DE102012218543A1 - Vorrichtung zur Spannungswandlung sowie Bordnetz mit einer genannten Vorrichtung - Google Patents

Vorrichtung zur Spannungswandlung sowie Bordnetz mit einer genannten Vorrichtung Download PDF

Info

Publication number
DE102012218543A1
DE102012218543A1 DE102012218543.7A DE102012218543A DE102012218543A1 DE 102012218543 A1 DE102012218543 A1 DE 102012218543A1 DE 102012218543 A DE102012218543 A DE 102012218543A DE 102012218543 A1 DE102012218543 A1 DE 102012218543A1
Authority
DE
Germany
Prior art keywords
potential
voltage
terminal
output
potential terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102012218543.7A
Other languages
English (en)
Inventor
Sven Sylla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Priority to DE102012218543.7A priority Critical patent/DE102012218543A1/de
Priority to EP13756179.1A priority patent/EP2907230A2/de
Priority to JP2015536033A priority patent/JP2015532577A/ja
Priority to CN201380053022.8A priority patent/CN104685773A/zh
Priority to US14/435,244 priority patent/US9837900B2/en
Priority to PCT/EP2013/068246 priority patent/WO2014056661A2/de
Publication of DE102012218543A1 publication Critical patent/DE102012218543A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/009Converters characterised by their input or output configuration having two or more independently controlled outputs

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Offenbart wird eine Vorrichtung (V) zur Spannungswandlung mit einer ersten transformatorlosen Gleichspannungswandlereinheit (GW1) mit einem ersten Ausgangspotentialanschluss (Pa1), einer zweiten transformatorlosen Gleichspannungswandlereinheit (GW2) mit einem zweiten Ausgangspotentialanschluss (Pa2). Die beiden Gleichspannungswandlereinheiten (GW1, GW2) weisen einen gemeinsamen Eingangspotentialanschluss (Pe) und einen gemeinsamen Bezugspotentialanschluss (Pb) auf. Die erste Gleichspannungswandlereinheit (GW1) erzeugt aus dem Eingangsspannungspotential (Φe) ein erstes Ausgangsspannungspotential (Φa1) am ersten Ausgangspotentialanschluss (Pa1), welches bezogen auf das Bezugsspannungspotential (Φb) einen höheren Spannungspotentialwert aufweist. Die zweite Gleichspannungswandlereinheit (GW2) erzeugt aus dem Eingangsspannungspotential (Φe) ein zweites Ausgangsspannungspotential (Φa2) am zweiten Ausgangspotentialanschluss (Pa2), welches bezogen auf das Bezugsspannungspotential (Φb) einen niedrigeren Spannungspotentialwert aufweist. Die Vorrichtung ist kostengünstig herstellbar und bietet ausreichende Sicherheit.

Description

  • Die vorliegende Erfindung betrifft eine Vorrichtung zur Spannungswandlung sowie ein Bordnetz mit einer genannten Vorrichtung. Ferner betrifft die Erfindung ein Fahrzeug mit einem genannten Bordnetz.
  • Gattungsgemäße Vorrichtungen zur Spannungswandlung finden ihre Anwendungen in nahezu allen elektrischen Systemen, in denen verschiedene Systemspannungen vorliegen und funktionsbedingt eine Systemspannung in eine andere Systemspannung umgewandelt wird. Ein Beispiel für die genannten Systeme ist ein Bordnetz eines Hybrid- oder Elektrofahrzeugs. Ein derartiges Bordnetz umfasst in der Regel zwei oder mehr Bordnetzzweige mit jeweils einer Bordnetzspannung, wobei die Bordnetzspannungen verschiedener Bordnetzzweige unterschiedliche Spanungswerte aufweisen. Dabei umfasst ein erster Bordnetzzweig Stromverbraucher mit einer niedrigen Verbrauchsleistung, wie zum Beispiel ein Navigationsgerät, welche mit einer 12 Volt Bordnetzspannung versorgt werden. Dieser erste Bordnetzzweig wird dann beispielhaft als Niederspannungsbordnetzzweig bezeichnet. Ein zweiter Bordnetzzweig umfasst Stromverbraucher mit einer hohen Verbrauchsleistung, wie zum Beispiel einen Elektromotor, der als Anlasser für den Verbrennungsmotor oder als Antrieb des Fahrzeugs dient. In diesem zweiten Bordnetzzweig herrscht in der Regel eine vergleichsweise hohe Bordnetzspannung, welche bei 100 Volt oder höher liegt. Dieser zweite Bordnetzzweig wird dann beispielhaft als Hochspannungsbordnetzzweig genannt. Zwischen diesen beiden Bordnetzzweigen findet oft ein Stromfluss statt, um beispielweise bei einem sprungartig steigenden Strombedarf durch Zuschalten eines leistungsstarken Stromverbrauchers in dem zweiten Bordnetzzweig diesen vor einem schädlichen Spannungseinbruch zu bewahren. Hierzu weist das Bordnetz eine Vorrichtung zur Spannungswandlung auf, welche die Bordnetzspannung des ersten Bordnetzzweigs in die andere Bordnetzspannung des zweiten Bordnetzzweigs umwandelt.
  • Wie vielen anderen elektrischen Systemen unterliegt das Bordnetz eines Fahrzeugs einer strengen Sicherheitsanforderung, gefährliche Körperströme möglichst zu vermeiden, welche zwischen zwei Stromanschlüssen bei einer Berührspannung von über 60v entstehen. Stromanschl- Zur Einhaltung dieser Sicherheitsanforderung wird die Vorrichtung zur Spannungswandlung eines Bordnetzes in der Regel mit Transformatoren ausgestattet, welche die Bordnetzzweige voneinander galvanisch trennen. Durch diese galvanische Trennung kann zwischen den Stromanschlüssen verschiedener Bordnetzzweige, nämlich zwischen den eingangsseitigen Anschlüssen und den ausgangsseitigen Anschlüssen der Vorrichtung, kein Strom fließen. Folglich liegt zwischen den Stromanschlüssen verschiedener Bordnetzzweige auch keine Spannung, welche die maximal erlaubte Berührungsspannung überschreiten könnte. Derartige Vorrichtungen haben jedoch einen Nachteil, dass diese aufgrund der Transformatoren mit galvanischer Trennfunktion teuer sind.
  • Damit besteht die Aufgabe der vorliegenden Erfindung darin, eine Möglichkeit zur kostengünstigen Spannungswandlung bereitzustellen, welche dennoch ausreichende Sicherheit bietet.
  • Diese Aufgabe wird durch die unabhängigen Ansprüche gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
  • Gemäß einem ersten Aspekt der Erfindung wird eine Vorrichtung zur Spannungswandlung geschaffen, welche eine erste transformatorlose Gleichspannungswandlereinheit mit einem ersten Ausgangspotentialanschluss zum Bereitstellen eines ersten Ausgangsspannungspotentials, und eine zweite transformatorlose Gleichspannungswandlereinheit mit einem zweiten Ausgangspotentialanschluss zum Bereitstellen eines zweiten Ausgangsspannungspotentials umfasst. Der erste und der zweite Ausgangspotentialanschluss sind zugleich die beiden ausgangsseitigen Anschlüsse der Vorrichtung. Die erste und die zweite Gleichspannungswandlereinheit weisen einen gemeinsamen Eingangspotentialanschluss zum Anlegen eines gemeinsamen Eingangsspannungspotentials und einen gemeinsamen Bezugspotentialanschluss zum Anlegen eines gemeinsamen Bezugsspannungspotentials auf. Der gemeinsame Eingangspotentialanschluss und der gemeinsame Bezugspotentialanschluss sind zugleich die beiden eingangsseitigen Anschlüsse der Vorrichtung. Die erste Gleichspannungswandlereinheit erzeugt aus dem an dem Eingangspotentialanschluss anliegenden Eingangsspannungspotential ein erstes Ausgangsspannungspotential an dem ersten Ausgangspotentialanschluss, wobei das erste Ausgangsspannungspotential bezogen auf das Bezugsspannungspotential an dem Bezugspotentialanschluss einen höheren Spannungspotentialwert aufweist. Analog erzeugt die zweite Gleichspannungswandlereinheit aus dem gleichen Eingangsspannungspotential ein zweites Ausgangsspannungspotential an dem zweiten Ausgangspotentialanschluss, wobei das zweite Ausgangsspannungspotential bezogen auf das gleiche Bezugsspannungspotential einen niedrigeren Spannungspotentialwert aufweist.
  • Die Differenz zwischen dem ersten und dem zweiten Ausgangsspannungspotential bildet dabei die Ausgangsspannung der Vorrichtung zwischen dem ersten und dem zweiten Ausgangspotentialanschluss beziehungsweise zwischen den beiden ausgangsseitigen Anschlüssen der Vorrichtung.
  • Der Begriff „transformatorlos“ bedeutet hierbei, dass die Vorrichtung, beziehungsweise die erste und die zweite Gleichspannungswandlereinheit Vorrichtung, keinen Transformator, beziehungsweise keine galvanische Trennung
    • • zwischen dem Eingangspotentialanschluss und dem ersten Ausgangspotentialanschluss,
    • • zwischen dem Eingangspotentialanschluss und dem zweiten Ausgangspotentialanschluss,
    • • zwischen dem Bezugspotentialanschluss und dem ersten Ausgangspotentialanschluss, und/oder
    • • zwischen dem Bezugspotentialanschluss und dem zweiten Ausgangspotentialanschluss,
    durch einen Transformator, aufweist.
  • Ein „gemeinsamer Potentialanschluss“ bedeutet einen gemeinsamen elektrischen Knotenpunkt mit demselben Spannungspotential in einer Schaltungstopologie der Vorrichtung.
  • Damit ist eine Vorrichtung zur Spannungswandlung geschaffen, welche keinen Transformator, beziehungsweise keine galvanische Trennung durch einen Transformator, aufweist und somit kostengünstig herstellbar ist. Zudem wird ermöglicht, dass bei entsprechender Ausgestaltung die oben genannte Sicherheitsanforderung erfüllt werden kann. Dadurch, dass zeitgleich ein gegenüber dem Eingangsspannungspotential und dem Bezugsspannungspotential höheres Ausgangsspannungspotential und ein gegenüber dem Eingangsspannungspotential und dem Bezugsspannungspotential niedrigeres Ausgangsspannungspotential erzeugt werden können, kann beispielsweise theoretisch eine Ausgangsspannung von bis zu 120 Volt bereitgestellt werden, ohne dabei die oben genannte Sicherheitsanforderung mit einer maximalen Berührungsspannung von 60 Volt zu verletzen.
  • Gemäß einer vorteilhaften Ausgestaltung ist die erste Gleichspannungswandlereinheit als ein Aufwärtswandler ausgebildet. Dies hat den Vorteil, dass man mit der genannten Vorrichtung einfach das erste Ausgangsspannungspotential erzeugen kann, welches einen höheren Spannungspotentialwert aufweist als das Eingangsspannungspotential.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung der Vorrichtung ist die zweite Gleichspannungswandlereinheit als ein Inverswandler ausgebildet. Dies hat den Vorteil, dass man mit der genannten Vorrichtung einfach das zweite Ausgangsspannungspotential erzeugen kann, welches gegenüber dem Eingangsspannungspotential und somit gegenüber dem ersten Ausgangsspannungspotential einen negativen Spannungspotentialwert aufweist.
  • Zusammen bieten die beiden oben genannten vorteilhaften Ausgestaltungen den Vorteil, dass die Ausgangsspannung der Vorrichtung, welche eine Potentialdifferenz zwischen dem ersten und dem zweiten Ausgangsspannungspotential ist, einen höheren Spannungswert aufweisen kann im Vergleich zu einer Potentialdifferenz zwischen dem ersten Ausgangsspannungspotential und dem Eingangsspannungspotential oder zwischen dem zweiten Ausgangsspannungspotential und dem Eingangsspannungspotential. Damit kann die Vorrichtung transformatorlos mit einfachen und kostengünstigen Mitteln insgesamt eine höhere Spannungsverstärkung bei der Spannungswandlung erzielen.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung weist die erste Gleichspannungswandlereinheit zwischen dem Eingangspotentialanschluss und dem Bezugspotentialanschluss eine erste Spule und einen ersten steuerbaren Schalter in einer Reihenschaltung auf. Zwischen dem Eingangspotentialanschluss und dem ersten Ausgangspotentialanschluss weist die erste Gleichspannungswandlereinheit die erste Spule und einen zweiten steuerbaren Schalter in einer Reihenschaltung auf. Zwischen dem Bezugspotentialanschluss und dem ersten Ausgangspotentialanschluss weist die erste Gleichspannungswandlereinheit den ersten und den zweiten steuerbaren Schalter in einer Reihenschaltung sowie einen ersten Kondensator in einer Parallelschaltung zu der von dem ersten und dem zweiten Schalter gebildeten Reihenschaltung auf.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung weist die zweite Gleichspannungswandlereinheit zwischen dem Eingangspotentialanschluss und dem Bezugspotentialanschluss einen dritten steuerbaren Schalter und eine zweite Spule in einer Reihenschaltung auf. Zwischen dem Eingangspotentialanschluss und dem zweiten Ausgangspotentialanschluss weist die zweite Gleichspannungswandlereinheit den dritten steuerbaren Schalter und einen vierten steuerbaren Schalter in einer Reihenschaltung auf. Zwischen dem Bezugspotentialanschluss und dem zweiten Ausgangspotentialanschluss weist die zweite Gleichspannungswandlereinheit die zweite Spule und den vierten steuerbaren Schalter in einer Reihenschaltung sowie einen zweiten Kondensator in einer Parallelschaltung zu der von der zweiten Spule und dem vierten steuerbaren Schalter gebildeten Reihenschaltung auf.
  • Die zuletzt genannten beiden Ausgestaltungen der Vorrichtung bieten den Vorteil, dass die Vorrichtung aus einer einfachen Schaltung mit kostengünstigen standardisierten Bauelementen hergestellt werden kann.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung kann anstelle des zweiten eine erste Diode und anstelle des vierten Schalters eine zweite Diode verwendet werden. Dabei wird die erste Diode zwischen der ersten Spule und dem ersten Ausgangspotentialanschluss, und in Richtung von der ersten Spule zu dem ersten Ausgangspotentialanschluss hin leitend und umgekehrt sperrend angeordnet. Die zweite Diode wird zwischen dem dritten steuerbaren Schalter und dem zweiten Ausgangspotentialanschluss, und in Richtung von dem zweiten Ausgangspotentialanschluss zu dem dritten steuerbaren Schalter hin leitend und umgekehrt sperrend angeordnet.
  • Die Anwendung des zweiten und des vierten Schalters bietet gegenüber der Anwendung von der ersten und der zweiten Diode den Vorteil, dass Stromflüsse von der ersten Spule zu dem ersten Kondensator beziehungsweise von der zweiten Spule zu dem zweiten Kondensator schneller hergestellt und unterbrochen werden können.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung weist die Vorrichtung ferner einen ersten Signaleingangsanschluss zum Empfangen eines ersten pulsweitenmodulierten Steuersignals zum Ansteuern des ersten und des zweiten Schalters auf. Dabei ist der erste oder der zweite Schalter mit einem ersten Steuersignalanschluss versehen. Ferner ist zwischen dem ersten Signaleingangsanschluss und dem ersten Steuersignalanschluss ein erster Inverter zum Invertieren des ersten Steuersignals vorgesehen.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung weist die Vorrichtung ferner analog einen zweiten Signaleingangsanschluss zum Empfangen eines zweiten pulsweitenmodulierten Steuersignals zum Ansteuern des dritten und des vierten Schalters auf. Dabei ist der dritte oder der vierte Schalter mit einem zweiten Steuersignalanschluss versehen. Ferner ist zwischen dem zweiten Signaleingangsanschluss und dem zweiten Steuersignalanschluss ein zweiter Inverter zum Invertieren des zweiten Steuersignals vorgesehen.
  • Durch die beiden zuletzt genannten vorteilhaften Ausgestaltungen ist eine Vorrichtung geschaffen, bei der die erste und die zweite Gleichspannungswandlereinheit jeweils einen ersten und einen zweiten einstellbaren Spannungsverstärkungsfaktor aufweisen. Die Einstellung des ersten und des zweiten Spannungsverstärkungsfaktors erfolgt dabei durch die Änderung des Tastgrades des ersten beziehungsweise des zweiten, pulsweitenmodulierten Steuersignals.
  • Die beiden zuletzt genannten vorteilhaften Ausgestaltungen bieten somit den Vorteil, dass die Ausgangsspannungspotentiale bei einem gleichbleibenden Eingangsspannungspotential und bei Bedarf jederzeit durch eine einfache Änderung der Tastgrade der pulsweitenmodulierten Steuersignale geändert werden können.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung sind das erste und das zweite Steuersignal ein und dasselbe pulsweitenmodulierte Steuersignal. Damit können die vier Schalter zeitgleich mit nur einem Steuersignal angesteuert werden.
  • Damit ist eine Vorrichtung geschaffen, welche gemäß einer vorteilhaften Ausgestaltung in der Lage ist, aus einer Eingangsspannung von zum Beispiel 12 Volt eine Ausgangsspannung von über 100 Volt zwischen dem ersten und dem zweiten Ausgangspotentialanschluss zu erzeugen, ohne dabei die oben genannte Sicherheitsanforderung zu verletzen.
  • Dabei kann die erste Gleichspannungswandlereinheit ein erstes Ausgangsspannungspotential bereitstellen, welches gegenüber dem Eingangsspannungspotential und dem Bezugsspannungspotential um einen gegenüber der maximal erlaubten Berührungsspannung von 60 Volt höheren Potentialwert aufweist. Hierzu kann das erste pulsweitenmodulierte Steuersignal beispielsweise einen Tastgrad von 4/5 aufweisen, um den ersten Spannungsverstärkungsfaktor auf eine Spannungsverstärkung von 5 einzustellen und somit aus dem Eingangsspannungspotential von 12 Volt ein erstes Ausgangsspannungspotential mit einem Spannungspotentialwert von 60 Volt zu erzeugen. Liegt der Bezugspotentialanschluss auf Massepotential und beträgt das Eingangsspannungspotential 12 Volt bezogen auf das Massepotential, so kann die erste Gleichspannungswandlereinheit aus dem Eingangsspannungspotential und mit einem ersten, über das erste Steuersignal einstellbaren Spannungsverstärkungsfaktor von 5 ein erstes Ausgangsspannungspotential von 60 Volt bereitstellen (erstes Ausgangsspannungspotential = Eingangsspannungspotential × erster Spannungsverstärkungsfaktor = 12 Volt × 5 = 60 Volt). Dabei liegen die Potentialdifferenzen zwischen dem ersten Ausgangspotentialanschluss und dem Eingangspotentialanschluss und zwischen dem ersten Ausgangspotentialanschluss und dem Bezugspotentialanschluss unter beziehungsweise gleich der maximal erlaubten Berührungsspannung von 60 Volt (|erstes Ausgangsspannungspotential – Eingangsspannungspotential| = |60 Volt – 12 Volt| = 48 Volt; |erstes Ausgangsspannungspotential – Bezugsspannungspotential| = |60 Volt – 0 Volt| = 60 Volt).
  • Analog kann die zweite Gleichspannungswandlereinheit ein zweites Ausgangsspannungspotential bereitstellen, welches gegenüber dem Eingangsspannungspotential und dem Bezugsspannungspotential um einen gegenüber der maximal erlaubten Berührungsspannung von 60 Volt niedrigeren Potentialwert aufweist. Hierzu kann das zweite pulsweitenmodulierte Steuersignal beispielsweise ebenfalls einen Tastgrad von 4/5 aufweisen, um den zweiten Spannungsverstärkungsfaktor auf einen Faktorwert von –4 einzustellen und aus dem Eingangsspannungspotential von 12 Volt ein zweites Ausgangsspannungspotential mit einem Spannungspotentialwert von –48 Volt zu erzeugen. Bei dem Bezugsspannungspotential von 0 Volt und dem Eingangsspannungspotential von 12 Volt kann die zweite Gleichspannungswandlereinheit aus dem Eingangsspannungspotential und mit einem zweiten, über das zweite Steuersignal einstellbaren Spannungsverstärkungsfaktor von –4 ein zweites Ausgangsspannungspotential von –48 Volt bereitstellen (zweites Ausgangsspannungspotential = Eingangsspannungspotential × zweiter Spannungsverstärkungsfaktor = 12 Volt × –4 = –48 Volt). Dabei liegen die Potentialdifferenzen zwischen dem zweiten Ausgangspotentialanschluss und dem Eingangspotentialanschluss und zwischen dem zweiten Ausgangspotentialanschluss und dem Bezugspotentialanschluss ebenfalls unter beziehungsweise gleich der maximal erlaubten Berührungsspannung von 60 Volt (|zweites Ausgangsspannungspotential – Eingangsspannungspotential| = |–48 Volt – 12 Volt| = 60 Volt; |zweites Ausgangsspannungspotential – Bezugsspannungspotential| = |–48 Volt – 0 Volt| = 48 Volt). Dabei bedeutet Spannungsverstärkungsfaktor von –4, dass die zweite Gleichspannungswandlereinheit den Eingangsspannungspotential um vierfach verstärkt und das verstärkte Spannungspotential invertiert an das zweite Ausgangspotentialanschluss ausgibt.
  • Da die Ausgangsspannung der Vorrichtung die Potentialdifferenz zwischen dem ersten und dem zweiten Ausgangsspannungspotential ist, ergibt sich somit aus der Differenz zwischen dem ersten und dem zweiten Ausgangsspannungspotential eine Ausgangsspannung der Vorrichtung mit 108 Volt (|erstes Ausgangsspannungspotential – zweites Ausgangsspannungspotential| = |60 Volt – (–48 Volt)| = 108 Volt). Zugleich ist die oben genannte Sicherheitsanforderung erfüllt, da die Potentialdifferenzen zwischen dem Eingangspotentialanschluss und dem ersten Ausgangspotentialanschluss, zwischen dem Eingangspotentialanschluss und dem zweiten Ausgangspotentialanschluss, zwischen dem Bezugspotentialanschluss und dem ersten Ausgangspotentialanschluss und zwischen dem Bezugspotentialanschluss und dem zweiten Ausgangspotentialanschluss die maximal erlaubte Berührungsspannung von 60 Volt nicht überschreiten.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein Bordnetz für ein Fahrzeug bereitgestellt, das einen ersten Bordnetzzweig mit einer ersten Bordnetzspannung und einen zweiten Bordnetzzweig mit einer zweiten Bordnetzspannung sowie eine oben beschriebene Vorrichtung umfasst. Dabei wird die erste Bordnetzspannung des ersten Bordnetzzweigs zwischen dem Eingangspotentialanschluss und dem Bezugspotentialanschluss der ersten bzw. der zweiten Gleichspannungswandlereinheit angelegt. Die zweite Bordnetzspannung des zweiten Bordnetzzweigs wird zwischen dem ersten Ausgangspotentialanschluss der ersten Gleichspannungswandlereinheit und dem zweiten Ausgangspotentialanschluss der zweiten Gleichspannungswandlereinheit angelegt.
  • Gemäß einer vorteilhaften Ausgestaltung weist das Bordnetz zwischen dem ersten Ausgangspotentialanschluss und dem Bezugspotentialabschluss einen ersten Energiespeicher, und zwischen dem Bezugspotentialabschluss und dem zweiten Ausgangspotentialanschluss einen zweiten Energiespeicher, auf. Dabei ist die erste Gleichspannungswandlereinheit zur Regelung der Ladespannung des ersten Energiespeichers ausgebildet. Analog ist die zweite Gleichspannungswandlereinheit zur Regelung der Ladespannung des zweiten Energiespeichers ausgebildet. Also die erste Gleichspannungswandlereinheit ist derart ausgebildet, dass diese so wie ein Ladungszustandsausgleicher (auf Englisch „Balancer“) die Ladespannung des ersten Energiespeichers regelt und somit den ersten Energiespeichers vor einer Überladung schützt. Analog ist die zweite Gleichspannungswandlereinheit derart ausgebildet, dass diese ebenfalls wie ein Ladungszustandsausgleicher die Ladespannung des zweiten Energiespeichers regelt und somit den zweiten Energiespeichers vor einer Überladung schützt.
  • Die beiden Energiespeicher dienen zum Bereitstellen elektrischer Energie für das Bordnetz beziehungsweise für die elektrischen Energieverbraucher in dem Bordnetz. Die getrennte Anordnung der beiden Energiespeicher jeweils zwischen dem ersten Ausgangspotentialanschluss und dem Bezugspotentialabschluss und zwischen dem Bezugspotentialabschluss und dem zweiten Ausgangspotentialanschluss hat den Vorteil, dass die Ladespannungen der beiden Energiespeicher voneinander unabhängig von den jeweiligen Gleichspannungswandlereinheiten geregelt werden können.
  • Gemäß einem dritten Aspekt der vorliegenden Erfindung wird ein Fahrzeug mit einem oben beschriebenen Bordnetz bereitgestellt.
  • Vorteilhafte Ausgestaltungen der oben beschriebenen Vorrichtung sind soweit im Übrigen auf das oben genannte Bordnetz oder das oben genannte Fahrzeug übertragbar, auch als vorteilhafte Ausgestaltungen des Bordnetzes bzw. des Fahrzeugs anzusehen.
  • Im Folgenden soll nun eine beispielhafte Ausführungsform der vorliegenden Erfindung bezugnehmend auf die beiliegende Zeichnung näher erläutert werden. Dabei zeigt die einzige Figur in einer schematischen Darstellung ein Hybridfahrzeug mit einem Bordnetz, das eine Vorrichtung gemäß einer Ausführungsform der Erfindung aufweist.
  • Gemäß der Figur umfasst das Fahrzeug F ein Bordnetz BN mit einem ersten Bordnetzzweig BZ1 und einem zweiten Bordnetzzweig BZ2, sowie einer Vorrichtung V zur Spannungswandlung. Der erste Bordnetzzweig BZ1 weist eine erste Bordnetzspannung Ue auf, welche einen Nennspannungswert von 12 Volt aufweist. Der zweite Bordnetzzweig BZ2 umfasst einen Elektromotor EM als Systemlast und weist eine zweite Bordnetzspannung Ua auf. Die zweite Bordnetzspannung Ua weist einen Nennspannungswert von 100 Volt auf, der zum Betrieb des Elektromotors EM erforderlich ist. Zwischen dem ersten und dem zweiten Bordnetzzweig BZ1, BZ2 ist die Vorrichtung V angeordnet, die die erste Bordnetzspannung Ue des ersten Bordnetzzweigs BZ1 in die zweite Bordnetzspannung Ua des zweiten Bordnetzzweigs BN2 und/oder umgekehrt umwandelt.
  • Die Vorrichtung V weist einen ersten eingangsseitigen Spannungsanschluss E1 und einen zweiten eingangsseitigen Spannungsanschluss E2 auf und ist über diese zwei eingangsseitigen Spannungsanschlüsse E1 und E2 mit dem ersten Bordnetzzweig BZ1 elektrisch verbunden. Ferner weist die Vorrichtung einen ersten ausgangsseitigen Spannungsanschluss A1 und einen zweiten ausgangsseitigen Spannungsanschluss A2 auf und ist über diese zwei ausgangsseitigen Spannungsanschluss A1 und A2 mit dem zweiten Bordnetzzweig BZ2 elektrisch verbunden.
  • Die erste Bordnetzspannung Ue liegt somit zwischen den zwei eingangsseitigen Spannungsanschlüssen E1 und E2 der Vorrichtung V. Analog liegt die zweite Bordnetzspannung Ua zwischen den zwei ausgangsseitigen Spannungsanschlüssen A1 und A2 der Vorrichtung V. Damit entspricht die erste Bordnetzspannung Ue die Eingangsspannung der Vorrichtung V und die zweite Bordnetzspannung Ua die Ausgangsspannung der Vorrichtung V.
  • Die Vorrichtung V weist außerdem einen ersten Signaleingangsanschluss SA1 und einen zweiten Signaleingangsanschluss SA2 zum Empfangen eines ersten und eines zweiten pulsweitenmodulierten Steuersignals PWM1 und PWM2 auf.
  • Die Vorrichtung V umfasst zudem eine erste Gleichspannungswandlereinheit GW1 und eine zweite Gleichspannungswandlereinheit GW2. Die beiden Gleichspannungswandlereinheiten GW1 und GW2 weisen einen gemeinsamen Eingangspotentialanschluss Pe auf. Die beiden Gleichspannungswandlereinheiten GW1 und GW2 weisen zudem einen gemeinsamen Bezugspotentialanschluss Pb auf. Dieser Bezugspotentialanschluss Pb liegt auf Massepotential. Die erste Gleichspannungswandlereinheit GW1 weist einen ersten Ausgangspotentialanschluss Pa1 auf. Die zweite Gleichspannungswandlereinheit GW2 weist analog einen zweiten Ausgangspotentialanschluss Pa2 auf.
  • Dabei stellen der erste eingangsseitige Spannungsanschluss E1 der Vorrichtung V und der gemeinsame Eingangspotentialanschluss Pe der ersten und der zweiten Gleichspannungswandlereinheit GW1 und GW2 ein erster gemeinsamer Knotenpunkt der Vorrichtung V in deren Schaltungstopologie nach dem 1. Kirchhoffschen Gesetz dar. Der zweite eingangsseitige Spannungsanschluss E2 der Vorrichtung V und der gemeinsame Bezugspotentialanschluss Pb der ersten und der zweiten Gleichspannungswandlereinheit GW1 und GW2 stellen analog ein zweiter gemeinsamer Knotenpunkt der Vorrichtung V dar. Der erste ausgangsseitige Spannungsanschluss A1 der Vorrichtung V und der erste Ausgangspotentialanschluss Pa1 der ersten Gleichspannungswandlereinheit GW1 bilden einen dritten gemeinsamen Knotenpunkt der Vorrichtung V aus. Der zweite ausgangsseitige Spannungsanschluss A2 der Vorrichtung V und der zweite Ausgangspotentialanschluss Pa2 der zweiten Gleichspannungswandlereinheit GW2 bilden einen vierten gemeinsamen Knotenpunkt der Vorrichtung V aus.
  • Die erste Gleichspannungswandlereinheit GW1 weist zwischen dem Eingangspotentialanschluss Pe und dem Bezugspotentialanschluss Pb eine erste Spule L1 und einen ersten steuerbaren Schalter S1 in einer Reihenschaltung auf. Zwischen dem Eingangspotentialanschluss Pe und dem ersten Ausgangspotentialanschluss Pa1 weist die erste Gleichspannungswandlereinheit GW1 die erste Spule L1 und einen zweiten steuerbaren Schalter S2 auf. Zwischen dem Bezugspotentialanschluss Pb und dem ersten Ausgangspotentialanschluss Pa1 weist die erste Gleichspannungswandlereinheit GW1 den ersten und den zweiten Schalter S1, S2 in einer Reihenschaltung. Zwischen dem Bezugspotentialanschluss Pb und dem ersten Ausgangspotentialanschluss Pa1 der ersten Gleichspannungswandlereinheit GW1 ist zudem ein erster Kondensator C1 in einer Parallelschaltung zu der aus dem ersten und dem zweiten Schalter S1, S3 bestehenden Reihenschaltung angeordnet.
  • Damit ist die erste Gleichspannungswandlereinheit GW1 als ein Aufwärtswandler ausgeführt, wobei zwischen der ersten Spule L1 und dem ersten Ausgangspotentialanschluss Pa1 vorteilhafterweise der zweite steuerbare Schalter S2 angeordnet ist. Der erste Kondensator C1 umfasst eine erste und eine zweite Elektrode C1E1 und C1E2. Über die erste Elektrode C1E1 ist der erste Kondensator C1 mit dem ersten Ausgangspotentialanschluss Pa1 unmittelbar elektrisch verbunden. Über die zweite Elektrode C1E2 ist der erste Kondensator C1 mit dem Bezugspotentialanschluss Pb unmittelbar elektrisch verbunden.
  • Der erste und der zweite Schalter S1 und S2 sind als Transistor ausgeführt und weisen jeweils einen Steuersignalanschluss AS1 beziehungsweise AS2 auf. Der Steuersignalanschluss AS1 des ersten Schalters S1 ist mit dem ersten Signaleingangsanschluss SA1 der Vorrichtung V unmittelbar elektrisch verbunden. Der Steuersignalanschluss AS2 des zweiten Schalters S2 ist dagegen über einen ersten Inverter IN1 mit dem ersten Signaleingangsanschluss SA1 der Vorrichtung V elektrisch verbunden. Der erste Inverter IN1 leitet das erste Steuersignal PWM1, das am ersten Signaleingangsanschluss SA1 der Vorrichtung V empfangen wird, stets invertiert an den Steuersignalanschluss AS2 des zweiten Schalters S2 weiter. Dadurch werden die beiden Schalter S1, S2 von demselben ersten Steuersignal PWM1 stets gegensinnig angesteuert.
  • Die zweite Gleichspannungswandlereinheit GW2 weist zwischen dem Eingangspotentialanschluss Pe und dem Bezugspotentialanschluss Pb einen dritten steuerbaren Schalter S3 und eine zweite Spule L2 in einer Reihenschaltung auf. Zwischen dem Eingangspotentialanschluss Pe und dem zweiten Ausgangspotentialanschluss Pa2 weist die zweite Gleichspannungswandlereinheit GW2 den dritten steuerbaren Schalter S3 und einen vierten steuerbaren Schalter S4 in einer Reihenschaltung auf. Zwischen dem Bezugspotentialanschluss Pb und dem zweiten Ausgangspotentialanschluss Pa2 weist die zweite Gleichspannungswandlereinheit GW2 die zweite Spule L2 und den vierten steuerbaren Schalter S4 in einer Reihenschaltung auf. Zwischen dem Bezugspotentialanschluss Pb und dem zweiten Ausgangspotentialanschluss Pa2 ist zudem ein zweiter Kondensator C2 in einer Parallelschaltung zu der von der zweiten Spule L2 und dem vierten steuerbaren Schalter S4 gebildeten Reihenschaltung angeordnet.
  • Damit ist die zweite Gleichspannungswandlereinheit GW2 als ein Inverswandler ausgeführt, wobei zwischen dem dritten Schalter S3 und dem zweiten Ausgangspotentialanschluss Pa2 vorteilhafterweise der vierte steuerbare Schalter S4 angeordnet ist.
  • Der zweite Kondensator C2 weist eine erste und eine zweite Elektrode C2E1, C2E2 auf. Über die erste Elektrode C2E1 ist der zweite Kondensator C2 mit dem ersten Bezugspotentialanschluss Pb unmittelbar elektrisch verbunden. Über die zweite Elektrode C2E2 ist der zweite Kondensator C2 mit dem zweiten Ausgangspotentialanschluss Pa2 unmittelbar elektrisch verbunden.
  • Der dritte und der vierte Schalter S3 und S4 sind ebenfalls als Transistor ausgeführt und weisen jeweils einen Steuersignalanschluss AS3 beziehungsweise AS4 auf. Der Steuersignalanschluss AS3 des dritten Schalters S3 ist mit dem zweiten Signaleingangsanschluss SA2 der Vorrichtung V unmittelbar elektrisch verbunden. Der Steuersignalanschluss AS4 des vierten Schalters S4 ist über einen zweiten Inverter IN2 mit dem zweiten Signaleingangsanschluss SA2 der Vorrichtung V elektrisch verbunden. Der zweite Inverter IN2 leitet das zweite Steuersignal PWM2, das am zweiten Signaleingangsanschluss SA2 der Vorrichtung V empfangen wird, stets invertiert an den Steuersignalanschluss AS4 des dritten Schalters S4 weiter. Dadurch werden die beiden Schalter S3, S4 von demselben zweiten Steuersignal PWM2 ebenfalls stets gegensinnig angesteuert.
  • Nachdem die Vorrichtung V ausführlich dargestellt wurde, wird nun die Funktionsweise dieser Vorrichtung V näher beschrieben.
  • Es wird angenommen, dass der erste Bordnetzzweig BZ1 eine Nennspannung von 12 Volt aufweist, welche zugleich auch die Potentialdifferenz zwischen den eingangsseitigen Spannungsanschlüssen E1 und E2 der Vorrichtung V, und somit auch die Potentialdifferenz zwischen dem Eingangspotentialanschluss Pe und dem Bezugspotentialanschluss Pb der ersten bzw. der zweiten Gleichspannungswandlereinheit GW1, GW2 ist. Da der Bezugspotentialanschluss Pb auf Massepotential liegt, beträgt das Eingangsspannungspotential Φe am Eingangspotentialanschluss Pe somit 12 Volt.
  • Aus diesem Eingangsspannungspotential Φe stellt die Vorrichtung V zwischen dem ersten und dem zweiten ausgangsseitigen Spannungsanschluss A1 und A2 beziehungsweise zwischen dem ersten und dem zweiten Ausgangspotentialanschluss Pa1, Pa2 eine Ausgangsspannung Ua von über 100 Volt bereit. Hierzu empfängt die Vorrichtung V über den ersten und den zweiten Steueranschluss SA1, SA2 das erste und das zweite pulsweitenmodulierte Steuersignal PWM1, PWM2. Die beiden Steuersignale PWM1, PWM2 weisen jeweils eine gleiche Pulsdauer T und einen gleichen Tastgrad von 4/5 auf.
  • Von dem ersten Steuersignal PWM1 unmittelbar angesteuert wird der erste Schalter S1 in jedem Schaltzyklus für eine Zeitdauer t1 von 4/5 (Tastgrad des ersten Steuersignals PWM1) der Pulsdauer T geschlossen. Während dieser Einschaltphase des ersten Schalters S1 wird der zweite Schalter S2, der von dem invertierten ersten Steuersignal PWM1 angesteuert wird, geöffnet. So fließt ein erster Strom i11 von dem Eingangspotentialanschluss Pe über die erste Spule L1 und den geschlossenen ersten Schalter S1 zu dem Bezugspotentialanschluss Pb. Dabei fällt die Eingangsspannung Ue an der ersten Spule L1 ab und der Strom i11 durch die Spule L1 steigt linear an. Die erste Spule L1 speichert nun elektrische Energie. Nach Ablauf der Zeitdauer t1 wird der erste Schalter S1 für die restliche Zeitdauer von T – t1 in diesem Schaltzyklus geöffnet. Während dieser Ausschaltphase des ersten Schalters S1 wird der zweite Schalter S2 von dem invertierten ersten Steuersignal PWM1 angesteuert geschlossen. Nun fließt ein zweiter Strom i12 von der ersten Spule L1 über den geschlossenen zweiten Schalter S2 zu dem ersten Kondensator C1. Dabei wird die in der ersten Spule L1 abgespeicherte Energie auf den ersten Kondensator C1 übertragen. Diese Energie lädt den ersten Kondensator C1 auf. Das Spannungspotential an der ersten Elektrode C1E1 des Kondensators C1 und somit auch der erste Ausgangsspannungspotential Φa1 an dem ersten Ausgangspotentialanschluss Pa1 steigt. Bei jedem nachfolgenden Schaltzyklus wiederholt sich dieser Aufladevorgang beim ersten Kondensator C1. Da die zweite Elektrode C1E2 des Kondensators C1 mit dem Bezugspotentialanschluss Pb unmittelbar elektrisch verbunden ist und somit auf Massepotential liegt, steigt der erste Ausgangsspannungspotential Φa1 basierend auf folgende Gleichung bis auf 60 Volt:
    Figure DE102012218543A1_0002
  • Analog wird der dritte Schalter S3 durch unmittelbare Ansteuerung des zweiten Steuersignals PWM2 in jedem Schaltzyklus für eine Zeitdauer t2 von 4/5 (Tastgrad des zweiten Steuers PWM2) der Pulsdauer T des zweiten Steuersignals PWM2 geschlossen. Während dieser Einschaltphase des dritten Schalters S3 wird der vierte Schalter S4, der von dem invertierten zweiten Steuersignal PWM2 angesteuert wird, geöffnet. So fließt ein dritter Strom i21 von dem Eingangspotentialanschluss Pe über die zweite Spule L2 und den geschlossenen zweiten Schalter S2 zu dem Bezugspotentialanschluss Pb. Dabei fällt die Eingangsspannung Ue an der zweiten Spule L2 ab und der Strom i21 durch die Spule L2 steigt linear an. Die zweite Spule L2 speichert nun elektrische Energie. Nach Ablauf der Zeitdauer t2 wird der dritte Schalter S3 für die restliche Zeitdauer von T – t2 in diesem Schaltzyklus geöffnet. Während dieser Ausschaltphase des dritten Schalters S3 wird der vierte Schalter S4 von dem invertierten zweiten Steuersignal PWM2 angesteuert geschlossen. Nun fließt ein vierter Strom i22 von der zweiten Spule L2 über den geschlossenen vierten Schalter S4 zu dem zweiten Kondensator C2. Die in der zweiten Spule L2 abgespeicherte Energie wird auf den zweiten Kondensator C2 übertragen. Diese Energie lädt den zweiten Kondensator C2 auf. Als Folge steigt die elektrische Spannung zwischen den beiden Elektroden C2E1, C2E2 des zweiten Kondensators C2 und somit auch die Potentialdifferenz wischen dem zweiten Ausgangsspannungspotential Φa2 und dem Bezugsspannungspotential Φb an. Da die erste Elektrode C2E1 des zweiten Kondensators C2, die mit dem Bezugspotentialanschluss Pb unmittelbar elektrisch verbunden ist, von dem Strom i22 positiv aufgeladen wird und die zweite Elektrode C2E2 des zweiten Kondensators C2, die mit dem zweiten Ausgangspotentialanschluss Pa2 unmittelbar elektrisch verbunden ist, von dem Strom i22 negativ aufgeladen wird, sinkt das zweite
  • Ausgangsspannungspotential Φa2 gegenüber dem Bezugsspannungspotential Φb basierend auf folgende Gleichung bis auf –48 Volt:
    Figure DE102012218543A1_0003
  • Da die Ausgangsspannung Ua der Vorrichtung V eine Potentialdifferenz zwischen dem ersten und dem zweiten Ausgangsspannungspotentials Φa1, Φa2 ist, beträgt diese 108 Volt (Ua = Φa1 – Φa2 = 60 Volt – (–48 Volt) = 108 Volt). Damit ist eine Bordnetzspannung für den zweiten Bordnetzzweig BZ2 geschaffen, welche den Betrieb der Stromverbraucher in diesem Bordnetzzweig BZ2 sicherstellen kann.
  • Dabei liegen die Berührungsspannungen zwischen dem Eingangspotentialanschluss Pe und dem ersten Ausgangspotentialanschluss Pa1 bei 48 Volt, zwischen dem Eingangspotentialanschluss Pe und dem zweiten Ausgangspotentialanschluss Pa2 bei 60 Volt, zwischen dem Bezugspotentialanschluss Pb und dem ersten Ausgangspotentialanschluss Pa1 bei 60 Volt und zwischen dem Bezugspotentialanschluss Pb und dem zweiten Ausgangspotentialanschluss Pa2 bei 48 Volt. Damit liegen sämtliche Berührungsspannungen zwischen zwei Bordnetzzweigen BZ1, BZ2 unter bzw. gleich 60 Volt und die oben genannte Sicherheitsanforderung ist erfüllt.
  • Der zweite und der vierte Schalter S2, S4 schalten zwischen einem sperrenden und einem leitenden Zustand schnell um, und tragen so zu einer schnellen und verlustarmen Spannungswandlung bei im Vergleich zu Dioden, welche bauteilbedingt eine Transitzeit also eine störende zeitliche Verzögerung in der Schaltphase zwischen dem sperrenden und leitenden Schaltzustand aufweisen.
  • Die Vorrichtung V weist ferner einen ersten Energiespeicher ES1 zwischen dem ersten Ausgangspotentialanschluss Pa1 und dem Bezugspotentialabschluss Pb, und einen zweiten Energiespeicher ES2 zwischen dem Bezugspotentialabschluss Pb und dem zweiten Ausgangspotentialanschluss Pa2 auf, wobei die beiden Energiespeicher ES1 und ES2 aus jeweils einer 48V-Batterie bestehen. Diese beiden Energiespeicher ES1 und ES2 dienen zum Bereitstellen elektrischer Energie für den Elektromotor EM. Die Ladespannung U_ES1 des ersten Energiespeichers ES1 kann dabei von der ersten Gleichspannungswandlereinheit GW1 geregelt werden. Zugleich schützt die erste Gleichspannungswandlereinheit GW1 den ersten Energiespeicher ES1 vor einer Überladung. Analog regelt die zweite Gleichspannungswandlereinheit GW2 die Ladespannung U_ES2 des zweiten Energiespeichers ES2 und schützt so diesen vor einer Überladung.
  • Bezugszeichenliste
    • F
      Fahrzeug
      BN
      Bordnetz
      BZ1, BZ2
      Bordnetzzweig
      V
      Vorrichtung
      Pe
      Eingangspotentialanschluss
      Pb
      Bezugspotentialanschluss
      Pa1, Pa2
      Ausgangspotentialanschluss
      Ue
      Eingangsspannung
      Φe
      Eingangsspannungspotential
      Φb
      Bezugsspannungspotential
      Ua
      Ausgangsspannung
      E1, E2
      Eingangsseitige Spannungsanschluss
      A1, A2
      Ausgangsseitige Spannungsanschluss
      Φa1, Φa2
      Ausgangsspannungspotential
      SA1, SA2
      Signaleingangsanschluss
      GW1, GW2
      Gleichspannungswandlereinheit
      L1, L2
      Spule
      S1, S2, S2, S4
      Steuerbarer Schalter
      AS1, AS2, AS3, AS4
      Steuersignalanschluss am Schalter
      C1, C2
      Kondensator
      C1E1, C1E2
      Elektrode der Kondensatoren
      IN1, IN2
      Inverter
      PWM1, PWM2
      Pulsweitenmoduliertes Steuersignal
      T
      Pulsdauer

Claims (12)

  1. Vorrichtung (V) zur Spannungswandlung, die folgende Merkmale aufweist: – eine erste transformatorlose Gleichspannungswandlereinheit (GW1) mit einem ersten Ausgangspotentialanschluss (Pa1) zum Bereitstellen eines ersten Ausgangsspannungspotentials (Φa1), – eine zweite transformatorlose Gleichspannungswandlereinheit (GW2) mit einem zweiten Ausgangspotentialanschluss (Pa2) zum Bereitstellen eines zweiten Ausgangsspannungspotentials (Φa2); wobei – die erste (GW1) und die zweite (GW2) Gleichspannungswandlereinheit – einen gemeinsamen Eingangspotentialanschluss (Pe) zum Anlegen eines Eingangsspannungspotentials (Φe), und – einen gemeinsamen Bezugspotentialanschluss (Pb) zum Anlegen eines Bezugsspannungspotentials (Φb) aufweisen; – die erste Gleichspannungswandlereinheit (GW1) aus dem Eingangsspannungspotential (Φe) ein erstes Ausgangsspannungspotential (Φa1) am ersten Ausgangspotentialanschluss (Pa1) erzeugt, wobei das erste Ausgangsspannungspotential (Φa1) bezogen auf das Bezugsspannungspotential (Φb) einen höheren Spannungspotentialwert aufweist; – die zweite Gleichspannungswandlereinheit (GW2) aus dem Eingangsspannungspotential (Φe) ein zweites Ausgangsspannungspotential (Φa2) am zweiten Ausgangspotentialanschluss (Pa2) erzeugt, wobei das zweite Ausgangsspannungspotential (Φa2) bezogen auf das Bezugsspannungspotential (Φb) einen niedrigeren Spannungspotentialwert aufweist.
  2. Vorrichtung (V) nach Anspruch 1, bei der die erste Gleichspannungswandlereinheit (GW1) einen Aufwärtswandler umfasst.
  3. Vorrichtung (V) nach Anspruch 1 oder 2, bei der die zweite Gleichspannungswandlereinheit (GW2) einen Inverswandler umfasst.
  4. Vorrichtung (V) nach einem der vorangehenden Ansprüche, bei der die erste Gleichspannungswandlereinheit (GW1) – zwischen dem Eingangspotentialanschluss (Pe) und dem Bezugspotentialanschluss (Pb) eine erste Spule (L1) und einen ersten steuerbaren Schalter (S1) in einer Reihenschaltung, – zwischen dem Eingangspotentialanschluss (Pe) und dem ersten Ausgangspotentialanschluss (Pa1) die erste Spule (L1) und einen zweiten steuerbaren Schalter (S2) in einer Reihenschaltung, – zwischen dem Bezugspotentialanschluss (Pb) und dem ersten Ausgangspotentialanschluss (Pa1) den ersten steuerbaren Schalter (S1) und den zweiten steuerbaren Schalter (S2) in einer Reihenschaltung sowie einen ersten Kondensator (C1) in einer Parallelschaltung zu der von dem ersten (S1) und dem zweiten (S2) Schalter gebildeten Reihenschaltung, aufweist.
  5. Vorrichtung (V) nach einem der vorangehenden Ansprüche, bei der die zweite Gleichspannungswandlereinheit (GW2) – zwischen dem Eingangspotentialanschluss (Pe) und dem Bezugspotentialanschluss (Pb) einen dritten steuerbaren Schalter (S3) und eine zweite Spule (L2) in einer Reihenschaltung, – zwischen dem Eingangspotentialanschluss (Pe) und dem zweiten Ausgangspotentialanschluss (Pa2) den dritten steuerbaren Schalter (S3) und einen vierten steuerbaren Schalter (S4) in einer Reihenschaltung, – zwischen dem Bezugspotentialanschluss (Pb) und dem zweiten Ausgangspotentialanschluss (Pa2) die zweite Spule (L2) und den vierten steuerbaren Schalter (S4) in einer Reihenschaltung sowie einen zweiten Kondensator (C2) in einer Parallelschaltung zu der von der zweiten Spule (L2) und dem vierten steuerbaren Schalter (S4) gebildeten Reihenschaltung, aufweist.
  6. Vorrichtung (V) nach Anspruch 4 oder 5, mit einem ersten Signaleingangsanschluss (SA1) zum Empfangen eines ersten pulsweitenmodulierten Steuersignals (PWM1) zum Ansteuern des ersten (S1) und des zweiten (S2) Schalters.
  7. Vorrichtung (V) nach Anspruch 6, wobei – der erste (S1) oder der zweite (S2) Schalter einen ersten Steuersignalanschluss (AS2) aufweist, und – die Vorrichtung (V) zwischen dem ersten Signaleingangsanschluss (SA1) und dem ersten Steuersignalanschluss (AS2) einen ersten Inverter (IN1) zum Invertieren des ersten Steuersignals (PWM1) aufweist.
  8. Vorrichtung (V) nach einem der Ansprüche 4 bis 7, mit einem zweiten Signaleingangsanschluss (SA2) zum Empfangen eines zweiten pulsweitenmodulierten Steuersignals (PWM2) zum Ansteuern des dritten (S3) und des vierten (S4) Schalters.
  9. Vorrichtung (V) nach Anspruch 8, wobei – der dritte (S3) oder der vierte (S4) Schalter einen zweiten Steuersignalanschluss (AS4) aufweist, und – die Vorrichtung (V) zwischen dem zweiten Signaleingangsanschluss (SA2) und dem zweiten Steuersignalanschluss (AS4) einen zweiten Inverter (IN2) zum Invertieren des zweiten Steuersignals (PWM2) aufweist.
  10. Bordnetz (BZ) für ein Fahrzeug (F), wobei das Bordnetz folgende Merkmale aufweist: – einen ersten Bordnetzzweig (BZ1) mit einer ersten Bordnetzspannung (Ue), – einen zweiten Bordnetzzweig (BZ2) mit einer zweiten Bordnetzspannung (Ua), – eine Vorrichtung (V) nach einem der vorangehenden Ansprüche zum Umwandeln der ersten Bordnetzspannung (Ue) in die zweite Bordnetzspannung (Ua) und/oder umgekehrt, wobei – die erste Bordnetzspannung (Ue) zwischen dem Eingangspotentialanschluss (Pe) und dem Bezugspotentialabschluss (Pb) anliegt, und – die zweite Bordnetzspannung (Ua) zwischen dem ersten Ausgangspotentialanschluss (Pa1) und dem zweiten Ausgangspotentialanschluss (Pa2) anliegt.
  11. Bordnetz (BZ) nach Anspruch 10, wobei das Bordnetz (BZ) ferner folgende Merkmale aufweist: – einen ersten Energiespeicher (ES1) zwischen dem ersten Ausgangspotentialanschluss (Pa1) und dem Bezugspotentialabschluss (Pb), – einen zweiten Energiespeicher (ES2) zwischen dem Bezugspotentialabschluss (Pb) und dem zweiten Ausgangspotentialanschluss (Pa2), – wobei die erste Gleichspannungswandlereinheit (GW1) zur Regelung der Ladespannung (U_ES1) des ersten Energiespeichers (ES1) ausgebildet ist, und – die zweite Gleichspannungswandlereinheit (GW2) zur Regelung der Ladespannung (U_ES2) des zweiten Energiespeichers (ES2) ausgebildet ist.
  12. Fahrzeug (F) mit einem Bordnetz (BZ) nach Anspruch 10 oder 11.
DE102012218543.7A 2012-10-11 2012-10-11 Vorrichtung zur Spannungswandlung sowie Bordnetz mit einer genannten Vorrichtung Ceased DE102012218543A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102012218543.7A DE102012218543A1 (de) 2012-10-11 2012-10-11 Vorrichtung zur Spannungswandlung sowie Bordnetz mit einer genannten Vorrichtung
EP13756179.1A EP2907230A2 (de) 2012-10-11 2013-09-04 Vorrichtung zur spannungswandlung sowie bordnetz mit einer genannten vorrichtung
JP2015536033A JP2015532577A (ja) 2012-10-11 2013-09-04 電圧変換のための装置並びに該装置を備えた車載電気システム
CN201380053022.8A CN104685773A (zh) 2012-10-11 2013-09-04 用于电压变换的装置以及具有所述装置的车载电网
US14/435,244 US9837900B2 (en) 2012-10-11 2013-09-04 Apparatus for voltage conversion and onboard electrical system having said apparatus
PCT/EP2013/068246 WO2014056661A2 (de) 2012-10-11 2013-09-04 Vorrichtung zur spannungswandlung sowie bordnetz mit einer genannten vorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012218543.7A DE102012218543A1 (de) 2012-10-11 2012-10-11 Vorrichtung zur Spannungswandlung sowie Bordnetz mit einer genannten Vorrichtung

Publications (1)

Publication Number Publication Date
DE102012218543A1 true DE102012218543A1 (de) 2014-04-17

Family

ID=49085045

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012218543.7A Ceased DE102012218543A1 (de) 2012-10-11 2012-10-11 Vorrichtung zur Spannungswandlung sowie Bordnetz mit einer genannten Vorrichtung

Country Status (6)

Country Link
US (1) US9837900B2 (de)
EP (1) EP2907230A2 (de)
JP (1) JP2015532577A (de)
CN (1) CN104685773A (de)
DE (1) DE102012218543A1 (de)
WO (1) WO2014056661A2 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012218543A1 (de) 2012-10-11 2014-04-17 Continental Automotive Gmbh Vorrichtung zur Spannungswandlung sowie Bordnetz mit einer genannten Vorrichtung
US9564806B2 (en) * 2013-09-25 2017-02-07 Cree, Inc. Boost converter with reduced switching loss and methods of operating the same
DE102014203157A1 (de) 2014-02-21 2015-08-27 Airbus Operations Gmbh Bipolares Hochspannungsnetz und Verfahren zum Betreiben eines bipolaren Hochspannungsnetzes
DE102017212462A1 (de) * 2017-07-20 2019-01-24 Siemens Aktiengesellschaft Galvanisch gekoppelter elektrischer Wandler
DE102017222557A1 (de) * 2017-12-13 2019-06-13 Continental Automotive Gmbh Mehrspannungsbatterievorrichtung und Bordnetz für ein Kraftfahrzeug
US11552568B2 (en) * 2019-03-21 2023-01-10 Samsung Electronics Co., Ltd. Switching regulator and power management unit including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080174287A1 (en) * 2007-01-22 2008-07-24 Sungcheon Park Organic light emitting display having dc-dc converter
DE202010007787U1 (de) * 2010-06-09 2011-09-23 Voltwerk Electronics Gmbh Gleichspannungssteller

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3316251A1 (de) * 1983-05-04 1984-11-08 Robert Bosch Gmbh, 7000 Stuttgart Schaltungsanordnung zur gleichspannungswandlung
DE10019889C1 (de) * 2000-04-20 2001-09-27 Webasto Vehicle Sys Int Gmbh Solareinrichtung für ein Fahrzeug
JP3943928B2 (ja) 2001-12-25 2007-07-11 株式会社東芝 電力変換装置
JP2007104285A (ja) 2005-10-04 2007-04-19 Taiyo Yuden Co Ltd デジタルアンプおよびスイッチング電源
EP1971018A1 (de) * 2007-03-13 2008-09-17 SMA Solar Technology AG Schaltungsvorrichtung zum transformatorlosen Umwandeln einer Gleichspannung in eine Wechselspannung mittels zweier DC/DC Wandler und einem AC/DC Wandler
US8063615B2 (en) * 2007-03-27 2011-11-22 Linear Technology Corporation Synchronous rectifier control for synchronous boost converter
JP2010207068A (ja) * 2009-02-03 2010-09-16 Kaga Electronics Co Ltd 電源装置および電子機器
EP2430742A1 (de) * 2009-05-11 2012-03-21 The Regents of the University of Colorado, A Body Corporate Einbau-photovoltaikmodul
CN102447270B (zh) 2010-09-30 2014-01-01 比亚迪股份有限公司 车辆用太阳能供电控制系统及控制方法
US9166469B2 (en) * 2012-08-29 2015-10-20 Eaton Corporation System for optimizing switching dead-time and method of making same
US9030182B2 (en) * 2012-09-11 2015-05-12 Analog Devices, Inc. Controller for a DC to DC converter, a combination of a controller and a DC to DC converter, and a method of operating a DC to DC converter
DE102012218543A1 (de) 2012-10-11 2014-04-17 Continental Automotive Gmbh Vorrichtung zur Spannungswandlung sowie Bordnetz mit einer genannten Vorrichtung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080174287A1 (en) * 2007-01-22 2008-07-24 Sungcheon Park Organic light emitting display having dc-dc converter
DE202010007787U1 (de) * 2010-06-09 2011-09-23 Voltwerk Electronics Gmbh Gleichspannungssteller

Also Published As

Publication number Publication date
US9837900B2 (en) 2017-12-05
CN104685773A (zh) 2015-06-03
JP2015532577A (ja) 2015-11-09
WO2014056661A3 (de) 2014-06-12
US20150349638A1 (en) 2015-12-03
EP2907230A2 (de) 2015-08-19
WO2014056661A2 (de) 2014-04-17

Similar Documents

Publication Publication Date Title
EP2501588B1 (de) Bordnetz und verfahren und vorrichtung zum betreiben des bordnetzes
EP2721704B1 (de) Vorrichtung und verfahren zur verbindung von mehrspannungsbordnetzen
WO2017016674A1 (de) Einzelmodul, elektrisches umrichtersystem und batteriesystem
EP2026457A1 (de) Wechselrichter mit zwei Zwischenkreisen
DE102012218543A1 (de) Vorrichtung zur Spannungswandlung sowie Bordnetz mit einer genannten Vorrichtung
WO2016079603A1 (de) Dc/dc-wandlereinrichtung
DE102009033185A1 (de) Ladesystem und Ladeverfahren zum Laden einer Batterie eines Fahrzeugs und Fahrzeug mit einem solchen Ladesystem
DE102012205395A1 (de) Batteriesystem, Verfahren zum Laden von Batteriemodulen, sowie Verfahren zum Balancieren von Batteriemodulen
EP2026456A1 (de) Wechselrichter
DE102018008603A1 (de) Schaltungsanordnung und Verfahren zum Laden einer Batterieanordnung mit mehreren Batteriemodulen
DE102017010390A1 (de) Energiewandler
DE102018120236A1 (de) Ladevorrichtung mit steuerbarer Zwischenkreismittelpunktsspannung sowie Antriebssystem mit einer derartigen Ladevorrichtung
DE102016212557A1 (de) Batteriesystem zum Versorgen eines Spannungsnetzes mit elektrischer Energie
DE102021200921B4 (de) Fahrzeugladeschaltung mit Strombegrenzungswiderstand und Vorladediode und Fahrzeugbordnetz mit einer Fahrzeugladeschaltung
DE102013109797A1 (de) Ionisator
DE102020007840A1 (de) Aufwärtswandler zum Laden eines elektrischen Energiespeichers eines elektrisch angetriebenen Fahrzeugs, sowie Fahrzeug und Verfahren
EP3257145B1 (de) Dc/dc-wandler mit fliegendem kondensator
EP3931963B1 (de) Leistungselektronische vorrichtung und verfahren zur elektrischen spannungsversorgung einer treiberschaltung eines leistungshalbleiterschalters
DE102014012028A1 (de) Vorrichtung und ein Verfahren zum Laden oder Entladen eines elektrischen Energiespeichers mit beliebigen Betriebsspannungen
AT515848B1 (de) Schaltungsanordnung und Verfahren zum Ansteuern eines Halbleiterschaltelements
DE102013209383A1 (de) Batterie mit mindestens einem Batteriestrang mit mehreren Batteriemodulen sowie Verfahren zur Regelung einer Batteriespannung
DE102020004578A1 (de) Spannungswandler und Verfahren zum Laden eines elektrischen Energiepeichers eines elektrisch betriebenen Fahrzeugs
DE102015112524A1 (de) Verfahren zur Spannungsbalancierung von in Reihe geschalteten Kondensatoren
DE102019117790A1 (de) Verfahren und bidirektionaler Gleichspannungswandler zur Vorladung eines Ladekabels
WO2014095233A2 (de) Batterie mit mindestens einem batteriestrang sowie verfahren zur regelung einer batteriespannung

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final