DE102011105897A1 - Verfahren zur sensorlosen Kompensation von Werkstückverformungen bei programmgesteuerten mechanischen Bearbeitungsprozessen - Google Patents

Verfahren zur sensorlosen Kompensation von Werkstückverformungen bei programmgesteuerten mechanischen Bearbeitungsprozessen Download PDF

Info

Publication number
DE102011105897A1
DE102011105897A1 DE102011105897A DE102011105897A DE102011105897A1 DE 102011105897 A1 DE102011105897 A1 DE 102011105897A1 DE 102011105897 A DE102011105897 A DE 102011105897A DE 102011105897 A DE102011105897 A DE 102011105897A DE 102011105897 A1 DE102011105897 A1 DE 102011105897A1
Authority
DE
Germany
Prior art keywords
calculation
data
workpiece
corrected
geometry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102011105897A
Other languages
English (en)
Other versions
DE102011105897B4 (de
Inventor
Volker Wittstock
Philipp Klimant
Janine Glänzel
Marco Schumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Chemnitz
Original Assignee
Technische Universitaet Chemnitz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Chemnitz filed Critical Technische Universitaet Chemnitz
Priority to DE102011105897.8A priority Critical patent/DE102011105897B4/de
Publication of DE102011105897A1 publication Critical patent/DE102011105897A1/de
Application granted granted Critical
Publication of DE102011105897B4 publication Critical patent/DE102011105897B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41056Compensation for changing stiffness, deformation of workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49206Compensation temperature, thermal displacement, use measured temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Kompensation von Bearbeitungsfehlern durch elastische Deformationen eines Werkstücks, die mittels einer Berechnung in Form von dynamischen Korrekturwerten in einem laufenden NC-Programm berücksichtigt werden. Vor Beginn der Bearbeitung werden Geometriedaten unter Verwendung zusätzlicher Informationen wie beispielsweise die Umgebungstemperatur schrittweise überarbeitet und in der Bearbeitung vorhersagbare Bearbeitungsfehler werden durch angepasste Geometriedaten kompensiert.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur sensorlosen Kompensation von Werkstückverformungen bei programmgesteuerten mechanischen Bearbeitungsprozessen nach dem Oberbegriff des Anspruchs 1, einen entsprechend eingerichteten Datenträger sowie eine entsprechend eingerichtete Werkzeugmaschine.
  • Bei mechanischen Bearbeitungsprozessen spielt die Qualität eines Werkstücks eine elementare Rolle. In der Industrie werden dazu programmierbare Maschinen eingesetzt, die in der Lage sind mit geringen Toleranzen zu fertigen.
  • Dabei geben Programme den Maschinen exakte Werte vor. Jedoch erwärmen sich diese ungleichmäßig, was zu thermoelastischen Verformungen und Bearbeitungsfehlern führen kann. Die Wärmequellen stellen hauptsächlich Antriebselemente (Motoren), Lager- und Führungselemente dar, bei welchen Wärme durch Bewegungsreibung entsteht. Zudem können Hydraulikaggregate und der Bearbeitungsprozess selbst Wärme erzeugen.
  • Allerdings sind die genannten Erwärmungsvorgänge für gewöhnlich sehr träge und pendeln nach einer jeweiligen Zeitspanne um einen quasistabilen Zustand. Thermoelastische Verformungen bleiben auch nach dem Wegfall einer thermischen Last erhalten und abhängig von der jeweiligen Wärmekapazität nimmt die Verformung langsam ab. Die Erwärmung der Maschine hängt von mehreren Faktoren ab, zu denen unter anderem auch die Umgebungstemperatur zählt.
  • Neben den zuvor genannten Fehlern durch Wärmeeinflüsse auf die Maschine, können Ungenauigkeiten auch durch das Werkstück verursacht werden. Der Wärmeeintrag durch die Bearbeitung führt zu thermischen Deformationen am Werkstück. Kühlschmierstoffe verringern die thermischen Effekte und deshalb ist eine Kompensation insbesondere bei der Trockenbearbeitung von Bedeutung. Denn bei dieser Fertigungsart kann die durch den Zerspanprozess in das Werkstück geleitete Wärme nicht durch Kühlschmierstoffe abgeleitet werden, weshalb sich das Werkstück verformt. Insbesondere sind Werkstücke mit dünnwandigen und filigranen Strukturelementen von thermischen Verformungen betroffen. Bei dieser Art von Teilen ist die Aufspannfläche zur Halterung auf der Maschine meist sehr klein. Die Wärme kann in diesem Fall nur zum Teil an die Maschinenstruktur direkt abgegeben werden. Der größere Teil wird an die umgebende Luft im Arbeitsraum abgegeben. Durch die thermische Verformung verändert sich die Geometrie des Werkstücks und da zu Beginn des folgenden Bearbeitungsschrittes noch Deformationen vorhanden sind, führt dies zu Genauigkeitsverlusten. Überdies verursachen Bearbeitungskräfte elastische Verformungen in Werkstücken. Bei dünnwandigen Strukturen des Werkstücks führen die Bearbeitungskräfte zu besonders starken Genauigkeitsproblemen.
  • Die Erwärmungen, die die Maschinenstruktur ungleichmäßig beeinflussen finden sehr langsam statt und da die Wärme nur in geringem Ausmaß weitergeleitet wird, verbleibt sie in einer lokal begrenzten Komponente des Gesamtsystems und führt zu örtlich begrenzten Verformungen. Die thermoelastischen Lasten (der Wärmeeintrag) verursachen kurzfristige Geometrieabweichungen, da der Wärmeeintrag sehr hoch ist, jedoch über eine kurze Zeitspanne stattfindet. Die Kompensation muss aus diesem Grunde ebenso schnell stattfinden. Die Maschinenkomponenten bewegen sich und zudem wird das Gesamtsystem durch Effekte wie beispielsweise Luftzirkulation beeinflusst. Trotzdem geht die Wärmedehnung langsamer auf das Normalmaß zurück, als die oben erwähnte Ausdehnung zunimmt.
  • Gemäß dem Stand der Technik ist es möglich zuvor genannte Bearbeitungsfehler zu kompensieren. Jedoch ist dazu eine Vielzahl von Sensoren notwendig, die Abweichungen erfassen und dadurch eine Kompensation veranlassen.
  • Aus der DE 103 12 025 sind ein Verfahren zur Kompensation von Fehlern der Positionierregelung einer Maschine und eine Maschine mit Positionsregelung und Kompensationseinrichtung bekannt. Dabei werden kontinuierlich Daten über Sensoren erfasst und Verformungen berechnet, um eine Korrektur zu veranlassen.
  • Die DE 0 555 796 A1 offenbart eine Wärmemaschine mit einer automatischen Wärmedehnungs-Kompensationseinrichtung. Durch mehrere Temperaturfühler an verschiedenen Stellen werden Korrekturwerte ermittelt, um die Wärmedehnung zu kompensieren.
  • Verformungen thermischer oder mechanischer Ursache (zum Beispiel Wärme und Kraft) einer Maschinenstruktur sind auf verschiedene Arten messbar. Die Vermessung eines Werkstücks gestaltet sich weitaus schwieriger. Sensoren müssen auf jedes Werkstück aufgebracht, bzw. an diesem ausgerichtet werden. Besonders bei hohen Stückzahlen gestaltet sich dieser Umstand als nachteilig. Die Installation von Sensoren in jedem einzelnen Fall ist sehr umständlich, doch auch sensorlose Verfahren führen auf Grund der jeweils notwendigen Kalibrierung zu Umständen.
  • Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren zur sensorlosen Kompensation von Werkstückverformungen bei programmgesteuerten mechanischen Bearbeitungsprozessen anzugeben, das eine hohe Fertigungsqualität gestattet.
  • Diese Aufgabe wird hinsichtlich des Verfahrens erfindungsgemäß gelöst durch ein Verfahren mit den Merkmalen des Anspruches 1.
  • Wenn Verformungen vor dem Bearbeitungsprozess, bereits bei der Programmerstellung kompensiert werden, erübrigen sich Messvorgänge während der Bearbeitung. Da die Kompensationswerte schon zuvor berechnet wurden, ist eine sensorlose Bearbeitung möglich. Ferner sind während des Fertigungsprozesses sämtliche Verformungen bereits berücksichtigt, die aus der aktuellen Bearbeitungssituation selbst resultieren, so dass sich eine hohe Fertigungsqualität ergibt.
  • Die im Bearbeitungsprozess auftretenden Werkstückverformungen werden demzufolge bereits bei der Erstellung des Werkstückbearbeitungsprogramms berücksichtigt. Anhand einer auf bereitgestellten Geometriedaten des Werkstücks und sonstigen Randbedingungen (insbesondere auf Werkstück einwirkende mechanische und thermische Lasten) basierenden, iterativen Modellberechnung werden Positionsabweichungen des Werkstücks schon vor dem folgenden Bearbeitungsschritt des Werkzeugs ermittelt. Gegebenfalls sind für das Verfahren die ursprünglichen Bearbeitungsschritte in mehrere kleinere zu unterteilen. Diese berechneten Abweichungen können über eine Schnittstelle, beispielsweise die CLDATA-Schnittstelle, standardisiert nach DIN 66215, an die Steuerung der Werkzeugmaschine übermittelt werden, um die Werkzeugbahn für den nächsten Bearbeitungsschritt entsprechend anzupassen.
  • Zur Kompensation werden in einem ersten Verfahrensschritt Geometriedaten und Informationen über Randbedingungen bereitgestellt, in einem zweiten Verfahrensschritt die Daten korrigiert und in einem dritten Verfahrensschritt mittels korrigierter Daten die Steuerung ausgeführt.
  • Das erfindungsgemäße Verfahren zur sensorlosen Kompensation von Werkstückverformungen zeichnet sich insbesondere dadurch aus, dass der zweite Verfahrensschritt iterativ in mehreren Berechnungsschritten wiederholt wird. Durch diese iterative Korrektur, können vorteilhafterweise für den jeweils nächsten Berechnungsschritt Daten mit bereits korrigierten Werten verwendet werden. Die Fertigungsqualität erhöht sich dadurch.
  • Die Geometriedaten des Werkstücks und die entsprechenden Randbedingungen können aus vorgelagerten Berechnungen oder aus den für bestimmte Fertigungsverfahren bereits angelegten Datenbanken entnommen werden, so dass auf diese Weise ganz oder partiell auf die Verwendung komplexer Sensortechnik, wie sie bei den im Stand der Technik verwendeten Kompensationseinrichtungen nötig ist, verzichtet werden kann.
  • Die Randbedingungen können zumindest Materialkennwerte, die Umgebungslufttemperatur und Wärmeübergangskennwerte enthalten. Im ersten Verfahrensschritt kann anhand der CAD-Geometriedaten mit und ohne Aufmaß die Verfahrbahn des Werkzeuges berechnet werden. Anhand der CAD-Geometrie kann zudem ein Startgrobnetz bereitgestellt werden.
  • Die Informationen aus dem ersten Verfahrensschritt werden während des zweiten Verfahrensschritts abschnittsweise korrigiert, so dass korrigierte Randbedingungen, ein korrigiertes Grobnetz und korrigierte Verfahrbahnen erzeugt werden.
  • In diesem zweiten Verfahrensschritt erfolgt die eigentliche Fehlerkompensation. Der zweite Verfahrenschritt durchläuft mehrere Iterationsschleifen und zu seiner Durchführung wird vorzugsweise ein auf der Finite-Elemente-Methode (FEM) basierendes Programm verwendet. Vorzugsweise ist dieses FEM-Programm ein auf adaptiven Elementgrößen beruhendes Programm, da nur auf diese Weise die Vernetzung der unterschiedlichen Elementgrößen erfolgen kann.
  • Die Verformungen können elastisch sein und bevorzugt thermisch und durch den Bearbeitungsprozess erzeugt sein.
  • Vorzugsweise können sowohl die Position eines programmierten Punktes als auch die Lage einer vorgegebenen Fläche oder Kontur korrigiert werden und/oder Korrekturen in der Ebene oder im Raum stattfinden. Somit lässt sich das Verfahren auf den jeweiligen Anwendungsfall anpassen und die Fertigungsqualität weiter steigern.
  • Es erweist sich als vorteilhaft, wenn die Berechnung in einem Rechendurchlauf oder in mehreren voneinander unabhängigen Rechendurchlaufen erfolgt. Bei komplexen Berechnungen sowie geringer Leistungsfähigkeit der Berechnungseinheit kann der Rechenaufwand somit in einzelne Berechnungsschritte zerlegt werden. Falls es möglich ist einen einzigen Durchlauf anzuwenden, wird Rechenzeit eingespart.
  • Vorzugsweise dient in einem ersten Berechnungsschritt die unverformte Geometrie als Berechnungsgrundlage und in nachfolgenden Berechnungsschritten wird die zuvor berechnete korrigierte Geometrie verwendet. Dadurch lässt sich im jeweils folgenden Berechnungsschritt eine genauere Berechnungsgrundlage zu Grunde legen, wodurch die Fertigungsqualität erhöht wird.
  • Zudem ist es vorteilhaft, wenn die Genauigkeit und/oder die Variabilität einstellbar ist, bevorzugt durch die Größe der Zeitschritte. Dadurch lässt sich das Verfahren jeweils an die Anforderungen anpassen.
  • Die Erfindung wird nachfolgend an Hand von bevorzugten Ausführungsbeispielen in Verbindung mit den zugehörigen Zeichnungen näher erläutert.
  • Diese zeigen:
  • 1 eine schematische Darstellung eines erfindungsgemäßen Fehler-Kompensations-verfahrens zur Berechnung einer korrigierten NC-Bearbeitungsbahn als Methode mit Prozessorschritten;
  • 2 eine schematische Darstellung eines erfindungsgemäßen Fehler-Kompensations-verfahrens als Verfahrensablauf;
  • 3 ein Ausführungsbeispiel für das Bohren einer Lochreihe mit in x-Richtung veränderlichen Koordinaten (symmetrische Verformung);
  • 4 ein Ausführungsbeispiel für das Fräsen einer Werkstückkante mit unterschiedlicher Spanbreite (asymmetrische Verformung).
  • In 1 ist das erfindungsmäßige Fehler-Kompensationsverfahren nach Schritten eingeteilt, wie sie in Berechnungsabläufen der Finite-Elemente-Methode üblich sind. Es wird unterschieden in die Vorbereitung eines Berechnungsschrittes im Präprozessor, der eigentlichen Berechnung im sogenannten Loser und der Aufbereitung der Berechnungsergebnisse im Postprozessor. Die Bahngenerierung ist ein neuer vierter Schritt, der in das sonst üblicherweise aufwendig manuelle Wiederholen der Berechnungsschritte integriert wird. In diesem Schritt werden die berechneten Ergebnisse der Iteration gesammelt und als fertige korrigierte Bahn, zum Beispiel in Form einer CLDATA-Datei, an die Steuerung übergeben.
  • Eingangsgröße ist die Geometrie des Werkstücks, repräsentiert in einem elektronischen CAD-Datenformat. Der erste Schritt beginnt im Präprozessor mit der Wandlung des CAD-Datenformats in ein Austauschdatenformat. Aus diesen Daten kann der erste Teil der Bahn B1 bereits generiert werden, der bis zum Zeitpunkt t1 erreicht wird. Gleichzeitig wird aus der Ausgangsgeometrie und den gegebenen bzw. definierten Materialkennwerten des Werkstücks und den Randbedingungen der erste Berechnungsschritt vorbereitet. Zu den Randbedingungen gehören auch die thermische Last durch das Bearbeitungsverfahren, die zur thermoelastischen Verformung führt, und die mechanische Last des Bearbeitungsverfahrens, die eine elastischen Verformung hervorruft. Im Löser wird anschließend die definierte Berechnungsaufgabe über den Zeitraum Δt1 gelöst. Im Gegensatz zur Verformung durch die mechanische Last muss die Auswirkung der thermischen Last über den Zeitschritt Δt1 berechnet werden. Der Löser selbst basiert auf einem adaptiven FEM-Berechnungsalgorithmus, der die Netzform selbstständig anpassen kann. Der Löser übergibt die Ergebnisse für den Verformungszustand am Ende des Zeitschritts Δt1, also zum Zeitpunkt t1, in Form von Dateien an den Postprozessor, in dem die Ergebnisse aufbereitet werden. Ermittelt werden sowohl die Geometrie und die Randbedingungen für den nächsten Rechenschritt des Lösers als auch die Geometrie für die Bahngenerierung für die Teilbahn B1. Natürlich ist es auch denkbar, die Geometrie ohne die Wandlung in ein Austauschformat dem Löser zu übergeben, um die Geschwindigkeit der Berechnung zu erhöhen. Diese Iteration setzt sich im weiteren Verlauf der Bahngenerierung fort. Im Verfahrensschritt Bahngenerierung wird die Gesamtbahn des aus den Teilbahnen Bn zusammengesetzt und anschließend an eine standardisierte Schnittstelle, z. B. CLDATA, übergeben.
  • In 2 ist eine weitere schematische Darstellung des Fehler-Kompensationsverfahrens gezeigt, welche im Folgenden erläutert wird.
  • Das erfindungsgemäße Verfahren kann in drei Verfahrensschritte nutzerorientiert zusammengefasst werden.
  • In einem ersten Verfahrensschritt werden Geometriedaten und Informationen über Randbedingungen bereitgestellt und aufbereitet. Dazu werden eine CAD-Geometrie in Form eines CAD-Austauschformates des zu fertigenden Werkstücks, eine CAD-Geometrie mit Aufmaß des zu fertigenden Werkstücks und Startrandbedingungen benötigt. Eine geeignete Software, im bevorzugten Ausführungsbeispiel eine CAM-Software, erstellt aus der CAD-Geometrie eine Datei, im bevorzugten Ausführungsbeispiel eine CLDATA-Datei, welche die Verfahrbahnen des Werkzeugs enthalten. Die automatisch generierte CLDATA-Datei kann durch manuelles oder halbautomatisches Eingreifen verändert werden, wobei besonders längere gerade Verfahrbahnen in mehrere kleinere gerade Verfahrbahnen unterteilt werden. In der Summe ergibt sich eine Anzahl k von notwendigen Verfahrbahnen.
  • Überdies wird die zeitliche Abfolge, die eine folgende Simulation benötigt, aus dieser Datei berechnet. Wie in 2 gezeigt, wird parallel zur Erstellung einer Datei mit unterteilten Verfahrbahnen des Werkstücks die CAD-Geometrie mit Aufmaß zur Tiefennetzgenerierung herangezogen, welche ein Startgrobnetz für eine Simulation generiert. Ferner beinhalten die oben genannten Startrandbedingungen Informationen wie die Umgebungstemperatur, Temperaturwerte von Maschinenstruktur und Auflagepunkten und für eine Berechnung notwendige Materialkennwerte. Ferner bilden der Wärmeeintrag und die auf das Werkstück wirkenden Kräfte, die aus zeitlich vorgelagerten Berechnungen oder aus Datenbanken für das jeweilige Fertigungsverfahren bekannt sind, wichtige Randbedingungen.
  • Der zweite Verfahrensschritt besteht aus einer Iterationsschleife. Auf simulatorischer Ebene werden Verformungen durch das Durchlaufen der Schleife kompensiert. Dazu wird aus dem aus der CAD-Geometrie hervorgegangenen Datensatz der Werkzeugbahn (CLDATA-Datei) eine Zeile herangezogen und aus dieser die geometrischen Randbedingungen für den Bearbeitungsschritt erzeugt. Die geometrischen Randbedingungen werden anschließend mit dem Startgrobnetz und den Randbedingungen kombiniert und es resultiert ein FEM-Netz, wobei dieses FEM-Netz zur Verbesserung der Ergebnisse der FEM-Berechnung vorzugsweise adaptiv verfeinert ist. Für die erste Zeile wird dabei auf Daten aus dem ersten Verfahrensschritt zurückgegriffen. Danach wird im vorzugsweise adaptiven FEM-Programm die definierte Berechnungsaufgabe zur thermischen Verformung über den Zeitraum Δtn gelöst. Der Algorithmus erkennt Abweichungen von der Sollgeometrie für den Zeitraum Δtn und korrigiert diese. Außerdem wird in diesen Stufen das abgetragene Material durch einen Vergleichsalgorithmus von CAD-Geometrie und der jeweilig davorliegenden Iteration im Berechnungsmodell so konfiguriert, dass der Gleichungslöser der FEM die Elemente nicht berücksichtigt. Als Ergebnis liegen eine korrigierte CLDATA-Zeile, ein korrigiertes Grobnetz und korrigierte Randbedingungen vor. Das korrigierte Grobnetz und die korrigierten Randbedingungen werden nun als Eingangswerte für die folgende CLDATA-Zeile verwendet, wie in 2 durch die entsprechenden Pfeile dargestellt ist. Somit werden bei der Bearbeitung einer jeden CLDATA-Zeile stets die genauest möglichen Werte verwendet. Anschließend wird mit der nachfolgenden Zeile des Datensatzes analog verfahren, bis alle Zeilen korrigiert wurden. Die Schleife wird so lange durchlaufen bis alle CLDATA-Zeilen durchlaufen sind und ein korrigierter Datensatz vorliegt.
  • Beim adaptiven FEM-Algorithmus (2) wird auch der entsprechende Materialabtrag berücksichtigt. Wie eingangs beschrieben, ist die CAD-Geometrie mit Aufmaß Eingangsgröße. Bei jeder Iteration wird Material aus dem Modell weggenommen, um die realen Bedingungen zu simulieren.
  • Wenn alle Zeilen korrigiert sind, wird die korrigierte Datei, im bevorzugten Ausführungsbeispiel eine ergänzte CLDATA-Datei, schließlich an eine Steuerung, bevorzugterweise über eine CLDATA-Schnittstelle an die NC-Steuerung einer Werkzeugmaschine, übergeben, so dass die Maschinensteuerung mit der Bearbeitung des Werkstücks beginnen kann. Dies stellt den dritten Verfahrensschritt dar.
  • Der Prozess ist diskontinuierlich und je nach Bearbeitungsaufgabe kann im ersten Verfahrensschritt eine entsprechende Zeitschrittweite Δtn für die Berechnungsschritte des zweiten Verfahrensschritts vorbestimmt werden. Diese Zeitschrittweiten Δtn können variabel aber auch konstant sein. Die Größe der Zeitschrittweiten Δtn beeinflusst die Genauigkeit und die Gesamtrechenzeit. Kleine Zeitschritte führen zu einer hohen Genauigkeit und hoher Rechenzeit, während große Zeitschritte eine geringere Genauigkeit sowie kürzere Rechenzeiten verursachen.
  • Das erläuterte Verfahren wird im Folgenden anhand zwei konkreter Ausführungsbeispiele erläutert.
  • 3 zeigt eine beispielhafte Kompensation von Wärmedehnung mittels des erfindungsgemäßen Verfahrens in einem ersten Ausführungsbeispiel. In dieser wird ein Werkstück mit vier Bohrungen dargestellt, Die 3 zeigt das Werkstück zu drei verschiedenen Zeitpunkten (t0, t1, t2). Der Zeitpunkt t0 stellt den Beginn des Bearbeitungsprozesses dar. Das Werkstück ist zu diesem Zeitpunkt noch unbearbeitet und somit auch noch nicht durch Wärme des Bearbeitungsprozesses beeinflusst. Die erste anzubringende Bohrung B1 ist durch einen dickeren Kreis markiert. Die weiteren Bohrungen werden der Reihe nach von links nach rechts gebohrt. Zwischen den Bohrvorgängen vergeht eine bestimmte Zeit und das Fertigen der zweiten Bohrung B2 geschieht zum Zeitpunkt t1, das Fertigen der dritten Bohrung B3 zum Zeitpunkt t2, usw. Der Zeitraum zwischen zwei Bohrungen ist in der obersten Abbildung durch die Zeitschrittweite Δt gekennzeichnet. Wenn die erste Bohrung gefertigt wird, erwärmt sich das Werkstück. Die Skizzierung des Werkstücks zum Zeitpunkt t1 ist deshalb mit einer gestrichelten Linie erweitert, um die durch Wärme hervorgerufenen größeren Abmessungen zu zeigen. Wenn die zweite Bohrung nun genau an der Stelle gebohrt werden würde, die im Ausgangszustand korrekt war, so würde dies zu Abweichungen führen. Durch Anwendung des zuvor beschriebenen Verfahrens wird der Versatz der Bohrungsposition ermittelt und eine Abweichung dadurch kompensiert. Die Berechnung kann dabei entweder gänzlich vor Beginn der Bearbeitung durchgeführt werden, oder jeweils vor Beginn der nächsten Bohrung. Vorzugsweise jedoch werden während der Bahngenerierung einer Bohrung im Gleichungslöser die Verformung des Werkstücks, der Materialabtrag und damit auch die Position der nächsten Bohrung berechnet. Nach der Auswertung eines Berechnungsschrittes erfolgt die Bahngenerierung einer Bohrung in z-Richtung. Die so generierten Teilbahnen ergeben zusammen die gesamte Bahn und als Ergebnis liegen neue x- und y-Koordinaten vor, die so manipuliert wurden, dass sie den Wärmeversatz kompensieren.
  • 4 zeigt einen kontinuierlichen Fräsvorgang, der mit konstanter Geschwindigkeit entlang einer geraden Bahn führt. Das Werkstück ist linksseitig eingespannt und die Sollkontur 2 sowie die Istkontur 3 während der Bearbeitung sind jeweils dargestellt.
  • Der erste Bearbeitungsschritt B1 im Zeitschritt Δt1 beginnt mit der Ursprungsgeometrie der Sollkontur 2. Mit Beginn des Zeitschritts Δt2 korrigiert das in 4 erläuterte Verfahren die weitere Bahn. Es entsteht ein systematischer Fehler als verbleibende Abweichung 4, welcher auch bei sehr kleinen Zeitschrittweiten noch vorhanden ist. Die Länge der Zeitschrittweiten orientiert sich nicht an den Bearbeitungsschritten und wird vom Anwender bestimmt. Jedoch kann durch eine Wahl von kurzen Zeitschrittweiten der systematische Fehler minimiert werden. Durch Aneinanderreihung der Bearbeitungsschritte Bn ergibt sich die korrigierte Gesamtbahn ΣBn.
  • Durch die Fertigkontur 5 des Werkstücks ergeben sich zwei unterschiedliche Aufmaße, a1 und a2. Wird die Fertigkontur 5 durch eine geradlinige Bahn gefräst, ergibt sich ungefähr zum Zeitpunkt t2 durch das größere Aufmaß a2 ein Anstieg der Bearbeitungskräfte und des Wärmeeintrags, was zu einer größeren elastischen Deformation führt. Ferner verlängert sich mit fortschreitender Bearbeitung der Abstand zwischen dem Bearbeitungspunkt und der Einspannstelle 1, was zu einem höheren Biegemoment insbesondere in der Einspannstelle 1 führt. Deshalb ist es sinnvoll die Zeitschrittweite ab t3 zu verkürzen, wie es in 4 dargestellt ist.
  • Neben den an konkreten Beispielen erläuterten Anwendungen bei Bohr- und Fräsvorgängen, kann das erfindungsgemäße Verfahren ebenso in Verbindung mit weiteren mechanischen Bearbeitungsprozessen angewendet werden wie beispielsweise Drehvorgängen.
  • Ferner ist es auch möglich nur einzelne Korrekturwerte auszuwerten und bei der Bahnplanung zu berücksichtigen, die durch Superposition verschiedener Berechnungsdurchläufe zusammengefasst und in der Bahngenerierung genutzt werden können.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 10312025 [0008]
    • DE 0555796 A1 [0009]
  • Zitierte Nicht-Patentliteratur
    • DIN 66215 [0014]

Claims (23)

  1. Verfahren zur sensorlosen Kompensation von Werkstückverformungen bei programmgesteuerten mechanischen Bearbeitungsprozessen, dadurch gekennzeichnet, dass die Verformungen vor dem Bearbeitungsprozess bei der Programmerstellung kompensiert werden, indem in einem ersten Verfahrensschritt Geometriedaten und Informationsdaten über Randbedingungen bereitgestellt werden, in einem zweiten Verfahrensschritt die Daten korrigiert werden und in einem dritten Verfahrensschritt mittels der korrigierten Daten die Programmsteuerung ausgeführt wird, wobei der zweite Verfahrensschritt iterativ in mehreren sich wiederholenden Berechnungsschritten ausgeführt wird und die in einem Berechnungsschritt berechneten korrigierten Daten die Eingangsdaten für den nachfolgenden Berechnungsschritt bilden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass im ersten Verfahrensschritt als Geometriedaten die Geometrie des zu fertigenden Werkstücks mit und ohne Aufmaß bereitgestellt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im ersten Verfahrensschritt als Randbedingungen zumindest Materialkennwerte und 1 oder die Umgebungslufttemperatur und/oder der Wärmeeintrag auf das Werkstück und/oder die auf das Werkstück wirkenden Kräfte bereitgestellt werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Geometriedaten und Randbedingungen aus zeitlich vorgelagerten Berechnungen oder aus Datenbanken für ein bestimmtes Fertigungsverfahren entnommen werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass im ersten Verfahrensschritt aus den Geometriedaten und Randbedingungen die Verfahrbahnen eines Werkzeugs berechnet werden, wobei diese Bahnberechnungen und die Anzahl k der notwendigen Berechnungsschritte in den zweiten Verfahrensschritt zur Korrektur mit übergeben werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass im ersten Verfahrensschritt aus den Geometriedaten und den Randbedingungen ein Startgrobnetz generiert wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Daten aus dem ersten Verfahrensschritt während des zweiten Verfahrensschritts abschnittsweise korrigiert werden und korrigierte Randbedingungen und/oder ein korrigiertes Grobnetz und/oder korrigierte Verfahrbahnen erzeugt werden.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Einteilung der Berechnungsschritte im ersten Verfahrensschritt erfolgt.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Berechnungsschritte in aufeinanderfolgenden Zeitschritten Δtn erfolgen.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass in einem ersten Zeitschritt Δt1 die unverformte Geometrie als Berechnungsgrundlage dient und in folgenden Zeitschritten Δtn die jeweils im davorliegenden Zeitschritt berechnete, verformte Geometrie verwendet wird.
  11. Verfahren nach Anspruch 9 oder 14, dadurch gekennzeichnet, dass die Genauigkeit und/oder die Variabilität des Verfahrens durch die Variation der Zeitschrittweiten Δtn einstellbar ist.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass sich die Berechnungsschritte an den einzelnen Bearbeitungsschritten des Werkstücks orientieren und/oder aus ihnen abgeleitet werden.
  13. Verfahren nach einem der Ansprüche 2 bis 12, dadurch gekennzeichnet, dass das Aufmaß der Startgeometrie bei jedem Berechnungsschritt entfernt oder in der Berechnung nicht mehr berücksichtigt wird.
  14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die im zweiten Verfahrensschritt erfolgenden Korrekturberechnungen mittels eines Finite-Elemente-Methode(FEM)-Verfahrens durchgeführt werden.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass das FEM-Verfahren auf variablen oder als adaptiv bezeichneten Elementgrößen beruht.
  16. Verfahren nach zumindest einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass im zweiten Verfahrensschritt die Berechnung in einem Rechendurchlauf oder in mehreren voneinander unabhängigen Rechendurchlaufen erfolgt.
  17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass im dritten Verfahrensschritt die korrigierten Daten über eine Schnittstelle, insbesondere die standardisierte CLDATA-Schnittstelle, an eine Steuerung einer Werkzeugmaschine übergeben werden.
  18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass im dritten Verfahrensschritt alle oder nur einzelne der korrigierten Daten von der Programmsteuerung ausgewertet werden.
  19. Verfahren nach zumindest einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass das Verfahren automatisiert oder halbautomatisch mit manuellen Eingriffen erfolgt.
  20. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Verformungen durch verformungsrelevante Einflüsse während des Bearbeitungsprozesses, insbesondere durch thermische, mechanische oder magnetische Belastungen, erzeugt werden.
  21. Verfahren nach zumindest einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass sowohl die Position eines programmierten Punktes als auch die Lage einer vorgegebenen Fläche oder Kontur korrigiert werden kann und/oder Korrekturen in der Ebene oder im Raum stattfinden.
  22. Datenträger mit einem Steuerprogramm zur Durchführung des Verfahrens nach zumindest einem der Ansprüche 1 bis 21.
  23. Werkzeugmaschine mit einem Steuerprogramm, insbesondere auf einem Datenträger nach Anspruch 22, zur Durchführung des Verfahrens nach zumindest einem der Ansprüche 1 bis 21.
DE102011105897.8A 2011-06-28 2011-06-28 Verfahren zur sensorlosen Kompensation von Werkstückverformungen bei programmgesteuerten mechanischen Bearbeitungsprozessen Expired - Fee Related DE102011105897B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102011105897.8A DE102011105897B4 (de) 2011-06-28 2011-06-28 Verfahren zur sensorlosen Kompensation von Werkstückverformungen bei programmgesteuerten mechanischen Bearbeitungsprozessen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011105897.8A DE102011105897B4 (de) 2011-06-28 2011-06-28 Verfahren zur sensorlosen Kompensation von Werkstückverformungen bei programmgesteuerten mechanischen Bearbeitungsprozessen

Publications (2)

Publication Number Publication Date
DE102011105897A1 true DE102011105897A1 (de) 2013-01-03
DE102011105897B4 DE102011105897B4 (de) 2017-01-19

Family

ID=47355093

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011105897.8A Expired - Fee Related DE102011105897B4 (de) 2011-06-28 2011-06-28 Verfahren zur sensorlosen Kompensation von Werkstückverformungen bei programmgesteuerten mechanischen Bearbeitungsprozessen

Country Status (1)

Country Link
DE (1) DE102011105897B4 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013210462A1 (de) * 2013-02-07 2014-08-07 Deckel Maho Pfronten Gmbh Verfahren und Vorrichtung zum Ermitteln einer Spindelkompensation an einer numerisch gesteuerten Werkzeugmaschine
DE102013002252A1 (de) * 2013-02-08 2014-08-14 Ulrich Gärtner Bearbeitungsvorrichtung und Bearbeitungsverfahren zur Bearbeitung eines Werkstücks
CN107219819A (zh) * 2017-06-26 2017-09-29 安徽省捷甬达智能机器有限公司 一种基于平均温差分析的机床运动补偿方法
CN107315390A (zh) * 2017-06-26 2017-11-03 安徽省捷甬达智能机器有限公司 一种基于多机床温差分析的机床运动补偿系统
JP2019118973A (ja) * 2017-12-28 2019-07-22 トヨタ自動車株式会社 ツーリング及び加工治具の設計支援装置
CN111427308A (zh) * 2020-02-29 2020-07-17 华南理工大学 一种用于数控平台轨迹规划的误差补偿综合控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0555796A1 (de) 1992-02-12 1993-08-18 Maschinenfabrik Berthold Hermle Aktiengesellschaft Werkzeugmaschine mit einer automatischen Wärmedehnungs-Kompensationseinrichtung
DE10312025A1 (de) 2003-03-18 2004-10-07 Delta-X GmbH Ingenieurgesellschaft Gesellschaft für Strukturanalyse Verfahren zur Kompensation von Fehlern der Positionsregelung einer Maschine, Maschine mit verbesserter Positionsregelung und Kompensationseinrichtung
DE102005062289A1 (de) * 2005-12-24 2007-06-28 Daimlerchrysler Ag Vorrichtung mit einer Recheneinheit zum Generieren eines Steuercodes zum Steuern eines Bearbeitungszentrums
DE102009015934A1 (de) * 2009-04-02 2010-10-07 Dmg Electronics Gmbh Verfahren und Vorrichtung zum Erzeugen von Steuerdaten zum Steuern eines Werkzeugs an einer Werkzeugmaschine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0555796A1 (de) 1992-02-12 1993-08-18 Maschinenfabrik Berthold Hermle Aktiengesellschaft Werkzeugmaschine mit einer automatischen Wärmedehnungs-Kompensationseinrichtung
DE10312025A1 (de) 2003-03-18 2004-10-07 Delta-X GmbH Ingenieurgesellschaft Gesellschaft für Strukturanalyse Verfahren zur Kompensation von Fehlern der Positionsregelung einer Maschine, Maschine mit verbesserter Positionsregelung und Kompensationseinrichtung
DE102005062289A1 (de) * 2005-12-24 2007-06-28 Daimlerchrysler Ag Vorrichtung mit einer Recheneinheit zum Generieren eines Steuercodes zum Steuern eines Bearbeitungszentrums
DE102009015934A1 (de) * 2009-04-02 2010-10-07 Dmg Electronics Gmbh Verfahren und Vorrichtung zum Erzeugen von Steuerdaten zum Steuern eines Werkzeugs an einer Werkzeugmaschine

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DIN 66215
SEGURAJAUREGUI, Unai ; MASSET, Luc ; ARRAZOLA, Pedro José: Improving quality in machined automotive parts with the finite element method. In: 10th ESAFORM Conference on Material Forming. Vol. A. Melville, NY : American Inst. of Physics, 2007, S.769-774.
SEGURAJAUREGUI, Unai ; MASSET, Luc ; ARRAZOLA, Pedro José: Improving quality in machined automotive parts with the finite element method. In: 10th ESAFORM Conference on Material Forming. Vol. A. Melville, NY : American Inst. of Physics, 2007, S.769-774. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013210462A1 (de) * 2013-02-07 2014-08-07 Deckel Maho Pfronten Gmbh Verfahren und Vorrichtung zum Ermitteln einer Spindelkompensation an einer numerisch gesteuerten Werkzeugmaschine
DE102013210462B4 (de) 2013-02-07 2024-05-29 Deckel Maho Pfronten Gmbh Verfahren und Vorrichtung zum Ermitteln einer Spindelkompensation an einer numerisch gesteuerten Werkzeugmaschine, numerisch gesteuerte Werkzeugmaschine und Computerprogrammprodukt
DE102013002252A1 (de) * 2013-02-08 2014-08-14 Ulrich Gärtner Bearbeitungsvorrichtung und Bearbeitungsverfahren zur Bearbeitung eines Werkstücks
CN107219819A (zh) * 2017-06-26 2017-09-29 安徽省捷甬达智能机器有限公司 一种基于平均温差分析的机床运动补偿方法
CN107315390A (zh) * 2017-06-26 2017-11-03 安徽省捷甬达智能机器有限公司 一种基于多机床温差分析的机床运动补偿系统
JP2019118973A (ja) * 2017-12-28 2019-07-22 トヨタ自動車株式会社 ツーリング及び加工治具の設計支援装置
JP7052353B2 (ja) 2017-12-28 2022-04-12 トヨタ自動車株式会社 ツーリング及び加工治具の設計支援装置
CN111427308A (zh) * 2020-02-29 2020-07-17 华南理工大学 一种用于数控平台轨迹规划的误差补偿综合控制方法
CN111427308B (zh) * 2020-02-29 2021-07-23 华南理工大学 一种用于数控平台轨迹规划的误差补偿综合控制方法

Also Published As

Publication number Publication date
DE102011105897B4 (de) 2017-01-19

Similar Documents

Publication Publication Date Title
DE102011105897B4 (de) Verfahren zur sensorlosen Kompensation von Werkstückverformungen bei programmgesteuerten mechanischen Bearbeitungsprozessen
EP1938162A1 (de) Verfahren und vorrichtung zum kompensieren von lage- und formabweichungen
DE102005025338B4 (de) 08.Verfahren zur Bearbeitung eines Werkstückes
DE102015015093B4 (de) Roboterprogrammiervorrichtung zum Instruieren eines Roboters für eine Bearbeitung
EP3240994B1 (de) Erfassung von geometrischen abweichungen einer bewegungsführung bei einem koordinatenmessgerät oder einer werkzeugmaschine
EP1981674A1 (de) Vorrichtung und verfahren zum bearbeiten von kegelrädern im teilenden verfahren mit kompletter teilungsfehlerkompensation
DE102012109867A1 (de) Vorrichtung zur Steuerung einer Laserbearbeitung und des Annäherungsvorgangs vom Bearbeitungskopf
DE112017007995T5 (de) Numerisches steuersystem und motorantriebssteuerung
WO2017055065A1 (de) Verfahren zum richten eines verzugs eines bauteils durch eine richtvorrichtung sowie richtvorrichtung
DE102020117709A1 (de) Zahnradbearbeitungsunterstützungsvorrichtung und Zahnradbearbeitungsvorrichtung
DE102013010464A1 (de) Verfahren zum Betreiben einer Mehrzahl von Robotern
DE102009038155A1 (de) Servomotorsteuergerät
DE10241742A1 (de) Fertigungsanlage zum Herstellen von Produkten
DE102014008572A1 (de) Numerische Steuereinheit mit einer Funktion zum glatten bzw. sanften Ändern der Vorschubgeschwindigkeit, wenn ein Override geändert wird
EP4244577A1 (de) Messkörper zur überprüfung von geometrischen abweichungen einer 3-achsigen werkzeugmaschine, 3-achsige werkzeugmaschine und verfahren zur kompensation geometrischer abweichungen einer 3-achsigen werkzeugmaschine
DE102021109788A1 (de) Zahnradbearbeitungsvorrichtung
EP3438773A1 (de) Bearbeitung von werkstücken mit modellgestützter fehlerkompensation
EP3300521B1 (de) Ausrichtungsverfahren für werkstücke
DE102005012384A1 (de) Verfahren zum Freibiegen
EP3242179A1 (de) Verfahren zur bearbeitung eines werkstücks
EP3335087B1 (de) Verfahren zur bereitstellung eines verfahrprofils, steuereinrichtung, maschine sowie computerprogramm
WO2009094983A1 (de) Verfahren zum einmessen von bauteilen
DE102016001642B4 (de) Numerische Steuerung mit übermäßige Positionsabweichungen unterbindender Geschwindigkeitssteuerung
DE102017011602A1 (de) Numerische Steuerung
EP1816335A2 (de) Verfahren und Motorsteuergerät

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee