Fuel-injection control apparatus for internal combustion engine i.e. compression auto-ignition type diesel engine, has parameter setting part setting control parameter for injection timing control part
DE19810523B4 (en) Device for detecting ionic current for an internal combustion engine
EP2786133B1 (en) Method for determining a lambda value or an oxygen concentration of a gas mixture and corresponding combustion engine
EP1363008B1 (en) Method and apparatus to control the fuel injection amount of an auto-ignition engine
EP0349811A1 (en) Feed-back control system for a combustion engine
EP1506348A1 (en) Method and device for controlling the quantity of fuel to be injected into a self-igniting internal combustion engine
WO2009135738A1 (en) Method and device for the diagnosis of the dynamics of a broadband lambda probe
DE102017200785A1 (en) Method for operating an internal combustion engine at idle after a start
DE10316185A1 (en) Method and device for controlling an internal combustion engine
DE102005057974A1 (en) Internal combustion engine`s e.g. petrol engine, air flow and/or fuel-air ratio controlling method, involves controlling control valve based on cylinder-individual signal portions and determining cylinder-individual interferences

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAHN, HERMANN

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180503

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190509

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190729

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012015311

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1181583

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191219

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200120

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012015311

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191127

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200119

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

26N No opposition filed

Effective date: 20200619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1181583

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121127

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231123

Year of fee payment: 12

Ref country code: DE

Payment date: 20231130

Year of fee payment: 12