-
Die Erfindung betrifft eine Spannungsversorgungsschaltung für eine Spannungserhöhungsschaltung, wobei die Spannungsversorgungsschaltung eine Diode und einen ersten steuerbaren Halbleiter umfasst und die Diode mit dem ersten steuerbaren Halbleiter in einer Hauptstromrichtung des ersten steuerbaren Halbleiters in Reihe geschaltet ist.
-
Außerdem betrifft die Erfindung eine Verpolschutzschaltung für einen elektrischen Verbraucher, wobei die Verpolschutzschaltung eine Endstufe und eine Spannungserhöhungsschaltung umfasst.
-
Die
US 6,611,410 B1 beschreibt eine Verpolschutzschaltung, die einen N-Kanal-MOSFET umfasst. Der MOSFET ist mit einem Verbraucher so in Serie geschaltet, dass die (interne) Body-Diode des MOSFET im nichtverpolten Normalbetrieb in Durchlassrichtung geschaltet ist und bei Verpolung der Versorgungsspannungsanschlüsse einen Stromfluss durch den Verbraucher sperrt. Um im Einschaltzustand einen möglichst geringen Spannungsabfall zwischen Drain und Source des MOSFET zu erzielen, muss das Gate-Spannungspotential über einem Versorgungsspannungspotential der Verpolschutzschaltung liegen. Der Verpolschutz wird dadurch erreicht, dass eine Ansteuerschaltung für das Gate des MOSFET nur im nichtverpolten Normalbetrieb eine Gatespannung erzeugt, die hoch genug ist, um den MOSFET auf Durchlass zu schalten. Die Ansteuerschaltung wird mit elektrischer Energie von einer Wechselrichterschaltung versorgt, die Induktivitäten eines Gleichstrommotors und Phasenschalter nutzt.
-
Wenn für diesen Zweck keine Induktivitäten genutzt werden können, muss die Spannung für die Ansteuerschaltung in anderer Weise erzeugt werden. Die
DE 196 55 180 C2 beschreibt Verpolschutzschaltungen mit einer (als Ladungspumpe ausgeführten) Spannungsverdopplerschaltung, die jeweils dazu verwendet werden, eine Gate-Spannung für einen Leistungs-MOSFET zu erzeugen. Zum Anschalten und Abschalten der Spannungsverdopplerschaltung ist ein elektronischer Schalter vorgesehen, der ebenfalls als MOSFET ausgeführt ist.
-
Die
DE 198 45 673 A1 beschreibt eine Schaltung, in der eine Ladungspumpe mittels einer Brückenschaltung gegen eine Verpolung der Spannungsversorgung geschützt wird.
-
Es ist eine Aufgabe der vorliegenden Erfindung, eine Spannungsversorgungsschaltung anzugeben, die energieeffizienter als konventionelle Spannungsversorgungsschaltungen und/oder kostengünstiger in der Herstellung als konventionelle Spannungsversorgungsschaltungen ist.
-
Außerdem ist es eine Aufgabe der vorliegenden Erfindung, eine Verpolschutzschaltung für einen elektrischen Verbraucher mit diesem Vorteil bereitzustellen.
-
Diese Aufgabe wird mit den Merkmalen der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen der Erfindung sind in den abhängigen Ansprüchen angegeben.
-
Die Erfindung baut auf der konventionellen Spannungsversorgungsschaltung dadurch auf, dass die Diode einen Ausgang des ersten steuerbaren Halbleiters mit einem Ausgang der Spannungsversorgungsschaltung elektrisch verbindet. Hierdurch kann sich die Spannungsversorgungsschaltung im Verpolfall selbst deaktivieren. Dadurch, dass es hierbei nur auf die Sperrfähigkeit einer einzelnen Diode ankommt, kann eine hohe Zuverlässigkeit der Verpolschutzfunktion erreicht werden. Durch eine Serienschaltung von zwei Dioden statt der einzelnen Diode kann die Zuverlässigkeit der Verpolschutzschaltung für denjenigen Fall noch weiter erhöht werden, dass eine der beiden Dioden ausfällt.
-
Die Spannungsversorgungsschaltung kann ein erstes elektrisches oder elektronisches Bauelement umfassen, das einen Spannungsversorgungsanschluss der Spannungsversorgungsschaltung mit dem Ausgang der Spannungsversorgungsschaltung elektrisch verbindet.
-
Das erste elektrische oder elektronische Bauelement kann eine erste Impedanz umfassen. Die erste Impedanz ermöglicht eine Differenzspannung zu dem ersten Versorgungsspannungsanschluss. Mittels einer elektronischen Ausgestaltung des ersten elektrischen oder elektronischen Bauelements lassen sich ohmsche Verluste in der Spannungsversorgungsschaltung minimieren. Dazu kann die Spannungsversorgungsschaltung als Gegentaktendstufe, beispielsweise als Komplementärendstufe oder als Quasi-Komplementärendstufe, aufgebaut werden. Außerdem lassen sich, wenn die erste Impedanz einen Blindwiderstand aufweist, mit der ersten Impedanz eine Signalform und/oder ein Frequenzspektrum der Wechselspannung beeinflussen, die der Spannungserhöhungsschaltung zugeführt wird.
-
Die erste Impedanz kann einen ersten Widerstand umfassen. Ein MOSFET hat im Sperrfall in Sperrrichtung besonders gute Sperreigenschaften und im Durchlassfall in Durchlassrichtung besonders gute Durchlasseigenschaften. Es ist aber auch möglich, für den ersten steuerbaren Halbleiter statt eines MOSFET einen anderen Typ von Feldeffekttransistor, einen bipolaren Transistor, einen IGBT oder einen anderen Typ von steuerbarem Halbleiterschalter zu verwenden.
-
Der erste steuerbare Halbleiter kann einen MOSFET, insbesondere einen N-Kanal-MOSFET umfassen.
-
Der erste steuerbare Halbleiter kann einen bipolaren Transistor, insbesondere einen NPN-Transistor umfassen.
-
Die Erfindung baut auf der konventionellen Verpolschutzschaltung dadurch auf, dass die Verpolschutzschaltung eine erfindungsgemäße Spannungsversorgungsschaltung aufweist. Hierdurch kann verhindert werden, dass an dem Steuereingang der Endstufe im Verpolfall eine Spannung anliegt, die die Endstufe im Verpolfall auf Durchlass schalten könnte.
-
Die Verpolschutzschaltung kann ein zweites elektrisches oder elektronisches Bauelement umfassen, das einen Steuereingang der Endstufe mit einem Spannungsversorgungsanschluss der Endstufe elektrisch verbindet. Mittels einer elektronischen Ausgestaltung des zweiten elektrischen oder elektronischen Bauelements lassen sich ohmsche Verluste in der Endstufe minimieren, indem sein ohmscher Durchlasswiderstand erhöht wird, solange es für einen Spannungsausgleich zwischen dem Steuereingang und dem Spannungsversorgungsanschluss der Endstufe nicht benötigt wird. Wenn die Impedanz einen Blindanteil aufweist, lassen sich mit ihr eine Signalform und/oder ein Frequenzspektrum der Wechselspannung beeinflussen, die dem Steuereingang der Endstufe zugeführt wird.
-
Das zweite elektrische oder elektronische Bauelement kann eine zweite Impedanz umfassen.
-
Die zweite Impedanz kann einen zweiten Widerstand umfassen. Die Endstufe kann einen zweiten steuerbaren Halbleiter umfassen. Eine Source-Elektrode oder eine Drain-Elektrode des zweiten steuerbaren Halbleiters kann mit dem Spannungsversorgungsanschluss der Verpolschutzschaltung elektrisch verbunden sein. Hierdurch kann die Spannungsversorgung des elektrischen Verbrauchers für die Spannungsversorgungsschaltung mitverwendet werden.
-
Eine Body-Diode des zweiten steuerbaren Halbleiters kann in einer Normalbetriebsart der Endstufe in Durchlassrichtung orientiert sein.
-
Der zweite steuerbare Halbleiter kann einen MOSFET, insbesondere einen N-Kanal-MOSFET, umfassen. Ein MOSFET hat im Sperrfall in Sperrrichtung besonders gute Sperreigenschaften und im Durchlassfall in Durchlassrichtung besonders gute Durchlasseigenschaften. Es ist aber auch möglich, für den zweiten steuerbaren Halbleiter statt eines MOSFET einen anderen Typ von Feldeffekttransistor, einen bipolaren Transistor, einen IGBT oder einen anderen Typ von steuerbarem Halbleiterschalter zu verwenden.
-
Die Spannungserhöhungsschaltung kann eine Spannungsverdopplerschaltung und/oder eine Villard-Schaltung und/oder eine Greinacher Schaltung und/oder eine Delon-Schaltung umfassen. Hierdurch kann eine Spannungserhöhung ohne Induktivitäten erreicht werden. Induktivitäten sind in integrierten Schaltungen in der Regel schlecht realisierbar.
-
Die Erfindung wird nun mit Bezug auf die begleitenden Zeichnungen anhand besonders bevorzugter Ausführungsformen beispielhaft erläutert.
-
Es zeigt:
-
1 schematisch ein Blockschaltbild einer Verpolschutzschaltung für einen elektrischen Verbraucher.
-
Zunächst wird der Aufbau des Ausführungsbeispiels der Verpolschutzschaltung 10 beschrieben, die in 1 dargestellt ist. Die Verpolschutzschaltung 10 zur Spannungsversorgung eines elektrischen Verbrauchers 12 kann ein Anschlusspaar 14, 16 für eine Versorgungsspannung U0, ein Anschlusspaar 18, 20 für ein Wechselspannungssignal Uw, eine Spannungsversorgungsschaltung 22, eine Spannungserhöhungsschaltung 24 und eine Endstufe 26 umfassen.
-
Die Spannungsversorgungsschaltung 22 kann einen ersten N-Kanal-MOSFET 28 vom Anreicherungstyp umfassen, dessen Source-Elektrode 30 mit dem negativen Anschluss 16 für die Versorgungsspannung U0 verbunden ist. Die Drain-Elektrode 32 des ersten MOSFET 28 kann über eine Serienschaltung 34, 36 mit dem positiven Anschluss 14 für die Versorgungsspannung U0 verbunden sein. Die Serienschaltung 34, 36 kann eine Diode 34, die im Normalbetrieb (nichtverpolten Betrieb) in Durchlassrichtung 38 geschaltet ist, und einen ersten Widerstand 36 umfassen. Ein erster Anschluss 40 des ersten Widerstands 36 kann mit dem positiven Anschluss 14 für die Versorgungsspannung U0 verbunden sein. Eine Kathode 42 der Diode 34 kann mit der Drain-Elektrode 32 des ersten MOSFET 28 verbunden sein. Der andere Anschluss 41 des Widerstands 36 kann mit einer Anode 43 der Diode 34 verbunden sein und kann einen Ausgang 44 der Spannungsversorgungsschaltung 22 darstellen, welcher dazu vorgesehen und geeignet ist, einem Eingang 46 der Spannungserhöhungsschaltung 24 eine Wechselspannung Uy bereitzustellen.
-
In dem Ausführungsbeispiel, das in 1 dargestellt ist, wird als Spannungserhöhungsschaltung 24 eine Greinacher Schaltung verwendet, die dem Fachmann bekannt ist. Alternativ kann hier irgendeine andere Art von Spannungserhöhungsschaltung 24 mit oder ohne Induktivitäten verwendet werden. Der Ausgang 47 der Spannungserhöhungsschaltung 24 kann an einen Steuereingang 48 der Endstufe 26 angeschlossen werden. Als Kapazität C2 der Greinacher Schaltung kann teilweise oder sogar ausschließlich eine Gate-Kapazität des zweiten steuerbaren Halbleiters 50 verwendet werden.
-
Die Endstufe 26 kann einen zweiten N-Kanal-MOSFET 50 und einen zweiten Widerstand 52 umfassen. Eine Source-Elektrode 54 des zweiten MOSFET 50 kann mit einem positiven Anschluss 14 für die Versorgungsspannung U0 verbunden sein. Eine Drain-Elektrode 56 des zweiten MOSFET 50 kann mit einem gesteuerten Lastausgangsanschluss 58 zum Anschluss und Betrieb eines elektrischen Verbrauchers 12 verbunden sein. Der Verbraucher 12 kann zwischen dem Lastausgangsanschluss 58 und dem negativen Anschluss 16 für die Versorgungsspannung U0 angeschlossen und betrieben werden. Der zweite Widerstand 52 kann zwischen einem Gate 60 des zweiten MOSFET 50 und dem positiven Anschluss 14 für die Versorgungsspannung U0 angeschlossen sein.
-
Der zweite MOSFET 50 kann eine Body-Diode 62 umfassen. Die Body-Diode 62 kann für eine nichtverpolte Betriebsart der Verpolschutzschaltung 10 in Hauptdurchlassrichtung 64 der Endstufe 26 geschaltet sein. In der verpolten Betriebsart ist dann die Body-Diode 62 in Sperrrichtung geschaltet.
-
Nun wird die Funktionsweise der Ausführungsform der Verpolschutzschaltung 10 erläutert. Die Verpolschutzschaltung 10 kann zwei Verpolschutzfunktionen beinhalten. Die erste Verpolschutzfunktion kann den elektrischen Verbraucher 12 gegen Verpolung schützen. Die erste Verpolschutzfunktion kann darin bestehen, dass der Abschnitt zwischen dem Drain-Anschluss 56 und dem Source-Anschluss 54 des zweiten MOSFET 50 bei einer Verpolung der Versorgungsspannung U0 hochohmig ist. Dies kann zum Einen dadurch erreicht werden, dass der zweite MOSFET 50 in der Schaltung so angeordnet ist, dass seine Body-Diode 62 bei Verpolung in Sperrrichtung orientiert ist. Daraus folgt, dass die Body-Diode 62 bei Normalbetrieb und Nichtverpolung in Durchlassrichtung 64 der Endstufe 26 orientiert sein kann.
-
Die Endstufe 26 muss also nicht notwendigerweise dazu vorgesehen sein, den elektrischen Verbraucher 12 im Normalbetrieb ein- und auszuschalten. Andererseits hat die Body-Diode 62 üblicherweise nur ein mäßiges Durchlassverhalten, so dass durchaus Anwendungen vorstellbar sind, in denen trotz der in Durchlassrichtung 64 orientierten Body-Diode 62 der Unterschied der Leitwerte des zweiten MOSFET 50 im durchgeschalteten und im nichtdurchgeschalteten Zustand für einen ordnungsgemäßen Betrieb der Anwendung ausreichend ist. In diesen Fällen kann der zweite MOSFET 50 nicht nur dem Verpolschutz, sondern auch einer Schaltanwendung dienen.
-
Damit der elektrische Verbraucher 12 gegen Verpolung geschützt ist, darf der zweite MOSFET 50 bei Verpolung der Versorgungsspannung U0 nicht auf Durchlass schalten. Um dies zu erreichen, kann zwischen dem Gate-Anschluss 60 des zweiten MOSFET 50 und dem ersten Versorgungsspannungsanschluss 14 ein Widerstand 52 angeordnet sein, der einen Spannungsabbau zwischen der Gate-Elektrode 60 und der Source-Elektrode 54 des zweiten MOSFET 50 bewirken kann. Damit sich nicht trotzdem eine Spannung Uz zwischen der Gate-Elektrode 60 und der Source-Elektrode 54 aufbaut, ist im Verpolfall die Spannungsversorgung des Gate-Anschlusses 60 zu unterbrechen oder außer Betrieb zu setzen. Dies kann dadurch erreicht werden, dass im Verpolfall (und insbesondere auch beim Einschalten im Verpolfall) durch die Spannungsversorgungsschaltung 22 kein Strom fließen kann. Dafür kann die Diode 34 dann in Sperrrichtung geschaltet sein. Dadurch kann die Spannungsversorgungsschaltung 22 das Wechselspannungssignal Uw im Verpolfall nicht verstärken, das von einer Wechselspannungssignalquelle Osc bereitgestellt wird. Die Spannungsversorgungsschaltung 22 kann dann der Spannungserhöhungsschaltung 24 keine Wechselspannung Uy bereitstellen. Infolgedessen kann auch die Spannungserhöhungsschaltung 24 dem Steuereingang 48 der Endstufe 26 keine Eingangsspannung Uo + Uz bereitstellen, die hoch genug wäre, um den zweiten MOSFET 50 auf Durchlass zu schalten. Die Diode 34 verhindert beim Einschalten im Verpolfall insbesondere auch, dass das Gate 60 des zweiten steuerbaren Halbleiters 50 mit einem Einschaltimpuls beaufschlagt wird, der sonst über den ersten steuerbaren Halbleiter 28, den Eingangskondensator C1 und die Längsdiode D2 bis zum Gate 60 übertragen wird und dessen Wirkung für die Endstufe 26 und/oder den elektrischen Verbraucher 12 im Verpolfall besonders schädlich sein kann.
-
Durch die vorgeschlagene vorteilhafte Anordnung eines einzigen Stromventils 34 in der Spannungsversorgungsschaltung 22 kann es gelingen, einen wirksamen Verpolschutz bereitzustellen, für den weniger Bauelemente erforderlich sind als in konventionellen Verpolschutzschaltungen.
-
Mit der Beschreibung, den Ansprüchen und der Zeichnung sollen auch Ausführungsformen offenbart sein, die zu den explizit beschriebenen Ausführungsformen komplementär sind. Beispielsweise kann statt einer positiven Versorgungsspannung U0 eine negative Versorgungsspannung angelegt werden, wenn statt eines N-Kanal-MOSFET 28, 50 ein P-Kanal-MOSFET verwendet wird und der Ausgang der Spannungserhöhungsschaltung 24 umgepolt wird oder eine komplementäre Spannungserhöhungsschaltung verwendet wird.
-
Bezugszeichenliste
-
- 10
- Verpolschutzschaltung
- 12
- elektrischer Verbraucher
- 14
- positiver Anschluss für Versorgungsspannung U0
- 16
- negativer Anschluss für Versorgungsspannung U0
- 18
- erster Anschluss für Wechselspannungssignal Uw
- 20
- zweiter Anschluss für Wechselspannungssignal Uw
- 22
- Spannungsversorgungsschaltung
- 24
- Spannungserhöhungsschaltung
- 26
- Endstufe
- 28
- erster steuerbarer Halbleiter; erster MOSFET
- 30
- Source-Elektrode des ersten MOSFET 28
- 32
- Drain-Elektrode des ersten MOSFET 28
- 34
- Diode
- 36
- erster Widerstand
- 38
- Hauptdurchlassrichtung des ersten MOSFET 28
- 40
- erster Anschluss des Widerstands 36
- 41
- zweite Anschluss des Widerstands 36
- 42
- Kathode der Diode 34
- 43
- Anode der Diode 34
- 44
- Ausgang der Spannungsversorgungsschaltung 22
- 46
- Eingang der Spannungserhöhungsschaltung 24
- 47
- Ausgang der Spannungserhöhungsschaltung 24
- 48
- Steuereingang der Endstufe 26
- 50
- zweiter steuerbarer Halbleiter; zweiter MOSFET
- 52
- zweiter Widerstand
- 54
- Source-Elektrode des zweiten MOSFET 50
- 56
- Drain-Elektrode des zweiten MOSFET 50
- 58
- Lastausgangsanschluss der Endstufe 26
- 60
- Gate des zweiten MOSFET 50
- 62
- Body-Diode
- 64
- Durchlassrichtung der Endstufe 26
- Osc
- Oszillator
- U0
- Versorgungsspannung
- Uw
- Wechselspannungssignal
- Uy
- Wechselspannung
- Uz
- Zusatzspannung
- C1
- Eingangskondensator der Greinacher Schaltung 24
- C2
- Glättungskondensator der Greinacher Schaltung 24
- D1
- Klemmdiode der Greinacher Schaltung 24
- D2
- Längsdiode der Greinacher Schaltung 24
-
ZITATE ENTHALTEN IN DER BESCHREIBUNG
-
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
-
Zitierte Patentliteratur
-
- US 6611410 B1 [0003]
- DE 19655180 C2 [0004]
- DE 19845673 A1 [0005]