DE102012204978A1 - Verfahren zur iterativen CT-Bildrekonstruktion zur Beseitigung von Partialscan-Artefakten - Google Patents

Verfahren zur iterativen CT-Bildrekonstruktion zur Beseitigung von Partialscan-Artefakten Download PDF

Info

Publication number
DE102012204978A1
DE102012204978A1 DE201210204978 DE102012204978A DE102012204978A1 DE 102012204978 A1 DE102012204978 A1 DE 102012204978A1 DE 201210204978 DE201210204978 DE 201210204978 DE 102012204978 A DE102012204978 A DE 102012204978A DE 102012204978 A1 DE102012204978 A1 DE 102012204978A1
Authority
DE
Germany
Prior art keywords
image data
pic
data
image
iteration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE201210204978
Other languages
English (en)
Other versions
DE102012204978B4 (de
Inventor
Thomas Flohr
Herbert Bruder
Rainer Raupach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Healthcare GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE102012204978.9A priority Critical patent/DE102012204978B4/de
Publication of DE102012204978A1 publication Critical patent/DE102012204978A1/de
Application granted granted Critical
Publication of DE102012204978B4 publication Critical patent/DE102012204978B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • A61B6/035Mechanical aspects of CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • A61B6/4014Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units arranged in multiple source-detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/503Clinical applications involving diagnosis of heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5264Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/42Imaging image digitised, -enhanced in an image processor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/612Specific applications or type of materials biological material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/424Iterative
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/436Limited angle

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Public Health (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pulmonology (AREA)
  • Pure & Applied Mathematics (AREA)
  • Dentistry (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Algebra (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Rekonstruktion von Bilddaten (PIC) eines sich bewegenden Untersuchungsobjektes aus Messdaten, wobei die Messdaten zuvor bei einer relativen Rotationsbewegung zwischen einer Strahlungsquelle eines Computertomographiesystems und dem Untersuchungsobjekt bei verschiedenen Projektionswinkeln erfasst wurden. Aus den Messdaten werden erste Bilddaten (PIC A) aus einem ersten Projektionswinkelbereich der Messdaten und zweite Bilddaten (PIC B) aus einem zweiten gegenüber dem ersten Projektionswinkelbereich kleineren Projektionswinkelbereich der Messdaten rekonstruiert. Unter Verwendung der ersten (PIC A) und der zweiten (PIC B) Bilddaten werden mit einem iterativen Algorithmus (it Rekon) verbesserte Bilddaten (PIC) berechnet. Hierbei wird ein Tiefpass auf eine Differenz zwischen den ersten Bilddaten (PIC A) und Bilddaten eines Iterationszyklus angewandt, und ein Hochpass auf eine Differenz zwischen den zweiten Bilddaten (PIC B) und den Bilddaten des Iterationszyklus.

Description

  • Die Erfindung betrifft ein Verfahren zur Rekonstruktion von Bilddaten eines Untersuchungsobjektes aus Messdaten, wobei die Messdaten zuvor bei einer relativen Rotationsbewegung zwischen einer Strahlungsquelle eines Computertomographiesystems und dem Untersuchungsobjekt erfasst wurden.
  • Tomographische Bildgebungsverfahren zeichnen sich dadurch aus, dass innere Strukturen eines Untersuchungsobjektes untersucht werden können, ohne dabei invasive Eingriffe an diesem durchführen zu müssen. Eine mögliche Art der tomographischen Bilderzeugung besteht darin, von dem zu untersuchenden Objekt eine Anzahl von Projektionen aus verschiedenen Projektionswinkeln aufzunehmen. Aus diesen Projektionen lässt sich ein zweidimensionales Schnittbild oder ein dreidimensionales Volumenbild des Untersuchungsobjektes berechnen.
  • Ein Beispiel für ein solches tomographisches Bildgebungsverfahren ist die Computertomographie. Vielfältige Verfahren zur Abtastung eines Untersuchungsobjektes mit einem CT-System sind bekannt. Es werden beispielsweise Kreisabtastungen, sequentielle Kreisabtastungen mit Vorschub oder Spiralabtastungen angewandt. Auch andersartige Abtastungen, die nicht auf Kreisbewegungen beruhen, sind möglich, so z.B. Scans mit linearen Segmenten. Es werden mit Hilfe mindestens einer Röntgenquelle und mindestens eines gegenüberliegenden Detektors Absorptionsdaten des Untersuchungsobjektes aus unterschiedlichen Aufnahmewinkeln aufgenommen und diese so gesammelten Absorptionsdaten bzw. Projektionen mittels entsprechender Rekonstruktionsverfahren zu Schnittbildern durch das Untersuchungsobjekt verrechnet.
  • Zur Rekonstruktion von computertomographischen Bildern aus Röntgen-CT-Datensätzen eines Computertomographiegeräts (CT-Geräts), d.h. aus den erfassten Projektionen, wird heutzutage als Standardverfahren ein so genanntes gefiltertes Rückprojektionsverfahren (Filtered Back Projection; FBP) eingesetzt. Nach der Datenerfassung wird üblicherweise ein so genannter "Rebinning"-Schritt durchgeführt, in dem die mit dem fächerförmig sich von der Quelle ausbreitenden Strahl erzeugten Daten so umgeordnet werden, dass sie in einer Form vorliegen, wie wenn der Detektor von parallel auf den Detektor zulaufenden Röntgenstrahlen getroffen würde. Die Daten werden dann in den Frequenzbereich transformiert. Im Frequenzbereich findet eine Filterung statt, und anschließend werden die gefilterten Daten rücktransformiert. Mit Hilfe der so umsortierten und gefilterten Daten erfolgt dann eine Rückprojektion auf die einzelnen Voxel innerhalb des interessierenden Volumens. Jedoch gibt es mit den klassischen FBP-Methoden aufgrund ihrer approximativen Arbeitsweise Probleme mit so genannten niederfrequenten Kegelstrahl-Artefakten und Spiralartefakten. Des Weiteren ist bei klassischen FBP-Methoden die Bildschärfe an das Bildrauschen gekoppelt. Je höher die erreichte Schärfe ist, desto höher ist auch das Bildrauschen und umgekehrt.
  • Das FBP Verfahren gehört zur Gruppe der approximativen Rekonstruktionsverfahren. Es existiert ferner die Gruppe der exakten Rekonstruktionsverfahren, welche jedoch derzeit kaum eingesetzt werden. Eine dritte Gruppe von Rekonstruktionsverfahren schließlich bilden die iterativen Verfahren.
  • Mit iterativen Rekonstruktionsverfahren können zumindest manche der oben genannten Limitationen der FBP beseitigt werden. Bei einem solchen iterativen Rekonstruktionsverfahren erfolgt zunächst eine Rekonstruktion von initialen Bilddaten aus den Projektionsmessdaten. Hierzu kann beispielsweise ein Faltungsrückprojektionsverfahren verwendet werden. Das iterative Rekonstruktionsverfahren erzeugt im Anschluss nach und nach verbesserte Bilddaten. Beispielsweise können aus den initialen Bilddaten mit einem „Projektor“, einem Projektionsoperator, welcher das Messsystem mathematisch möglichst gut abbilden sollte, synthetische Projektionsdaten erzeugt. Die Differenz zu den Messsignalen wird dann mit dem zu dem Projektor adjungierten Operator rückprojiziert und es wird so ein Residuum-Bild rekonstruiert, mit dem das initiale Bild aktualisiert wird. Die aktualisierten Bilddaten können wiederum verwendet werden, um in einem nächsten Iterationsschritt mit Hilfe des Projektionsoperators neue synthetische Projektionsdaten zu erzeugen, daraus wieder die Differenz zu den Messsignalen zu bilden und ein neues Residuum-Bild zu berechnen, mit dem wieder die Bilddaten der aktuellen Iterationsstufe verbessert werden usw. Mit einem solchen Verfahren lassen sich Bilddaten rekonstruieren, die eine relativ gute Bildschärfe und dennoch ein geringes Bildrauschen aufweisen. Beispiele für iterative Rekonstruktionsverfahren sind die algebraische Rekonstruktionstechnik (ART), die simultane algebraische Rekonstruktionstechnik (SART), die iterierte gefilterte Rückprojektion (IFBP), oder auch statistische iterative Bildrekonstruktionstechniken.
  • Ein Nachteil dieser allgemein bekannten Berechnungsverfahren besteht darin, dass bei einem bewegten Untersuchungsobjekt, oder einem zumindest teilweise bewegten Untersuchungsobjekt, Bewegungsunschärfen im Bild entstehen können, da während der Zeit eines Abtastvorgangs für die Daten, die für ein Bild benötigt werden, ein Ortsversatz des Untersuchungsobjektes oder eines Teils des Untersuchungsobjektes vorliegen kann, so dass die Basisdaten, die zu einem Bild führen, nicht alle räumlich identische Situation des Untersuchungsobjektes widerspiegeln. Dieses Bewegungsunschärfeproblem entsteht besonders verstärkt bei der Durchführung von Cardio-CT-Untersuchungen eines Patienten, bei denen aufgrund der Herzbewegung eine starke Bewegungsunschärfe im Herzbereich auftreten kann oder für Untersuchungen, bei denen relativ schnelle Veränderungen im Untersuchungsobjekt gemessen werden sollen.
  • Die unerwünschte Bewegungsartefakte werden reduziert, indem die Zeitauflösung der CT-Aufnahme erhöht wird. Hierzu gibt es verschiedene Vorgehensweisen. Zum einen ist es möglich, die Rotationszeit der Gantry zu verringern. Hierbei stößt man allerdings schnell an mechanische Grenzen, da die auf die Bauteile ausgeübte Fliehkraft bei abnehmender Rotationszeit quadratisch zunimmt. Zum anderen kann im Rahmen der Bildrekonstruktion durch Verwendung von phasengleichen, winkelkomplementärer Daten benachbarter Herzzyklen die Zeitauflösung verbessert werden. Der Gewinn hängt jedoch von dem Verhältnis der Herzrate zur Gantryumlaufszeit ab und ist kaum beeinflussbar. Schließlich wurden Zwei-Strahler CT Systeme entwickelt, also CT-Geräte mit zwei Röntgenquellen und ihnen zugeordneten Detektoren. Diese ermöglichen entsprechend der halbierten Messzeit durch das Vorhandensein von zwei Röntgenquelle-Dekektorsystemen eine verdoppelte Zeitauflösung. Von Nachteil hierbei ist, dass die Kosten für die doppelte Auslegung der Kernkomponenten, wie Strahler, Detektor, usw. erheblich sind.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Rekonstruktion von CT-Bildern eines sich bewegenden Untersuchungsobjekts aufzuzeigen. Ferner sollen eine entsprechende Recheneinheit, ein CT-System, ein Computerprogramm und ein Datenträger für ein Computerprogramm aufgezeigt werden.
  • Diese Aufgabe wird durch Verfahren mit den Merkmalen des Anspruchs 1, sowie durch eine Recheneinheit, ein CT-System, ein Computerprogramm und einen Datenträger mit Merkmalen von nebengeordneten Ansprüchen gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen sind Gegenstand von Unteransprüchen.
  • Bei dem erfindungsgemäßen Verfahren zur Rekonstruktion von Bilddaten eines sich bewegenden Untersuchungsobjektes aus Messdaten wurden die Messdaten zuvor bei einer relativen Rotationsbewegung zwischen einer Strahlungsquelle eines Computertomographiesystems und dem Untersuchungsobjekt bei verschiedenen Projektionswinkeln erfasst. Aus den Messdaten werden erste Bilddaten aus einem ersten Projektionswinkelbereich der Messdaten und zweite Bilddaten aus einem zweiten gegenüber dem ersten Projektionswinkelbereich kleineren Projektionswinkelbereich der Messdaten rekonstruiert. Unter Verwendung der ersten und der zweiten Bilddaten werden mit einem iterativen Algorithmus verbesserte Bilddaten berechnet. Hierbei wird ein Tiefpass auf eine Differenz zwischen den ersten Bilddaten und Bilddaten eines Iterationszyklus, und ein Hochpass auf eine Differenz zwischen den zweiten Bilddaten und den Bilddaten des Iterationszyklus angewandt.
  • Bei dem erfindungsgemäßen Verfahren zur Bildrekonstruktion wurden zuvor die Messdaten bei einer relativen Rotationsbewegung zwischen einer Strahlungsquelle eines Computertomographiesystems und dem Untersuchungsobjekt erfasst. Während der Rotation werden kontinuierlich verschiedene Projektionswinkel eingenommen, so dass Messdaten zu einer Vielzahl von Projektionswinkeln vorliegen. Hierbei existiert jeweils eine Zuordnung zwischen Messdatum und dem Projektionswinkel der Messdatenerfassung.
  • Aus den Messdaten werden erste Bilddaten und zweite Bilddaten rekonstruiert. Diese beziehen sich auf das gleiche Untersuchungsobjekt oder auf den gleichen Ausschnitt dieses Untersuchungsobjektes. Jedes Element des Untersuchungsobjektes bzw. des Ausschnittes des Untersuchungsobjektes ist also sowohl in den ersten als auch in den zweiten Bilddaten abgebildet. Bei dem bewegten Untersuchungsobjekt handelt es sich vorzugsweise um ein schlagendes Herz bzw. einen Ausschnitt aus einem schlagenden Herzen.
  • Das Rekonstruktionsverfahren der ersten und der zweiten Bilddaten kann das gleiche oder ein voneinander unterschiedliches sein. Z.B. kann für beide Bilddaten ein FBP Verfahren angewandt werden. Der Messdatenbereich, welcher zur Bildrekonstruktion verwendet wird, unterscheidet sich für die beiden Bilddatensätze. Für die ersten Bilddaten wird ein größerer Projektionswinkelbereich verwendet als für die zweiten Bilddaten. Bei den Projektionswinkelbereichen handelt es sich jeweils um zusammenhängende Winkelbereiche, welche während der Datenerfassung überstrichen wurden. Vorzugsweise ist der Projektionswinkelbereich der zweiten Bilddaten eine Untermenge des Projektionswinkelbereiches der ersten Bilddaten.
  • Aufgrund der unterschiedlich großen Projektionswinkelbereiche haben die beiden Bilddatensätze unterschiedliche Bildcharakteristiken. Da sich das Untersuchungsobjekt während der Messdatenerfassung bewegt, weisen die ersten Bilddaten mehr Bewegungsartefakte als die zweiten Bilddaten auf. Aufgrund des verkleinerten Messdatenbereichs können die zweiten Bilddaten so genannte Partial-Scan Artefakte aufweisen. Ferner zeichnen sich die ersten Bilddaten üblicherweise durch ein gegenüber den zweiten Bilddaten verbessertes Signal-zu-Rausch Verhältnis aus.
  • Unter Verwendung der ersten und der zweiten Bilddaten werden mit einem iterativen Algorithmus verbesserte Bilddaten berechnet. Es wird bei dem iterativen Algorithmus angewandt:
    • – ein Tiefpass auf eine Differenz zwischen den ersten Bilddaten und Bilddaten eines Iterationszyklus, und
    • – ein Hochpass auf eine Differenz zwischen den zweiten Bilddaten und den Bilddaten des Iterationszyklus.
  • Die ersten und die zweiten Bilddaten werden mittels des iterativen Algorithmus zu verbesserten Bilddaten verrechnet. Die Verbesserung bezieht sich vorzugsweise sowohl auf die ersten als auch auf die zweiten Bilddaten, d.h. die verbesserten Bilddaten weisen Vorteile sowohl gegenüber den ersten als auch gegenüber den zweiten Bilddaten auf. In den iterativen Algorithmus geht eine Differenz einerseits zwischen den ersten Bilddaten und Bilddaten eines Iterationszyklus, und andererseits zwischen den zweiten Bilddaten und den Bilddaten des Iterationszyklus ein. Die Differenzbildung erfolgt bei den ersten Bilddaten und den zweiten Bilddaten in Bezug auf die gleichen Bilddaten, nämlich die Bilddaten eines Iterationszyklus. Hierbei handelt es sich um Bilddaten, die bereits im Rahmen der iterativen Bildrekonstruktion berechnet wurden. Auf die erstgenannte Differenz wird ein Tiefpass, und auf die zweitgenannte Differenz ein Hochpass angewandt. Hierdurch können selektiv bestimmte Frequenzbereiche der ersten und der zweiten Bilddaten in die verbesserten Bilddaten übernommen werden. Es ist möglich, dass die ersten und die zweiten Bilddaten zusätzlich auf andere Weise als durch die erläuterten Differenzen in den iterativen Algorithmus eingehen.
  • Vorzugsweise entspricht der zweite Projektionswinkelbereich einem minimalen für eine Computertomographie-Bildrekonstruktion vollständigen Messdatensatz. Dies entspricht einem Projektionswinkelbereich von 180º, also einer Halbrotation, plus dem Fächeröffnungswinkel des Röntgenstrahls. Die Verwendung des kleinstmöglichen, für eine Bildrekonstruktion vollständigen Messdatensatzes ist insbesondere bei der Betrachtung von bewegten Untersuchungsobjekten, z.B. in der Cardio-CT, relevant. Denn je größer ein Projektionswinkelbereich ist, aus dem die Messdaten stammen, umso mehr hat sich das Untersuchungsobjekt während der Messung bewegt.
  • Abweichend hiervon ist es auch möglich, lediglich einen unvollständigen Datensatz zur Rekonstruktion der zweiten Bilddaten zu verwenden. Dies entspricht einem Projektionswinkelbereich von weniger als 180º plus dem Fächeröffnungswinkel des Röntgenstrahls. Dies weist den Vorteil einer noch weiter gesteigerten Zeitauflösung der zweiten Bilddaten auf. Für die ersten Bilddaten findet vorzugsweise eine Vollumlaufrekonstruktion statt, d.h. der Projektionswinkelbereich beträgt 360º plus dem Fächeröffnungswinkel des Röntgenstrahls.
  • In Weiterbildung der Erfindung wird bei dem iterativen Algorithmus ein nichtlinearer Operator auf die Bilddaten des Iterationszyklus angewandt, welcher eine kantenerhaltende Glättung durchführt. Ein solcher Operator kann als Regularisierungsoperator bezeichnet werden. Vorteilhafterweise umfasst der nichtlineare Operator eine Filterung abhängig von einem Kontrast-zu-Rauschen. Dies ermöglicht eine Rauschreduktion bei gleichzeitiger Schärfeerhaltung.
  • In Ausgestaltung der Erfindung werden bei dem iterativen Algorithmus addiert:
    • – die Bilddaten des Iterationszyklus,
    • – das Ergebnis der Anwendung des Tiefpasses auf die Differenz zwischen den ersten Bilddaten und den Bilddaten des Iterationszyklus,
    • – das Ergebnis der Anwendung des Hochpasses auf die Differenz zwischen den zweiten Bilddaten und den Bilddaten des Iterationszyklus, und
    • – das Ergebnis der Anwendung des nichtlinearen Operators.
  • Diese Addition kann gegebenenfalls gewichtet erfolgen. Vorteilhafterweise werden als Bilddaten der nullten Iteration die ersten Bilddaten eingesetzt. Die ersten Iterationsbilddaten werden also auf Grundlage der ersten Bilddaten berechnet. Die zweiten Bilddaten kommen dann erst nach der Berechnung der ersten Iterationsbilddaten zum Einsatz.
  • Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels näher erläutert. Dabei zeigen:
  • 1: eine erste schematische Darstellung eines Ausführungsbeispiels eines Computertomographiesystems mit einem Bildrekonstruktionsbestandteil,
  • 2: eine zweite schematische Darstellung eines Ausführungsbeispiels eines Computertomographiesystems mit einem Bildrekonstruktionsbestandteil,
  • 3: ein Ablaufdiagramm zur iterativen Bildrekonstruktion.
  • In 1 ist zunächst schematisch ein erstes Computertomographiesystem C1 mit einer Bildrekonstruktionseinrichtung C21 dargestellt. Es handelt sich hierbei um ein CT-Gerät der so genannten dritten Generation, auf welchen die Erfindung jedoch nicht beschränkt ist. In dem Gantrygehäuse C6 befindet sich eine hier nicht sichtbare geschlossene Gantry, auf der eine erste Röntgenröhre C2 mit einem gegenüberliegenden Detektor C3 angeordnet sind. Optional ist in dem hier gezeigten CT-System eine zweite Röntgenröhre C4 mit einem gegenüberliegenden Detektor C5 angeordnet, so dass durch die zusätzlich zur Verfügung stehende Strahler-/Detektorkombination eine höhere Zeitauflösung erreicht werden kann, oder bei der Verwendung unterschiedlicher Röntgenenergiespektren in den Strahler-/Detektorsystemen auch „Dual-Energy“-Untersuchungen durchgeführt werden können.
  • Das CT-System C1 verfügt weiterhin über eine Patientenliege C8, auf der ein Patient bei der Untersuchung entlang einer Systemachse C9, auch als z-Achse bezeichnet, in das Messfeld geschoben werden kann. Es ist jedoch auch möglich, dass die Abtastung selbst als reiner Kreisscan ohne Vorschub des Patienten ausschließlich im interessierten Untersuchungsbereich stattfindet. Die Bewegung der Patientenliege C8 relativ zur Gantry wird durch eine geeignete Motorisierung bewirkt. Während dieser Bewegung rotiert jeweils die Röntgenquelle C2 bzw. C4 um den Patienten. Parallel läuft dabei gegenüber der Röntgenquelle C2 bzw. C4 der Detektor C3 bzw. C5 mit, um Projektionsmessdaten zu erfassen, die dann zur Rekonstruktion von Schnittbildern genutzt werden. Alternativ zu einem sequentiellen Scan, bei dem der Patient schrittweise zwischen den einzelnen Scans durch das Untersuchungsfeld geschoben wird, ist selbstverständlich auch die Möglichkeit eines Spiralscans gegeben, bei dem der Patient während der umlaufenden Abtastung mit der Röntgenstrahlung kontinuierlich entlang der Systemachse C9 durch das Untersuchungsfeld zwischen Röntgenröhre C2 bzw. C4 und Detektor C3 bzw. C5 geschoben wird. Durch die Bewegung des Patienten entlang der Achse C9 und den gleichzeitigen Umlauf der Röntgenquelle C2 bzw. C4 ergibt sich bei einem Spiralscan für die Röntgenquelle C2 bzw. C4 relativ zum Patienten während der Messung eine Helixbahn. Diese Bahn kann auch dadurch erreicht werden, dass die Gantry bei unbewegtem Patienten entlang der Achse C9 verschoben wird. Ferner ist es möglich, den Patienten kontinuierlich und gegebenenfalls periodisch zwischen zwei Punkten hin- und herzubewegen.
  • Gesteuert wird das CT-System C1 durch eine Steuer- und Recheneinheit C10 mit in einem Speicher vorliegendem Computerprogrammcode Prg1 bis Prgn. Es wird darauf hingewiesen, dass selbstverständlich diese Computerprogrammcodes Prg1 bis Prgn auch auf einem externen Speichermedium enthalten sein und bei Bedarf in die Steuer- und Recheneinheit C10 geladen werden können.
  • Von der Steuer- und Recheneinheit C10 aus können über eine Steuerschnittstelle 24 Akquisitionssteuersignale AS übertragen werden, um das CT-Gerät gemäß bestimmter Messprotokolle anzusteuern. Die Akquisitionssteuersignale AS betreffen hierbei z.B. die Röntgenröhren C2 und C4, wobei Vorgaben zu ihrer Leistung und den Zeitpunkten ihres An- und Ausschaltens gemacht werden können, sowie die Gantry, wobei Vorgaben zu ihrer Rotationsgeschwindigkeit gemacht werden können, sowie den Tischvorschub.
  • Da die Steuer- und Recheneinheit C10 über eine Eingabekonsole verfügt, können Messparameter von einem Anwender oder Operator des CT-Geräts eingegeben werden, welche dann in Form von Akquisitionssteuersignalen AS die Datenerfassung steuern. Informationen über aktuell verwendete Messparameter können auf dem Bildschirm der Steuer- und Recheneinheit C10 dargestellt werden; zusätzlich können weitere für den Operator relevante Informationen angezeigt werden.
  • Die vom Detektor C3 bzw. C5 akquirierten Projektionsmessdaten p bzw. Rohdaten werden über eine Rohdatenschnittstelle C23 an die Steuer- und Recheneinheit C10 übergeben. Diese Rohdaten p werden dann, gegebenenfalls nach einer geeigneten Vorverarbeitung, in einem Bildrekonstruktionsbestandteil C21 weiterverarbeitet. Der Bildrekonstruktionsbestandteil C21 ist bei diesem Ausführungsbeispiel in der Steuer- und Recheneinheit C10 in Form von Software auf einem Prozessor realisiert, z.B. in Form einer oder mehrerer der Computerprogrammcodes Prg1 bis Prgn. In Bezug auf die Bildrekonstruktion gilt wie bereits in Bezug auf die Steuerung des Messvorgangs erläutert, dass die Computerprogrammcodes Prg1 bis Prgn auch auf einem externen Speichermedium enthalten sein und bei Bedarf in die Steuer- und Recheneinheit C10 geladen werden können. Ferner ist es möglich, dass die Steuerung des Messvorgangs einerseits und die Bildrekonstruktion andererseits von verschiedenen Recheneinheiten durchgeführt werden.
  • Die von dem Bildrekonstruktionsbestandteil C21 rekonstruierten Bilddaten f werden dann in einem Speicher C22 der Steuer- und Recheneinheit C10 hinterlegt und/oder in üblicher Weise auf dem Bildschirm der Steuer- und Recheneinheit C10 ausgegeben. Sie können auch über eine in 1 nicht dargestellte Schnittstelle in ein an das Computertomographiesystem C1 angeschlossenes Netz, beispielsweise ein radiologisches Informationssystem (RIS), eingespeist und in einem dort zugänglichen Massenspeicher hinterlegt oder als Bilder ausgegeben werden.
  • Die Steuer- und Recheinheit C10 kann zusätzlich auch die Funktion eines EKGs ausführen, wobei eine Leitung C12 zur Ableitung der EKG-Potenziale zwischen Patient und Steuer- und Recheneinheit C10 verwendet wird. Zusätzlich verfügt das in der 1 gezeigte CT-System C1 auch über einen Kontrastmittelinjektor C11, über den zusätzlich Kontrastmittel in den Blutkreislauf des Patienten injiziert werden kann, so dass z.B. die Gefäße des Patienten, insbesondere die Herzkammern des schlagenden Herzens, besser dargestellt werden können. Außerdem besteht hiermit auch die Möglichkeit, Perfusionsmessungen durchzuführen, für die sich das vorgeschlagene Verfahren ebenfalls eignet.
  • Die Steuer- und Recheinheit C10 muss sich – anders als in 1 dargestellt – selbstverständlich nicht in der Nähe der restlichen Bestandteile des CT-Systems C1 befinden. Vielmehr ist es möglich, diese in einem anderen Raum oder weiter entfernten Ort unterzubringen. Die Übertragung der Rohdaten p und/oder der Aquisitionssignale AS und/oder der EKG-Daten kann über Leitung oder alternativ über Funk erfolgen.
  • Die 2 zeigt ein C-Bogen-System, bei dem im Gegensatz zum CT-System der 1 das Gehäuse C6 den C-Bogen C7 trägt, an dem einerseits die Röntgenröhre C2 und andererseits der gegenüberliegende Detektor C3 befestigt sind. Der C-Bogen C7 wird für eine Abtastung ebenfalls um eine Systemachse C9 geschwenkt, so dass eine Abtastung aus einer Vielzahl von Abtastwinkeln stattfinden kann und entsprechende Projektionsdaten p aus einer Vielzahl von Projektionswinkeln ermittelt werden können. Das C-Bogen-System C1 der 2 verfügt ebenso wie das CT-System aus der 1 über eine Steuer- und Recheneinheit C10 der zu 1 beschriebenen Art.
  • Die Erfindung ist in beiden der in den 1 und 2 gezeigten Systeme anwendbar. Ferner ist sie grundsätzlich auch für andere CT-Systeme einsetzbar, z. B. für CT-Systeme mit einem einen vollständigen Ring bildenden Detektor.
  • Soweit Körperpartien eines Patienten aufgenommen werden sollen, die sich nicht bewegen bzw. sich ruhigstellen lassen, stellen sich für die Aufnahme der Projektionen und die sich daran anschließende Bildrekonstruktion keine nennenswerten Probleme mit Bewegungsartefakten. Kritisch hingegen ist dies bei bewegten Untersuchungsobjekten. Im Folgenden wird die Situation betrachtet, dass eine CT-Aufnahme eines sich bewegenden Untersuchungsobjektes erfolgen soll. Ein Beispiel hierfür wird das schlagende Herz, also die so genannte Cardio-CT.
  • Neben den auch für unbewegte Untersuchungsobjekte bestehenden Anforderungen an die Qualität von CT-Bildern besteht bei Herzaufnahmen das Ziel, eine hohe Zeitauflösung der Bilder zu erreichen. Die Zeitauflösung ist hierbei umgekehrt proportional zur Zeitspanne, welche zur Erfassung der Projektionen benötigt wird. Je mehr Zeit während der Datenerfassung verstreicht, desto mehr bewegt sich das Herz während dieser Messzeit. Diese Bewegung führt zu unerwünschten Bewegungsartefakten in den CT-Bildern. Die Aussagekraft der CT-Bild wird hierdurch drastisch reduziert.
  • Bei CT-Bildrekonstruktionen muss bei Messungen in Parallelstrahlgeometrie ein Datenintervall, d.h. eine Reihe von aufeinanderfolgenden Projektionen, wobei jede Projektion einer Messung bei einem bestimmten Projektionswinkel entspricht, zur Verfügung stehen, das mindestens einem Halbumlauf der Röntgenquelle um das Untersuchungsobjekt, d.h. einem Projektionswinkelbereich von 180º, entspricht. Bei einer Fächerstrahlgeometrie muss der Projektionswinkelbereich 180º plus dem Fächeröffnungswinkel betragen. Beide Fälle werden im Folgenden unter der Bezeichnung „Daten eines Halbumlaufs“ zusammengefasst. Dieses Mindestdatenintervall ist nötig, um jeden Bildpunkt im Messfeld rekonstruieren zu können. Im Drehzentrum ist auch in Fächerstrahlgeometrie ein Projektionswinkelbereich von 180º ausreichend. Die bestmögliche zeitliche Auflösung in einem so rekonstruierten CT-Bild beträgt damit in Drehzentrumsnähe gerade der halben Rotationszeit des CT-Geräts.
  • Zur Erhöhung der Zeitauflösung ist es also vorteilhaft, nur die Daten eines Halbumlaufs zur Bildrekonstruktion zu verwenden. Anstelle einer Vollumlaufrekonstruktion wird eine Teilumlaufrekonstruktion vorgenommen. Bei Störsignalen, die nicht-symmetrische Bildfehler hervorrufen, hängt das resultierende Bild der Teilumlaufrekonstruktion vom Startwinkel des zur Rekonstruktion verwendeten Messbereichs ab. Die aufgrund der mangelnden Symmetrie auftretenden Bildfehler bezeichnet man als Partial-Scan Artefakte. Derartige Fehler werden z.B. durch die Streustrahlung nicht rotationssymmetrischer Objekte hervorgerufen. Dies trifft sowohl auf die Vorwärts- als auch auf die Querstreuung zu. Hierbei versteht man unter der Querstreuung die Streuung von Strahlung einer Röntgenquelle zu dem Detektor einer anderen Röntgenquelle bei einem Dual-Source System.
  • Im folgenden wird davon ausgegangen, dass eine CT-Messung des bewegten Herzens erfolgt ist, und aus den Messdaten Bilddaten rekonstruiert wurden. Der Ablauf des Verfahrens ist in 3 gezeigt. Es werden einerseits Bilddaten PIC A aus einem Vollumlauf rekonstruiert, und andererseits Bilddaten PIC B aus einem Teilumlauf. Die Messdaten des Teilumlaufs stellen eine Teilmenge der Messdaten des Vollumlaufs dar, d.h. die beiden Bilder PIC A und PIC B zeigen das Herz in etwa zum gleichen Zeitpunkt.
  • Die Bilder PIC A und PIC B können auf an sich bekannte Weise berechnet worden sein, z.B. durch ein FBP (Filtered BackProjection) Verfahren. Es kann sich um zweidimensionale Schnitt- oder um dreidimensionale Volumenbilder des Untersuchungsobjektes handeln.
  • Dies beiden Bilder PIC A und PIC B sind von unterschiedlicher Qualität: das Bild PIC A hat eine schlechte Zeitauflösung und weist dementsprechend Bewegungsartefakte auf, es ist frei von Partial-Scan Artefakten, und es hat ein gutes Signal-zu-Rausch Verhältnis. Für das Bild PIC B gilt das umgekehrte: es hat eine gute Zeitauflösung und weist dementsprechend wenig Bewegungsartefakte auf, es beinhaltet Partial-Scan Artefakte, und hat ein schlechteres Signal-zu-Rausch Verhältnis.
  • Ziel des im folgenden beschriebenen Vorgehens ist es, unter Verwendung der Bilder PIC A und PIC B mit ihren unterschiedlichen Bildcharakteristiken ein Ergebnisbild PIC zu erhalten, welches die Vorteile beider Bilder PIC A und PIC B vereinigt. Hierzu wird zunächst in einem Regularisierungsschritt REG das Bild PIC A modifiziert, indem Rauschen geglättet wird; das Ergebnis dieser Modifikation ist das Bild PIC A*. Die Bilder PIC A, PIC B und PIC A* werden dann einer iterativen Rekonstruktion it Rekon zugrunde gelegt, welche auf folgender Update-Formel beruht:
  • Gleichung (1): fk+1 = fk + α1·Λ⊗(PICA – fk) + α2·Λ*⊗(PICB – fk) – γ·∇R(fk)
  • Bei fk+1 handelt es sich um das Bild der (k + 1)-ten Iteration. Es wird aus dem Bild fk der k-ten Iteration berechnet.
  • Bei der ersten Iteration wird als Bild f0 das Bild PIC A verwendet. Der Grund hierfür ist, dass die iterative Bildberechnung ausgehend von einem Bild mit einem günstigen Signal-zu-Rausch Verhältnis starten sollte. Dies ist auch anhand von 3 zu erkennen: der Schritt REG entspricht der Anwendung des noch näher zu erläuternden Regularisierungsoperators γ·∇R auf das Bild PIC A. In der ersten Iteration entspricht der letzte Teil der Gleichung (1), γ·∇R(fk), also γ·PICA*. In den weiteren Iterationen wird an dieser Stelle jedoch nicht mehr PIC A*, sondern das jeweilige fk der vorhergehenden Iteration eingesetzt.
  • In jeder Iteration wird das update Bild fk aus drei Komponenten linear kombiniert. Es tragen hierzu bei: das Korrekturbild α1·Λ⊗(PICA – fk) + α2·Λ*⊗(PICB – fk), das Bild fk aus der vorangegangenen Iteration und das Regularisierungsbild γ·∇R(fk). Die Parameter α1, α2 und γ steuern die relative Gewichtung von Korrekturterm und Regularisierungsbeitrag.
  • Die Operatoren Λ und Λ* sind jeweils Bandpassfilter im Frequenzbereich; ⊗ ist der Faltungsoperator. Λ ist ein Tiefpass, Λ* ein Hochpass. Die beiden Operatoren Λ und Λ* sind komplementär zueinander, d.h. wenn man auf der Abszisse die Frequenz und auf der Ordinate die Stärke der Filterung durch die Operatoren Λ und Λ* aufträgt, ergibt die Summe der beiden Filterstärken bei jeder Frequenz stets den Wert 1. Diese Eigenschaft der beiden Filter ist wichtig, um die CT-Werte der berechneten Bilder fk nicht zu höheren oder tieferen Werten zu verschieben; sonst wäre das Wasserniveau der CT-Bilder nicht korrekt.
  • Die Anwendung von Λ und Λ* ist äquivalent zu einer Frequenzbandzerlegung. Sie gibt selektiven Zugriff darauf, welche Frequenzen aus den Bildern PIC A und PIC B im Konvergenzbild PIC beitragen sollen. Die relative Gewichtung der Frequenzanteile wird durch die Parameter α1 und α2 gesteuert.
  • Der Korrekturterm enthält die Differenzen zwischen dem aktuellen Iterationsbild fk und den Ausgangsbildern PIC A und PIC B. Da der Korrekturterm zu dem aktuellen Iterationsbild fk addiert wird, entspricht dies einer Annäherung des Iterationsbildes an die beiden Ausgangsbilder PIC A und PIC B. Diese Annäherung erfolgt jedoch nur in bestimmten Frequenzbereichen: wie bereits erwähnt, erfolgt durch den Operator Λ eine Tiefpassfilterung. Die Bewegungsartefakte sind bei mittleren bis hohen Frequenzen lokalisiert. Daher wird deren Beitrag zum Ergebnisbild durch die Tiefpassfilterung vermindert. Λ* hingegen entspricht einem Hochpass. Dies entspricht den Eigenschaften von PIC B, wonach dieses Bild Partial-Scan Artefakte aufweist. Diese Mängel finden sich ausschließlich in den niedrigen Bildfrequenzen, so dass deren Beitrag zum Iterationsbild vermindert werden soll.
  • Die Iteration kann nach einer bestimmten Anzahl von Iterationszyklen oder nach Erreichen eines Abbruch- bzw. Konvergenzkriteriums beendet werden. Das aus der letzten Iteration resultierende Bild fk kann dann als Ergebnisbild PIC ausgegeben werden.
  • Der Vorteil der beschriebenen iterativen Bildrekonstruktion ist, dass im Ergebnisbild PIC die positiven Teile der Bildcharakteristik beider Bilder PIC A und PIC B vereinigt sind. Es wurden also die Partial-Scan Artefakte entfernt, und zugleich das gute Signal-zu-Rausch Verhältnis der Vollumlaufkonstruktion auf die Teilumlaufrekonstruktion übertragen. Wie gut diese Übertragung der positiven Bildeigenschaften auf das Ergebnisbild PIC funktioniert, hängt insbesondere von der Ausgestaltung der Filter Λ und Λ* ab. Hierbei ist es vorteilhaft, diese Filter an die Bildeigenschaften anzupassen. Dementsprechend kann analysiert werden, im welchem Frequenzbereich die Artefakte des Bildes PIC A bzw PIC B angesiedelt sind. Wie bereits erwähnt sind die beiden Filterfunktionen Λ und Λ* komplementär zueinander und somit nicht unabhängig voneinander definierbar. Da die Bewegungsartefakte nicht nur bei hohen Frequenzen, sondern auch im mittleren Frequenzbereich zu finden sind, muss eine geschickte Frequenzbandzerlegung verwendet werden, welche einerseits einen Großteil der Bewegungsartefakte beseitigt, und andererseits nicht die Partial-Scan Artefakte unbeseitigt lässt.
  • Im folgenden wird ausgeführt, wie der Regularisierungsoperator ∇R ausgestaltet sein kann. Die Aufgabe des Regularisierungsbeitrags γ·∇R(fk) ist es, das Rauschen im Bild zu vermindern, so dass Konvergenz bei der Iteration erreicht werden kann. Es lässt sich zeigen, dass alleine die Architektur des Regularisierungsoperators entscheidend für die Rauschcharakteristik des Ergebnisbildes ist.
  • Daher entspricht der Operator ∇R einem Hochpass, so dass aufgrund des Minus-Zeichens vor γ·∇R(fk) die Wirkung derjenigen eines Tiefpasses entspricht.
  • Bei ∇R handelt es sich um einen nichtlinearen Bildfilter. Denn wenn lediglich homogen über das gesamte Bild geglättet würde, würde dies zwar das Rauschen reduzieren, jedoch auch die Schärfe des Bildes verschlechtern, da z.B. auch Kanten aufgeweicht würden. Ein nichtlinearer Bildfilter hingegen ermöglicht es, sowohl das Rauschen zu reduzieren, als auch die Auflösung zu erhalten. Dies erfolgt, indem abhängig von den lokalen Kontrastwerten innerhalb des Bildes geglättet wird.
  • In der nachveröffentlichten deutschen Patentanmeldung der Anmelderin mit dem Aktenzeichen 10 2010 043 975.4 , deren Inhalt vollumfassend in die vorliegende Anmeldung übernommen wird, wird aufgezeigt, wie eine kantenerhaltende Glättung erfolgen kann, bei welcher zusätzlich eine Ausfransung der Kanten weitesgehend vermieden wird. Denn nach einer erfolgten Glättung fällt es stark auf, wenn die Kanten nicht völlig glatt sind; sie wirken dann pixelig bzw. ausgefranst. Dies wird erreicht, indem die Glättungswirkung orthogonal zu einer Kante reduziert wird, entlang der Kante hingegen maximal ist.
  • Die Regularisierung kann wie folgt formuliert werden:
    Figure 00180001
  • Hierbei ist (f)i das i-te Element des Bildes f, im folgenden vereinfachend als Pixel bezeichnet. Die Summierung erfolgt über die anderen Pixel j; vorzugsweise wird nur über die direkten Nachbarn des Pixels i summiert. Im zweidimensionalen sind dies 8 Nachbarn, im dreidimensionalen 26, und im vierdimensionalen 81. dij ist der inverse Abstand zwischen den Pixeln i und j. Dies bedeutet, dass ein Pixel umso weniger beiträgt, je größer dessen Entfernung vom Pixel i ist. Der so genannten Domain-Filter dij sichert die Hochpasscharakteristik des Regularisierungsbeitrags.
  • Δj,i ist der Grauwertabstand zwischen den Pixeln i und j, d.h. Δj,i = fj – fi. Dies entspricht dem Kontrast.
  • σi ist das isotrope lokale Rauschen am Ort des Pixels i. Man kann diese Größe z.B. bestimmen, indem man die Varianz entlang Linien gemäß den Verbindungen zu den unmittelbaren Nachbarn des Pixels i bestimmt, und das Minimum dieser Varianzen ermittelt. Setzt man σi gleich diesem Minimum, so ist die Wahrscheinlichkeit groß, dass nicht eine gegebenenfalls vorhandene physikalische Struktur versehentlich als Rauschen angesehen wird.
  • Die Größe s(i), die Signifikanz am Ort des Pixels i, ist ein Maß für das Vorhandensein einer Objektkante am Ort des Pixels i. Ist eine solche nicht vorhanden, weist sie den Wert 0 auf, bei einer Kante weist sie den Wert 1 auf. Zwischen diesen beiden Extremen steigt sie monoton an.
  • Die Größe κij, die Deformationsstärke des Bildes, ist eine Funktion des Winkels zwischen den Richtungsvektoren von der Verbindung zwischen den Pixeln i und j einerseits und des lokalen Prototypgradienten im Pixel i. Dies Größe ermittelt die Krümmung der Kante, indem Gradienten entlang einer detektierten Kante berechnet werden.
  • Die Kennlinie H wird als Influenzfunktion bezeichnet; im allgemeinen gilt, dass die Influenzfunktion abhängig von ihrem Argument bei 0 den Wert 1 aufweist und dann nichtlinear stetig abfällt. Bei großem Argument ist sie 0 oder sogar negativ.
  • Das Argument der Influenz-Funktion ist also ein modifiziertes lokales Kontrast-zu-Rausch Verhältnis. Je größer dieses ist, desto kleiner ist der Wert der Influenzfunktion, und desto weniger wird dementsprechend an dieser Stelle im Bild gefiltert bzw. geglättet. Bei kleinen Kontrasten hingegen erfolgt eine starke Filterung.
  • Vorteilhafte Beispiele für die Ausgestaltung der Influenzfunktion, sowie von s(i) und κij finden sich in o.g. nachveröffentlichter Anmeldung.
  • Abweichend von Gleichung (2) können auch andere Formulierungen des Regularisierungsoperators zum Einsatz kommen. Ein Beispiel ist ein Laplace-Filter. Vorzugsweise sollte der zur Regularisierung verwendete Filter eine nichtlineare und somit kantenerhaltende Glättung des Bildes bewirken. Ein Beispiel hierfür ist in der Veröffentlichung DE 10 2009 039 987 A1 beschrieben.
  • Die vorstehend beschriebenen Ausführungsbeispiele betreffen die medizinische Anwendung der Erfindung. Die Erfindung kann jedoch auch außerhalb der Medizin, beispielsweise bei der Gepäcküberprüfung oder der Materialuntersuchung eingesetzt werden.
  • Die Erfindung wurde voranstehend an einem Ausführungsbeispiel beschrieben. Es versteht sich, dass zahlreiche Änderungen und Modifikationen möglich sind, ohne dass der Rahmen der Erfindung verlassen wird.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102010043975 [0058]
    • DE 102009039987 A1 [0068]

Claims (11)

  1. Verfahren zur Rekonstruktion von Bilddaten (PIC) eines sich bewegenden Untersuchungsobjektes aus Messdaten (p), wobei die Messdaten (p) bei einer relativen Rotationsbewegung zwischen einer Strahlungsquelle (C2, C4) eines Computertomographiesystems (C1) und dem Untersuchungsobjekt bei verschiedenen Projektionswinkeln erfasst wurden, aus den Messdaten (p) erste Bilddaten (PIC A) aus einem ersten Projektionswinkelbereich der Messdaten (p) und zweite Bilddaten (PIC B) aus einem zweiten gegenüber dem ersten Projektionswinkelbereich kleineren Projektionswinkelbereich der Messdaten (p) rekonstruiert werden, unter Verwendung der ersten (PIC A) und der zweiten (PIC B) Bilddaten mit einem iterativen Algorithmus (it Rekon) verbesserte Bilddaten (PIC) berechnet werden, wobei bei dem iterativen Algorithmus (it Rekon) – ein Tiefpass auf eine Differenz zwischen den ersten Bilddaten (PIC A) und Bilddaten eines Iterationszyklus, und – ein Hochpass auf eine Differenz zwischen den zweiten Bilddaten (PIC B) und den Bilddaten des Iterationszyklus angewandt wird.
  2. Verfahren nach Anspruch 1, bei dem der zweite Projektionswinkelbereich einem minimalen für eine Computertomographie-Bildrekonstruktion vollständigen Messdatensatz entspricht.
  3. Verfahren nach Anspruch 1 oder 2, bei dem bei dem iterativen Algorithmus (it Rekon) ein nichtlinearer Operator (REG) auf die Bilddaten des Iterationszyklus angewandt wird, welcher eine kantenerhaltende Glättung durchführt.
  4. Verfahren nach Anspruch 3, bei dem der nichtlineare Operator (REG) eine Filterung abhängig von einem Kontrast-zu-Rauschen umfasst.
  5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem bei dem iterativen Algorithmus (it Rekon) die Bilddaten des Iterationszyklus, und das Ergebnis der Anwendung des Tiefpasses auf die Differenz zwischen den ersten Bilddaten (PIC A) und den Bilddaten des Iterationszyklus, und das Ergebnis der Anwendung des Hochpasses auf die Differenz zwischen den zweiten Bilddaten (PIC B) und den Bilddaten des Iterationszyklus, und das Ergebnis der Anwendung des nichtlinearen Operators (REG) addiert werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem die ersten Bilddaten (PIC A) gegenüber den zweiten Bilddaten (PIC B) mehr Bewegungsartefakte, und die zweiten Bilddaten (PIC B) gegenüber den ersten Bilddaten (PIC A) mehr Partial-Scan Artefakte aufweisen.
  7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem als Bilddaten der nullten Iteration die ersten Bilddaten (PIC A) eingesetzt werden.
  8. Recheneinheit (C10) zur Rekonstruktion von Bilddaten (PIC) eines Untersuchungsobjektes aus Messdaten (p) eines CT-Systems (C1), mit Mitteln zum Durchführen eines Verfahrens gemäß einem der Ansprüche 1 bis 7.
  9. CT-System (C1) mit einer und Recheneinheit (C10) nach Anspruch 8.
  10. Computerprogramm mit Programmcode (Prg1–Prgn), um das Durchführen eines Verfahrens nach einem der Ansprüche 1 bis 7 zu bewirken, wenn das Computerprogramm auf einem Computer ausgeführt wird.
  11. Datenträger mit Programmcode (Prg1–Prgn) eines Computerprogramms, um das Durchführen eines Verfahrens nach einem der Ansprüche 1 bis 7 zu bewirken, wenn das Computerprogramm auf einem Computer ausgeführt wird.
DE102012204978.9A 2012-03-28 2012-03-28 Verfahren zur iterativen CT-Bildrekonstruktion zur Beseitigung von Partialscan-Artefakten sowie entsprechende Recheneinheit, Computertomographiesystem, Computerprogramm und Datenträger Expired - Fee Related DE102012204978B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102012204978.9A DE102012204978B4 (de) 2012-03-28 2012-03-28 Verfahren zur iterativen CT-Bildrekonstruktion zur Beseitigung von Partialscan-Artefakten sowie entsprechende Recheneinheit, Computertomographiesystem, Computerprogramm und Datenträger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012204978.9A DE102012204978B4 (de) 2012-03-28 2012-03-28 Verfahren zur iterativen CT-Bildrekonstruktion zur Beseitigung von Partialscan-Artefakten sowie entsprechende Recheneinheit, Computertomographiesystem, Computerprogramm und Datenträger

Publications (2)

Publication Number Publication Date
DE102012204978A1 true DE102012204978A1 (de) 2013-10-02
DE102012204978B4 DE102012204978B4 (de) 2017-05-11

Family

ID=49154665

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012204978.9A Expired - Fee Related DE102012204978B4 (de) 2012-03-28 2012-03-28 Verfahren zur iterativen CT-Bildrekonstruktion zur Beseitigung von Partialscan-Artefakten sowie entsprechende Recheneinheit, Computertomographiesystem, Computerprogramm und Datenträger

Country Status (1)

Country Link
DE (1) DE102012204978B4 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009039987A1 (de) 2009-09-03 2011-03-17 Siemens Aktiengesellschaft Iterativer CT-Bildfilter zur Rauschreduktion
DE102010013361A1 (de) * 2010-03-30 2011-10-06 Siemens Aktiengesellschaft Verbesserte Zeitauflösung bei Cardio-CT-Aufnahmen
DE102010043975A1 (de) 2010-11-16 2012-05-16 Siemens Aktiengesellschaft Verfahren zur Reduktion der verwendeten Strahlendosis im Rahmen einer bildgebenden Röntgenuntersuchung und CT-System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009039987A1 (de) 2009-09-03 2011-03-17 Siemens Aktiengesellschaft Iterativer CT-Bildfilter zur Rauschreduktion
DE102010013361A1 (de) * 2010-03-30 2011-10-06 Siemens Aktiengesellschaft Verbesserte Zeitauflösung bei Cardio-CT-Aufnahmen
DE102010043975A1 (de) 2010-11-16 2012-05-16 Siemens Aktiengesellschaft Verfahren zur Reduktion der verwendeten Strahlendosis im Rahmen einer bildgebenden Röntgenuntersuchung und CT-System

Also Published As

Publication number Publication date
DE102012204978B4 (de) 2017-05-11

Similar Documents

Publication Publication Date Title
DE102012204977B4 (de) Verfahren zur iterativen Bildrekonstruktion für Bi-Modale CT-Daten sowie entsprechende Recheneinheit, Computertomographiesystem, Computerprogramm und Datenträger
DE102009014723B4 (de) Kontrastabhängige Regularisierungsstärke bei der iterativen Rekonstruktion von CT-Bildern
DE102010019016B4 (de) Verfahren zur Rekonstruktion von Bilddaten eines bewegten Untersuchungsobjektes aus Messdaten nebst zugehöriger Gegenstände
DE102010034099B4 (de) Iterative Bildfilterung mit anisotropem Rauschmodell für ein CT-Bild
DE102012207629B4 (de) CT-Bildrekonstruktion im erweiterten Messfeld
DE102010022306A1 (de) Iterative CT-Bildrekonstruktion in Kombination mit einem vierdimensionalen Rauschfilter
DE102009039987A1 (de) Iterativer CT-Bildfilter zur Rauschreduktion
DE102011083643A1 (de) Verfahren, Rechensystem und CT-System zur Bestimmung eines Bewegungsfeldes und zur bewegungskompensierenden Rekonstruktion mit diesem Bewegungsfeld
DE102007061935A1 (de) Verfahren zur Qualitätssteigerung von computertomographischen Aufnahmeserien durch Bildverarbeitung und CT-System mit Recheneinheit
DE602004004877T2 (de) System und verfahren für exakte bildrekonstruktion für spiralkegelstrahl-compu tertomographie mit redundanten daten
DE102009036232A1 (de) CT-Bildrekonstruktion für eine verbesserte Zeitauflösung in der Cardio-CT
DE102009051384A1 (de) Strahlaufhärtungskorrektur für CT-Perfusionsmessungen
DE102010024684B4 (de) Verfahren zur Rekonstruktion von Bilddaten eines bewegten Untersuchungsobjektes, Steuer- und Recheneinheit, Computertomographiesystem und Computerprogramm
DE102013220663A1 (de) Rekonstruktion von Bilddaten mittels Konturdaten
DE102010022305A1 (de) Iterative Rekonstruktion von CT-Bilern ohne Regularisierungsterm
DE102010006585A1 (de) CT-Bildrekonstruktion im erweiterten Messfeld
DE102010006774A1 (de) CT-Messung mit Mehrfachröntgenquellen
DE102011083647A1 (de) Verfahren, Rechensystem und CT-System zur Erzeugung eines bewegungskompensierten CT-Bilddatensatzes eines sich teilweise und zyklisch bewegenden Untersuchungsobjektes
DE102010013360B4 (de) Verfahren zur Rekonstruktion von Bilddaten eines zyklisch sich bewegenden Untersuchungsobjektes
DE102007061934A1 (de) Verfahren zur Qualitätssteigerung von computertomographischen Aufnahmeserien durch Projektionsdatenverarbeitung und CT-System mit Recheneinheit
DE102009051635A1 (de) Verbesserte Streustrahlkorrektur auf Rohdatenbasis bei der Computertomographie
DE102011083646A1 (de) Verfahren, Rechensystem und CT-System zur Bestimmung eines Bewegungsfeldes und zur Erzeugung eines bewegungskompensierten CT-Bilddatensatzes eines sich teilweise bewegenden Objektes
DE102009007236A1 (de) CT-Bildrekonstruktion eines sich bewegenden Untersuchungsobjektes
DE102009019840A1 (de) Kontrastverstärkung von CT-Bildern mittels eines Multibandfilters
DE102009051634B4 (de) Verfahren zur Rekonstruktion von Bilddaten, Steuer- und Recheneinheit, CT-System, Computerprogramm und Computerprogrammprodukt

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R081 Change of applicant/patentee

Owner name: SIEMENS HEALTHCARE GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee