DE102010052675A1 - Phasenmischeinrichtung, Beleuchtungseinrichtung und Verfahren zum Verringern der räumlichen Kohärenz elektromagnetischer Strahlung - Google Patents

Phasenmischeinrichtung, Beleuchtungseinrichtung und Verfahren zum Verringern der räumlichen Kohärenz elektromagnetischer Strahlung Download PDF

Info

Publication number
DE102010052675A1
DE102010052675A1 DE102010052675A DE102010052675A DE102010052675A1 DE 102010052675 A1 DE102010052675 A1 DE 102010052675A1 DE 102010052675 A DE102010052675 A DE 102010052675A DE 102010052675 A DE102010052675 A DE 102010052675A DE 102010052675 A1 DE102010052675 A1 DE 102010052675A1
Authority
DE
Germany
Prior art keywords
light guide
angle
electromagnetic radiation
mixing device
phase mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102010052675A
Other languages
English (en)
Inventor
Dr. Li Zhi
Dr. Bodermann Bernd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bundesrepublik Deutschland
Bundesministerium fuer Wirtschaft und Technologie
Original Assignee
Bundesrepublik Deutschland
Bundesministerium fuer Wirtschaft und Technologie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bundesrepublik Deutschland, Bundesministerium fuer Wirtschaft und Technologie filed Critical Bundesrepublik Deutschland
Priority to DE102010052675A priority Critical patent/DE102010052675A1/de
Priority to PCT/EP2011/005514 priority patent/WO2012069135A2/de
Publication of DE102010052675A1 publication Critical patent/DE102010052675A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Die Erfindung betrifft eine Phasenmischeinrichtung zum Verringern der räumlichen Kohärenz elektromagnetischer Strahlung mit einem Lichtleiter 12, der an einem Ende eine Einkoppelfläche 10 aufweist, durch die elektromagnetische Strahlung in den Lichtleiter 12 einkoppelbar ist, und der im Bereich des Endes eine Erstreckungsrichtung 14 aufweist, und mit einem Einkoppelelement 6, mit einer optischen Achse 8 zum Abbilden elektromagnetischer Strahlung auf die Einkoppelfläche 10 des Lichtleiters 12, dadurch gekennzeichnet, dass die optische Achse 8 des Einkoppelelementes 6 mit der Erstreckungsrichtung 14 einen von 0° verschiedenen Winkel α und/oder mit der Einkoppelfläche 10 des Lichtleiters 12 einen von 90° verschiedenen Winkel β einschließt.

Description

  • Die Erfindung betrifft eine Phasenmischeinrichtung zum Verringern der räumlichen Kohärenz elektromagnetischer Strahlung mit einem Lichtleiter, der an einem Ende eine Einkoppelfläche aufweist, durch die elektromagnetische Strahlung in den Lichtleiter einkoppelbar ist und der im Bereich des Endes eine Erstreckungsrichtung aufweist, und einem Einkoppelelement, das eine optische Achse aufweist, zum Abbilden elektromagnetischer Strahlung auf die Einkoppelfläche des Lichtleiters. Die Erfindung betrifft zudem eine Beleuchtungseinrichtung mit einem Laser zum Aussenden elektromagnetischer Strahlung einer Kohärenzlänge LK und einer derartigen Phasenmischeinrichtung. Zudem betrifft die Erfindung ein Verfahren zum Verringern der räumlichen Kohärenz elektromagnetischer Strahlung, bei dem die elektromagnetische Strahlung in einen Lichtleiter eingekoppelt wird.
  • Laser werden heute beispielsweise zur flächigen Ausleuchtung eines Objektfeldes in optischen Geräten verwendet. Optische Geräte dieser Art sind beispielsweise Mikroskope für verschiedenste Anwendungen wie beispielsweise Mikrolithographie, und Simulationsmikroskope, bei denen eine flächige und gleichmäßige homogene Beleuchtung des zu untersuchenden Objektes benötigt wird. Laserlicht eignet sich für diese Anwendungen besonders, weil durch einen Laser eine monochromatische Lichtquelle zur Verfügung steht, die eine hohe Intensität aufweist.
  • Nachteilig ist jedoch, dass Laserlicht neben der hohen zeitlichen Kohärenz auch eine hohe räumliche Kohärenz aufweist, wodurch es zur so genannten „Speckle”-Bildung kommt. Dabei kommt es durch Unebenheiten an der beleuchteten Oberfläche zur Interferenz des von der Oberfläche reflektierten Laserlichtes, so dass die beleuchtete Fläche nicht homogen ausgeleuchtet erscheint, sondern helle und dunkle Flecken aufweist.
  • In der Vergangenheit wurden verschiedene Vorschläge für Vorrichtungen gemacht, durch die die für die Speckle-Bildung verantwortliche räumliche Kohärenz des Laserlichtes reduziert werden kann.
  • Die WO 03/029875 A2 schlägt vor, einfallendes Laserlicht von einem Stufenspiegel reflektieren zu lassen, bevor es der Anwendung zugeführt wird. Der einfallende Laserstrahl wird folglich in eine Anzahl Teillichtstrahlen aufgespalten, die unterschiedliche optische Wegstrecken zurückzulegen haben. Dadurch kommt es zu einer Phasenverschiebung der einzelnen Teillichtstrahlen untereinander. Sofern der Gangunterschied größer ist als die zeitliche Kohärenzlänge des einfallenden Laserlichtes wird dadurch die räumliche Kohärenz reduziert. Nachteilig ist, dass das einfallende Laserlicht nur in eine durch die Anzahl der Stufen des Stufenspiegels festgelegte Anzahl von Teillaserstrahlen zerlegt wird, die zwar untereinander einen Gangunterschied aufweisen, von denen jeder für sich jedoch weiterhin kohärent ist. Zudem wird der Gangunterschied zwischen zwei benachbarten Teillichtstrahlen durch die Stufenhöhe des Stufenspiegels bestimmt. Um die räumliche Kohärenz möglichst umfassend aufzuheben, sollte die Stufenhöhe des Stufenspiegels folglich größer sein als die zeitliche Kohärenzlänge des einfallenden Laserlichtes. Insbesondere bei langen Kohärenzlängen ist dieses Verfahren folglich ungeeignet, da die Stufenhöhe des Stufenspiegels zu groß wird.
  • Die EP 0 959 378 A1 schlägt vor, das Licht eines Lasers parallel in mehrere verschiedene optische Fasern einzukoppeln, die eine unterschiedliche Länge aufweisen. Auch hier wird das Laserlicht folglich in eine Mehrzahl von Teillichtstrahlen aufgespalten, die hier jedoch durch verschiedene optische Fasern laufen. Durch die unterschiedliche Länge und damit auch unterschiedliche optische Weglängen der einzelnen optischen Fasern kommt es auch hier zu einem Gangunterschied der einzelnen Teillichtstrahlen. Sofern dieser Gangunterschied größer ist als die zeitliche Kohärenzlänge des einfallenden Laserlichtes wird auch hier die räumliche Kohärenz stark reduziert. Nachteilig ist auch hier, dass das einfallende Laserlicht in eine durch die Anzahl der parallel vorliegenden optischen Fasern vorgegebene Anzahl von Teillichtstrahlen aufgespalten wird, die zwar untereinander durch den auftretenden Gangunterschied inkohärent sind, von denen jeder für sich jedoch weiterhin kohärent ist. Zudem ist der apparative Aufwand relativ groß, da eine Vielzahl paralleler optischer Fasern vorgesehen werden muss, die alle eine unterschiedliche Länge bzw. eine unterschiedliche optische Weglänge aufweisen müssen.
  • Aus der WO 03/003098 A2 ist eine Einrichtung zur flächigen Beleuchtung eines Objektfeldes bekannt, bei der von einem Laser ausgesandte elektromagnetische Strahlung in eine optische Faser eingekoppelt wird. Dabei handelt es sich beispielsweise um einen Multimode-Lichtleiter, dessen Durchmesser um ein Vielfaches größer ist als die Wellenlänge des ausgesandten Laserlichtes. Durch die unterschiedlichen Ausbreitungswinkel einzelner gedachter Teillichtstrahlen in dem Lichtleiter kommt es zwischen diesen Teillichtstrahlen zu Gangunterschieden. Auch hier wird die räumliche Kohärenz des am anderen Ende aus dem Lichtleiter austretenden Laserlichtes reduziert, wenn der Gangunterschied zwischen diesen gedachten Teillichtstrahlen größer ist als die zeitliche Kohärenzlänge. Nachteilig ist, dass insbesondere bei einer sehr großen zeitlichen Kohärenzlänge aufgrund der relativ geringen Gangunterschiede ein sehr langer Lichtleiter verwendet werden muss, um dieses Kriterium zu erfüllen. Aufgrund von Verlusten innerhalb des Lichtleiters ist die aus dem Lichtleiter an seinem Ende austretende elektromagnetische Strahlung von geringerer Intensität als die ursprünglich in den Lichtleiter eingekoppelte Strahlung. Die Größe dieser Verluste ist unter anderem von der Länge des Lichtleiters abhängig. Muss nun ein sehr langer Lichtleiter verwendet werden, um den nötigen Gangunterschied zwischen einzelnen Teillichtstrahlen herbeizuführen, kommt es zu teilweise erheblichen Intensitätsverlusten. Auch dieses Verfahren ist somit ab einer bestimmten zeitlichen Kohärenzlänge des ausgesandten Laserlichtes unpraktikabel oder sogar ungeeignet.
  • Aus der US H2045 H ist bekannt, dass das Specklemuster eines durch eine Glasfaser übertragenen Laserstrahls vom Winkel abhängt, in dem das Laserlicht in die Glasfaser eingekoppelt wird. Die genannte Druckschrift schlägt daher vor, den Einkoppelwinkel ständig zu verändern. Dafür ist extra ein Strahldeflektor vorgesehen, der den Laserstrahl vor dem Einkoppeln in die optische Faser ablenkt. Durch das sehr schnelle Verändern des Einstrahlwinkels kommt es am Ausgang zu einer Mittelung über die verschiedenen Specklemuster, so dass aus der Glasfaser austretendes Laserlicht homogenisiert ist. Nachteilig ist, dass dieses Verfahren apparativ aufwändig und damit kostenintensiv ist.
  • Alternativ dazu ist es auch bekannt, eine Multimode-Glasfaser, in die das Laserlicht eingekoppelt wird, mit relativ hohen Vibrationsfrequenzen von beispielsweise 400 bis 700 Hz vibrieren zu lassen und so zu einer Mittelung über verschiedene Specklemuster zu gelangen. Auch diese Methode weist den Nachteil auf, dass vibrierende und bewegliche Komponente verwendet werden müssen, so dass der apparative und damit der Kostenaufwand deutlich erhöht wird. Zudem kann das Einführen von beweglichen oder vibrierenden Teilen in ein Abbildungssystem mit einer erwarteten Auflösung von wenigen Nanometern diese Auflösung deutlich verschlechtern.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Phasenmischeinrichtung, eine Beleuchtungseinrichtung und ein Verfahren anzugeben, mit dem die räumliche Kohärenz elektromagnetischer Strahlung einfach, kostengünstig und sicher auch für große zeitliche Kohärenzlängen des eingestrahlten Laserlichtes reduziert oder sogar ganz zerstört werden kann.
  • Die Erfindung löst die gestellte Aufgabe durch eine Phasenmischeinrichtung zum Verringern der räumlichen Kohärenz elektromagnetischer Strahlung mit einem Lichtleiter, der an einem Ende eine Einkoppelfläche aufweist, durch die elektromagnetische Strahlung in den Lichtleiter einkoppelbar ist, und der in dem Bereich des Endes eine Erstreckungsrichtung aufweist, und mit einem Einkoppelelement mit einer optischen Achse zum Abbilden elektromagnetischer Strahlung auf die Einkoppelfläche des Lichtleiters, wobei sich die Phasenmischeinrichtung dadurch auszeichnet, dass die optische Achse des Einkoppelelementes mit der Erstreckungsrichtung einen von 0° verschiedenen Winkel α und/oder mit der Einkoppelfläche einen von 90° verschiedenen Winkel β einschließt. Die Erstreckungsrichtung des Lichtleiters ist dabei die Richtung, in der sich das Ende des Lichtleiters, an dem sich die Einkoppelfläche befindet und in das elektromagnetische Strahlung einkoppelbar ist, erstreckt.
  • In diese Phasenmischeinrichtung einfallende elektromagnetische Strahlung trifft auf das Einkoppelelement und wird von diesem auf die Einkoppelfläche des Lichtleiters abgebildet. Ein derartiges Einkoppelelement kann beispielsweise eine einfache Sammellinse sein, durch die ein einfallender Laserstrahl mit einem beispielsweise kreisförmigen Querschnitt auf die Einkoppelfläche des Lichtleiters abgebildet wird. Bei einer herkömmlichen Einkoppelvorrichtung liegt die optische Achse des Einkoppelelementes, beispielsweise der Sammellinse, parallel zur Erstreckungsrichtung des Lichtleiters. Die Einkoppelfläche des Lichtleiters steht auf dieser Richtung, in der sowohl die optische Achse als auch die Erstreckungsrichtung verläuft, herkömmlicherweise senkrecht.
  • Elektromagnetische Strahlung, die vom Einkoppelelement auf die Einkoppelfläche abgebildet wird, bildet in diesem Fall auf der Einkoppelfläche folglich einen kreisförmigen Lichtfleck. Die Winkel, unter denen gedachte Teillichtstrahlen auf die Einkoppelfläche fallen, sind dabei um die Richtung der optischen Achse und der Erstreckungsrichtung symmetrisch verteilt.
  • Auch innerhalb des Lichtleiters breiten sich dann die gedachten Teillichtstrahlen in einem Winkelbereich aus, der symmetrisch um die Erstreckungsrichtung des Lichtleiters ist. Aufgrund der unterschiedlichen optischen Weglängen verschiedener Winkel innerhalb des Lichtleiters kommt es hier zu einer optischen Weglängendifferenz, der so genannten Dispersion. Der gedachte Teillichtstrahl, der exakt in der Erstreckungsrichtung des Lichtleiters einfällt, hat die kürzeste optische Weglänge durch den Lichtleiter hindurch zurückzulegen. Je größer der Winkel der Ausbreitungsrichtung eines einfallenden Teillichtstrahles zu der Erstreckungsrichtung des Lichtleiters ist, desto größer ist der Unterschied in der zurückzulegenden optischen Weglänge und damit auch der Gangunterschied zwischen diesen beiden gedachten Teillichtstrahlen. Dabei ist es für den Gangunterschied jedoch unerheblich, welche Ebene durch die beiden gedachten Teillichtstrahlen aufgespannt wird. Dies bedeutet, dass es für den Gangunterschied unerheblich ist, ob ein gedachter Teillichtstrahl von der Erstreckungsrichtung des Lichtleiters um einen Winkel nach oben, nach unten, nach rechts oder nach links oder in eine andere Richtung abweicht. Der Gangunterschied ist nur von der Größe dieses Winkels abhängig.
  • Dies bedeutet, dass ein Laserlichtstrahl, der sich in einem Winkelbereich von der Einkoppelfläche in den Lichtleiter ausbreitet, der rotationssymmetrisch um die Erstreckungsrichtung ist, gedanklich in viele Ringe von Teillichtstrahlen aufgeteilt werden kann, die alle den gleichen Winkel mit der Erstreckungsrichtung einschließen. Alle diese Teillichtstrahlen in einem derartigen Ring weisen folglich den identischen Gangunterschied zu dem Teillichtstrahl auf, der in Erstreckungsrichtung des Lichtleiters in den Lichtleiter eingetreten ist. Alle Teillichtstrahlen eines Ringes untereinander weisen folglich keinen Gangunterschied auf.
  • Schließt die optische Achse des Einkoppelelementes mit der Erstreckungsrichtung des Lichtleiters einen von 0° verschiedenen Winkel α ein, bedeutet dies, dass ein parallel zur optischen Achse einfallender Laserlichtstrahl vom Einkoppelelement auf die Einkoppelfläche des Lichtleiters abgebildet wird und in diesen eintreten kann, sich in diesem jedoch nicht in einem Winkelbereich ausbreitet, der symmetrisch um die Erstreckungsrichtung des Lichtleiters ist. Gleiches gilt für den Fall, dass die optische Achse des Einkoppelelementes mit der Einkoppelfläche des Lichtleiters ein von 90° verschiedenen Winkel β einschließt. In diesem Fall kommt es durch die Lichtbrechung des einfallenden Laserlichtes an der Einkoppelfläche des Lichtleiters zu einer Umlenkung des einfallenden Laserlichtes, so dass es sich innerhalb des Lichtleiters nicht mehr entlang der Erstreckungsrichtung des Lichtleiters ausbreitet.
  • Dieser Effekt kann noch verstärkt werden, wenn die Einkoppelfläche des Lichtleiters mit der Erstreckungsrichtung des Lichtleiters einen von 90° verschiedenen Winkel γ einschließt. Dies ist insbesondere dann der Fall, wenn die Eikoppelflache des Lichtleiters weiterhin senkrecht auf der optischen Achse des Einkoppelelementes steht, die Erstreckungsrichtung jedoch nicht mit der Richtung der optischen Achse zusammenfällt. In diesem Fall ist sowohl der Winkel α von 0° verschieden als auch der Winkel γ ungleich 90°.
  • Mit den genannten Winkeln α, β und γ werden folglich eine ganze Reihe verschiedener Situationen ermöglicht, die alle zur Folge haben, dass sich der in den Lichtleiter eingekoppelte Laserstrahl in Lichtleitern in einem Winkelbereich ausbreitet, der nicht symmetrisch um die Erstreckungsrichtung des Lichtleiters ist.
  • Vorteilhafterweise sind der Winkel α und der Winkel β und der Winkel γ so gewählt, dass sich elektromagnetische Strahlung, die in den Lichtleiter eingekoppelt wird, von der Einkoppelfläche in den Lichtleiter in einem Winkelbereich ausbreitet, bei dem für jeden in dem Winkelbereich enthaltenen Winkel der an der Erstreckungsrichtung gespiegelte Winkel nicht enthalten ist.
  • In den meisten Fällen wird sich das in dem Lichtleiter eingekoppelte Licht des Lasers nach dem Eintritt durch die Einkoppelfläche kegelförmig ausbreiten. Die spezielle Wahl der Winkel α, β und γ bedeutet für diesen Fall, dass die Erstreckungsrichtung des Lichtleiters nicht Teil dieses Kegels ist, dass sich also kein gedachter Teillichtstrahl in Erstreckungsrichtung des Lichtleiters bewegt. Die oben beschriebene Ringbildung, bei der alle sich in diesem Ring befindlichen Teillichtstrahlen den gleichen Gangunterschied aufweisen, ist auf diese Weise wirksam verhindert. Auch bei einer derartigen Ausgestaltung der Winkel α, β und γ haben natürlich alle gedachten Teillichtstrahlen, deren Ausbreitungsrichtung den gleichen Winkel zur Erstreckungsrichtung des Lichtleiters einschließt, den gleichen Gangunterschied, es gibt jedoch keinen Ring dieser gedachten Teillichtstrahlen, der vollständig in dem Winkelbereich enthalten ist, in dem sich die elektromagnetische Strahlung im Lichtleiter ausbreitet. Insbesondere ist der Gangunterschied zwischen zwei sich am äußeren Rand des Ausbreitungslichtkegels gegenüberliegenden Teillichtstrahlen in diesem Fall maximal, sofern ihre beiden Ausbreitungsrichtungen mit der Erstreckungsring eine Ebene aufspannen.
  • Vorteilhafterweise entspricht der Winkel α zwischen der optischen Achse des Einkoppelelementes und der Erstreckungsrichtung des Lichtleiters genau dem maximalen Akzeptanzwinkel des Lichtleiters. Da der Gangunterschied zwischen einem gedachten Teillichtstrahl, der sich in Erstreckungsrichtung des Lichtleiters ausbreitet, und einem weiteren gedachten Teillichtstrahl nicht linear von dem Winkel zwischen beiden Ausbreitungsrichtungen abhängt, ist durch diese spezielle Wahl des Winkels α gewährleistet, dass der maximale Gangunterschied zwischen zwei gedachten Teillichtstrahlen des in den Lichtleiter eingebrachten Laserlichtes maximiert wird. Durch eine erfindungsgemäße Ausgestaltung einer Phasenmischeinrichtung wird erreicht, dass der maximale Gangunterschied zwischen zwei gedachten Teillichtstrahlen vergrößert wird. Um die räumliche Kohärenz zwischen zwei gedachten Teillichtstrahlen zu zerstören, muss der zwischen ihnen herrschende Gangunterschied größer sein als ihre zeitliche Kohärenzlänge. Je größer folglich der Gangunterschied zwischen zwei gedachten Teillichtstrahlen des in den Lichtleiter eingekoppelten Laserlichtes gemacht werden kann, desto größer kann auch die zeitliche Kohärenzlänge sein, die das Laserlicht maximal aufweisen darf, damit seine Kohärenz zerstört wird.
  • Im Vergleich mit einer Phasenmischeinrichtung aus dem Stand der Technik, bei der die optische Achse des Einkoppelelementes mit der Erstreckungsrichtung des Lichtleiters keinen von 0° verschiedenen Winkel einschließt und bei der die Einkoppelfläche des Lichtleiters auf dieser Richtung senkrecht steht, kann mit einer hier beschriebenen Phasenmischeinrichtung mit einem Lichtleiter einer gegebenen Länge auch die Kohärenz von Laserlicht zerstört werden, das eine deutlich größere zeitliche Kohärenzlänge aufweist. Anders ausgedrückt ist die nötige Länge eines Lichtleiters einer hier beschriebenen Phasenmischeinrichtung im Vergleich zu einer Phasenmischeinrichtung aus dem Stand der Technik, die nötig ist, um die räumliche Kohärenz elektromagnetischer Strahlung mit einer festen zeitlichen Kohärenzlänge zu zerstören, deutlich geringer.
  • Als besonders vorteilhaft hat sich herausgestellt, wenn das Einkoppelelement wenigstens eine Mikrolinsenanordnung umfasst. Insbesondere bei gepulsten Lasern ist die Leistung des in den Lichtleiter eingekoppelten Laserlichtes so groß, dass es zu einer Beschädigung der Einkoppelfläche bzw. des Lichtleiters kommen kann. Durch eine Mikrolinsenanordnung („microlense array” MLA) ist es möglich, das auf das Einkoppelelement auftreffende Laserlicht auf eine Vielzahl von einzelnen Flächen aufzuteilen. Dabei wird natürlich auch die Leistung des Laserlichts auf die einzelnen Spots verteilt, so dass die Leistungsdichte des auftreffenden Laserlichts auf der Einkoppelfläche des Lichtleiters deutlich reduziert wird. Zudem werden die einzelnen Spots gegenüber der Verwendung einer Einzellinse vergrößert, was ebenfalls zu einer Reduzierung der Leistungsdichte führt.
  • In einem besonders bevorzugten Ausführungsbeispiel umfasst eine Phasenmischeinrichtung zum Verringern der räumlichen Kohärenz elektromagnetischer Strahlung im Strahlengang zwei hintereinander angeordnete oben beschriebene Phasenmischeinrichtungen. Wie bereits beschrieben, breitet sich das in den Lichtleiter eingekoppelte Licht des Lasers zunächst in den allermeisten Fällen kegelförmig aus. In diesem Fall ist bei einer erfindungsgemäßen Phasenmischeinrichtung die Rotationssymmetrieachse dieses Kegels gegen die Erstreckungsrichtung des Lichtleiters um einen Winkel in eine bestimmte Richtung verschoben. Die Symmetrieachse des Ausbreitungskegels und die Erstreckungsrichtung des Lichtleiters spannen somit eine Ebene auf. Zwei Teillichtstrahlen des in den Lichtleiter eingekoppelten Laserlichtes, die von dieser Ebene den gleichen Abstand aufweisen, weisen auch den gleichen Winkel zur Erstreckungsrichtung des Lichtleiters auf, so dass sie im Lichtleiter die gleiche optische Weglänge zurückzulegen haben. Zwischen diesen beiden gedachten Teillichtstrahlen kommt es folglich nicht zu einem Gangunterschied. Durch die Anordnung einer zweiten Phasenmischeinrichtung im Strahlengang hinter der beschriebenen ersten Phasenmischanordnung ist es nun möglich, das aus dem ersten Lichtleiter austretende Licht auf ein Einkoppelelement der zweiten Phasenmischeinrichtung zu leiten und es so durch eine zweite Einkoppelfläche in einen zweiten Lichtleiter einzukoppeln. Auch hier wird sich das eingekoppelte Licht zunächst kegelförmig ausbreiten. Als besonders vorteilhaft hat sich dabei herausgestellt, wenn die Rotationssymmetrieachse dieses zweiten Lichtausbreitungskegels im zweiten Lichtleiter mit der Erstreckungsrichtung des zweiten Lichtleiters eine Ebene aufspannt, die vorzugsweise senkrecht auf die Ebene steht, die von der ersten Kegelsymmetrieachse und der ersten Erstreckungsrichtung aufgespannt wird. Auf diese Weise kommt es auch zu einem Gangunterschied zwischen zwei gedachten Teillichtstrahlen, die in der ersten Phasenmischeinrichtung keine unterschiedlichen optischen Weglängen zurückzulegen hatten.
  • Eine erfindungsgemäße Beleuchtungseinrichtung umfasst einen Laser zum Aussenden elektromagnetischer Strahlung einer zeitlichen Kohärenzlänge LK und eine oben beschriebene Phasenmischeinrichtung. Vorteilhafterweise ist der maximale Gangunterschied zwischen zwei optischen Wegen durch die Phasenmischeinrichtung größer als die zeitliche Kohärenzlänge LK. Auf diese Weise kann die räumliche Kohärenz der elektromagnetischen Strahlung, die vom Laser ausgesendet wird, reduziert werden. Je größer der maximale Gangunterschied zweier optischer Wege durch die Phasenmischeinrichtung ist, desto mehr gedachte Teillichtstrahlen erhalten einen Gangunterschied, der größer ist als die zeitliche Kohärenzlänge LK, und desto mehr von der räumlichen Kohärenz des in die Phasenmischeinrichtung eingekoppelten Laserlichtes kann zerstört werden.
  • Ein Verfahren zum Verringern der räumlichen Kohärenz elektromagnetischer Strahlung zeichnet sich dadurch aus, dass die elektromagnetische Strahlung derart in einen Lichtleiter eingekoppelt wird, dass sie sich von der Einkoppelfläche in den Lichtleiter in einem Winkelbereich ausbreitet, der asymmetrisch bezüglich der Erstreckungsrichtung ist, wobei der Winkelbereich zeitlich konstant gehalten wird. Zur Durchführung eines derartigen Verfahrens sind folglich keine beweglichen Teile in einer Phasenmischeinrichtung notwendig. Dadurch werden der apparative Aufwand zur Durchführung des Verfahrens und der Kostenaufwand für eine entsprechende Vorrichtung deutlich reduziert.
  • Das erfindungsgemäße Verfahren kann beispielsweise auch durchgeführt werden, indem eine Einkoppelvorrichtung nach dem Stand der Technik verwendet wird, bei der die optische Achse des Einkoppelelementes auch die Erstreckungsrichtung des Lichtleiters ist und die Einkoppelfläche des Lichtleiters auf dieser Richtung senkrecht steht. Dabei darf die einzukoppelnde elektromagnetische Strahlung lediglich nicht parallel zur optischen Achse des Einkoppelelementes, die gleichzeitig die Erstreckungsrichtung des Lichtleiters ist, auf das Einkoppelelement auftreffen. Die elektromagnetische Strahlung trifft dann in einem gegen die optische Achse verkippten Lichtkegel auf die Einkoppelfläche des Lichtleiters und breitet sich nach dem Passieren der Einkoppelfläche auch innerhalb des Lichtleiters kegelförmig aus, wobei die Rotationssymmetrieachse dieses Kegels nicht die Erstreckungsrichtung des Lichtleiters ist.
  • In dieser besonders vorteilhaften Ausführungsform des Verfahrens wird die elektromagnetische Strahlung von dem Einkoppelelement auf die Einkoppelfläche des Lichtleiters abgebildet, wobei sie in einem zeitlich konstanten von 0° verschiedenen Winkel δ zu dessen optischer Achse auf das Einkoppelelement trifft.
  • Mit Hilfe einer Zeichnung wird nachfolgend ein Ausführungsbeispiel der vorliegenden Erfindung näher erläutert. Es zeigt
  • 1 – schematisch den Zusammenhang zwischen Eintrittswinkel des Lichtstrahls in den Lichtleiter und Gangunterschied,
  • 2 – den schematischen Aufbau einer Phasenmischeinrichtung gemäß einem ersten Ausführungsbeispiel der vorliegenden Erfindung,
  • 3 – den schematischen Aufbau einer Phasenmischeinrichtung gemäß einem zweiten Ausführungsbeispiel der vorliegenden Erfindung und
  • 4 – den schematischen Aufbau einer Phasenmischeinrichtung gemäß einem dritten Ausführungsbeispiel der vorliegenden Erfindung.
  • Wird ein Laserstrahl in einen optischen Leiter eingekoppelt, geschieht dies an einer Einkoppelfläche des optischen Leiters. Von dieser Einkoppelfläche bewegt sich das Licht in Form vieler gedachter Teillichtstrahlen in den optischen Leiter hinein, wobei jeder gedachte Teillichtstrahl einen Winkel φ mit der Erstreckungsrichtung des optischen Leiters bildet, in der sich dieser erstreckt. Geht man der Einfachheit halber davon aus, dass der optische Leiter gerade ausgebildet ist, hat der Teillichtstrahl, der sich exakt entlang der Erstreckungsrichtung des Lichtleiters bewegt, die kürzeste optische Wegstrecke bis zum der Einkoppelfläche gegenüberliegenden Ende des Lichtleiters zurückzulegen. Je größer nun der Winkel zwischen einem weiteren gedachten Teillichtstrahl und diesem Lichtstrahl ist, desto größer ist der Unterschied in der zurückzulegenden optischen Weglänge. Damit steigt auch der Gangunterschied zwischen den beiden gedachten Teillichtstrahlen. Dieser Zusammenhang ist schematisch in 1 dargestellt.
  • Auf der X-Achse ist der Winkel φ aufgetragen, der den Winkel zwischen dem jeweils betrachteten Teillichtstrahl und der Erstreckungsrichtung des Lichtleiters darstellt. Bei φ = 0 ist der Gangunterschied ΔL = 0, das heißt der gedachte Teil Lichtstrahl breitet sich exakt entlang der Erstreckungsrichtung des Lichtleiters aus.
  • Bei einer herkömmlichen Einkoppelung eines von einem Laser ausgesandten Lichtstrahls in einen Lichtleiter ist der Winkelbereich, in dem sich das in den Lichtleiter eingekoppelte Licht von der Einkoppelfläche weg bewegt, symmetrisch um die Stelle φ = 0. Ein derartiger Winkelbereich ist in 1 durch die beiden Grenzen φ1 und φ2 dargestellt. Man erkennt, dass für den Gangunterschied ΔL das Vorzeichen des jeweiligen Winkels φ unerheblich ist, da der Zusammenhang ΔL als Funktion von φ symmetrisch um die 0 ist. Zudem liegt der maximale Gangunterschied zwischen den Randstrahlen des in den Lichtleiter eingetretenen Lichtes, die genau die Winkel φ1 und φ2 mit der Erstreckungsrichtung des Lichtleiters einschließen, und dem Teillichtstrahl, der sich entlang der Erstreckungsrichtung ausbreitet. Dieser maximale Gangunterschied ΔL1 ist in 1 eingezeichnet.
  • Bei einer erfindungsgemäßen Phasenmischeinrichtung breitet sich das in den Lichtleiter eingekoppelte Laserlicht von der Einkoppelfläche weg in den Lichtleiter in einen Winkelbereich aus, der nicht symmetrisch um die Erstreckungsrichtung des Lichtleiters ist. Besonders vorteilhaft ist, wenn sich der Winkelbereich, der in 1 durch die Grenzen φmin und φmax dargestellt ist, möglichst weit von der Erstreckungsrichtung weg ausgebildet ist. Der besondere Vorteil dieser Ausgestaltung liegt darin, dass der Zusammenhang zwischen dem Gangunterschied ΔL und dem Winkel φ in diesem Bereich stärker als linear ansteigt, so dass in diesem Fall der maximale Gangunterschied ΔL2 deutlich größer ist als der maximale Gangunterschied bei einer herkömmlichen Einkoppelung von Laserlicht in einen Lichtleiter. Zudem ist dadurch, dass sich, wie sich in 1 zeigt, der vollständige Winkelbereich von φmin bis φmax auf einer Seite, in 1 rechts, der Erstreckungsrichtung bei φ = 0 befindet, der Zusammenhang zwischen dem Winkel φ und dem Gangunterschied ΔI streng monoton. Es gibt also keine zwei Winkel φ, die den gleichen Gangunterschied ΔI aufweisen.
  • 2 zeigt die schematische Darstellung einer Phasenmischeinrichtung gemäß einem ersten Ausführungsbeispiel der vorliegenden Erfindung. Der Strahlengang einfallenden Laserlichtes ist durch zwei gedachte Teillichtstrahlen 2, 4 angedeutet. Das einfallende Laserlicht, das durch seine beiden gedachten Teillichtstrahlen 2, 4 begrenzt wird, trifft zuerst auf ein Einkoppelelement 6, das in 2 als Sammellinse ausgebildet ist. Das Einkoppelelement 6 verfügt dabei über eine optische Achse 8. Das als Sammellinse ausgebildete Einkoppelelement 6 fokussiert den einfallenden Laserstrahl und bildet ihn auf eine Einkoppelfläche 10 eines Lichtleiters 12 ab. Dabei befindet sich die Einkoppelfläche 10 an einem Ende des Lichtleiters 12, in dem auch eine Erstreckungsrichtung 14 definiert ist, in die sich der Lichtleiter 12 im Bereich des Endes erstreckt. Im in 2 gezeigten Ausführungsbeispiel schließt die optische Achse 8 des Einkoppelelementes 6 mit der Erstreckungsrichtung 14 des Lichtleiters 12 einen Winkel α ein. Dieser ist im in 2 gezeigten Ausführungsbeispiel von 0° verschieden.
  • Das durch das als Sammellinse ausgebildete Einkoppelelement 6 fokussierte Laserlicht, von dem weiter die beiden gedachten Teillichtstrahlen 2, 4 dargestellt sind, fällt nun auf die Einkoppelfläche 10 des Lichtleiters 12 und wird dort, da es sich um einen Übergang in ein optisch dichteres Medium handelt, zum Lot hin gebrochen. Wie in 2 deutlich zu erkennen ist, gibt es keinen Teillichtstrahl, der zwischen dem gedachten Teillichtstrahlen 2, 4 liegt, der sich in Richtung der Erstreckungsrichtung 14 ausbreitet. Es herrscht also genau die in 1 durch die Winkel φmin und φmax dargestellte Situation. Die Grenzwinkel φmin und φmax der gedachten Teillichtstrahlen 2, 4 mit der Erstreckungsrichtung 14 des Lichtleiters 12 sind auch in 2 eingezeichnet. Durch die in 2 gezeigte Ausgestaltung der Phasenmischeinrichtung wird folglich erreicht, dass der maximale Gangunterschied ΔL2 zwischen den am Rand des einfallenden Lichtstrahls liegenden gedachten Teillichtstrahls 2, 4 liegt und gegenüber einer herkömmlichen Einkoppelung von Laserlicht in einen Lichtleiter deutlich vergrößert wird. Die räumliche Kohärenz des aus dem Lichtleiter 12 am anderen Ende wieder austretenden Laserlichts wird dann reduziert, wenn der maximale Gangunterschied ΔL2 größer ist als eine zeitliche Kohärenzlänge LK des Laserlichts. Mit der durch die besondere. Ausgestaltung erreichten Vergrößerung des maximalen Gangunterschiedes kann folglich die örtliche Kohärenz von Laserlicht mit einer deutlich größeren zeitlichen Kohärenzlänge LK reduziert werden.
  • 3 zeigt eine schematische Ansicht einer Phasenmischeinrichtung gemäß einem zweiten Ausführungsbeispiel der vorliegenden Erfindung. Auch hier trifft ein einfallender Laserstrahl, der in 3 durch seine beiden äußersten gedachten Teillichtstrahlen 2, 4 dargestellt ist, zunächst auf ein als Sammellinse ausgebildetes Einkoppelelement 6 mit einer optischen Achse 8. Von diesem wird das Licht fokussiert und auf eine Einkoppelfläche 10 eines Lichtleiters 12 abgebildet.
  • Anders als in 2 verlaufen in eine Erstreckungsrichtung 14 des Lichtleiters 12 und die optische Achse 8 des Einkoppelelementes 6 im in 3 gezeigten Ausführungsbeispiel parallel. Der in 3 nicht eingezeichnete Winkel α ist 0°. Stattdessen schließt die optische Achse 8 mit der Einkoppelfläche 10 des Lichtleiters 12 einen Winkel β ein, der von 90° verschieden ist. Das von dem Einkoppelelement 6 auf die Einkoppelfläche 10 des Lichtleiters 12 abgebildete Laserlicht wird auch hier wieder zum Lot hin gebrochen, da es sich um einen Übergang ins optisch dichtere Medium handelt. Wie in 3 zu erkennen, wird auch hier die in 1 durch den Winkel φmin und φmax dargestellte Situation erreicht. Auch hier gibt es keinen Teillichtstrahl, der in Erstreckungsrichtung 14 des Lichtleiters 12 verläuft. Damit gibt es keine zwei Teillichtstrahlen, die einen unterschiedlichen Winkel φ zur Erstreckungsrichtung 14 aufweisen, aber den gleichen Gangunterschied haben. Zudem ist der maximale Gangunterschied, der zwischen den beiden eingezeichneten gedachten Teillichtstrahlen 2, 4 liegt, deutlich vergrößert.
  • In 3 ist zudem gezeigt, dass die Einkoppelfläche mit der Erstreckungsrichtung 14 einen Winkel γ einschließt, der ebenfalls von 90° verschieden ist.
  • 4 zeigt eine schematische Ansicht einer Phasenmischeinrichtung gemäß einem dritten Ausführungsbeispiel der vorliegenden Erfindung. Hier schließt die optische Achse 8 des als Sammellinse ausgebildeten Einkoppelelementes 6 mit der Erstreckungsrichtung 14 des Lichtleiters 12 einen Winkel α ein. Dieser ist wie im in 2 gezeigten Ausführungsbeispiel von 0° verschieden. Dennoch steht die Einkoppelfläche 10 des Lichtleiters 12 senkrecht auf der optischen Achse 8 des Einkoppelelementes 6, so dass der Winkel β 90° beträgt. Die Einkoppelfläche 10 bildet jedoch mit der Erstreckungsrichtung 14 des Lichtleiters 12 einen Winkel γ, der von 90° verschieden ist. Ein von links einfallender Laserstrahl, der wieder durch seine beiden gedachten Randteillichtstrahlen 2, 4 dargestellt ist, wird wieder durch das Einkoppelelement 6 fokussiert und auf die Einkoppelfläche 10 des Lichtleiters 12 abgebildet. Auch hier werden die Lichtstrahlen zum Lot der Einkoppelfläche hin gebrochen, da es sich wieder um einen Übergang ins optisch dichtere Medium handelt. Auch in 4 ist zu erkennen, dass es keinen Teillichtstrahl gibt, der zwischen den gedachten Teillichtstrahlen 2, 4 liegt, der sich in Erstreckungsrichtung 14 ausbreitet. Auch durch die in 4 dargestellte Ausführungsform der vorliegenden Erfindung ist die in 1 durch den Minimalwinkel φmin und den Maximalwinkel φmax dargestellte Situation erreicht. Die gedachten Teillichtstrahlen 2, 4 werden in 4 am Rand des Lichtleiters 12 reflektiert. Vom Lichtleiter 12 ist der Einfachheit halber nur der Kern dargestellt, in dem sich das Licht ausbreiten kann.
  • Ist die eingestrahlte Lichtleistung des Lasers sehr hoch, kann durch die Fokussierung des Laserstrahls durch das Einkoppelelement 6 die Leistungsdichte auf der Einkoppelfläche 10 des Lichtleiters 12 so hoch werden, dass es zu Beschädigungen des Lichtleiters 12 kommt. Insbesondere für diesen Fall ist es sinnvoll, anstelle der in den 2 bis 4 dargestellten Sammellinse als Einkoppelelement 6, beispielsweise eine Mikrolinsenanordnung, vorzusehen und den einfallenden Laserstrahl auf mehrere Bereiche der Einkoppelfläche 10 abzubilden.
  • Bezugszeichenliste
  • α
    Winkel
    β
    Winkel
    γ
    Winkel
    φmin
    Minimalwinkel
    φmax
    Maximalwinkel
    LK
    zeitliche Kohärenzlänge
    2
    gedachter Teillichtstrahl
    4
    gedachter Teillichtstrahl
    6
    Einkoppelelement
    8
    optische Achse
    10
    Einkoppelfläche
    12
    Lichtleiter
    14
    Erstreckungsrichtung
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 03/029875 A2 [0005]
    • EP 0959378 A1 [0006]
    • WO 03/003098 A2 [0007]
    • US 2045 [0008]

Claims (10)

  1. Phasenmischeinrichtung zum Verringern der räumlichen Kohärenz elektromagnetischer Strahlung mit einem Lichtleiter (12), der an einem Ende eine Einkoppelfläche (10) aufweist, durch die elektromagnetische Strahlung in den Lichtleiter (12) einkoppelbar ist, und der im Bereich des Endes eine Erstreckungsrichtung (14) aufweist, und mit einem Einkoppelelement (6), mit einer optischen Achse (8) zum Abbilden elektromagnetischer Strahlung auf die Einkoppelfläche (10) des Lichtleiters (12), dadurch gekennzeichnet, dass die optische Achse (8) des Einkoppelelementes (6) mit der Erstreckungsrichtung (14) einen von 0° verschiedenen Winkel α und/oder mit der Einkoppelfläche (10) des Lichtleiters (12) einen von 90° verschiedenen Winkel β einschließt.
  2. Phasenmischeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Einkoppelfläche (10) des Lichtleiters (12) mit der Erstreckungsrichtung (14) des Lichtleiters (12) einen von 90° verschiedenen Winkel γ einschließt.
  3. Phasenmischeinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Winkel α und der Winkel β und der Winkel γ so gewählt sind, dass sich elektromagnetische Strahlung, die in den Lichtleiter (12) eingekoppelt wird, von der Einkoppelfläche (10) in den Lichtleiter (12) in einem Winkelbereich ausbreitet, bei dem für jeden in den Winkelbereich enthaltenen Winkel der an der Erstreckungsrichtung (14) gespiegelte Winkel nicht enthalten ist.
  4. Phasenmischeinrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Winkel α einem maximalen Akzeptanzwinkel des Lichtleiters (12) entspricht.
  5. Phasenmischeinrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Einkoppelelement (6) wenigstens eine Mikrolinsenanordnung umfasst.
  6. Phasenmischeinrichtung zum Verringern der räumlichen Kohärenz elektromagnetischer Strahlung, die zwei im Strahlengang hintereinander angeordnete Phasenmischeinrichtungen nach einem der vorstehenden Ansprüche umfasst.
  7. Beleuchtungseinrichtung mit einem Laser zum Aussenden elektromagnetischer Strahlung einer Kohärenzlänge LK und einer Phasenmischeinrichtung nach einem der vorstehenden Ansprüche.
  8. Beleuchtungseinrichtung nach Anspruch 7, dadurch gekennzeichnet, dass ein maximaler Gangunterschied zwischen zwei optischen Wegen durch die Phasenmischeinrichtung größer ist als die zeitliche Kohärenzlänge LK.
  9. Verfahren zum Verringern der räumlichen Kohärenz elektromagnetischer Strahlung, bei dem die elektromagnetische Strahlung derart in einen Lichtleiter (12) eingekoppelt wird, dass sie sich von einer Einkoppelfläche (10) in den Lichtleiter (12) in einem Winkelbereich ausbreitet, der asymmetrisch bezüglich der Erstreckungsrichtung (14) ist, wobei der Winkelbereich zeitlich konstant gehalten wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die elektromagnetische Strahlung von einem Einkoppelelement (6) auf die Einkoppelfläche (10) des Lichtleiters (12) abgebildet wird, auf dass sie in einem zeitlich konstanten, von 0° verschiedenen Winkel δ zu dessen optischer Achse trifft.
DE102010052675A 2010-11-23 2010-11-23 Phasenmischeinrichtung, Beleuchtungseinrichtung und Verfahren zum Verringern der räumlichen Kohärenz elektromagnetischer Strahlung Withdrawn DE102010052675A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102010052675A DE102010052675A1 (de) 2010-11-23 2010-11-23 Phasenmischeinrichtung, Beleuchtungseinrichtung und Verfahren zum Verringern der räumlichen Kohärenz elektromagnetischer Strahlung
PCT/EP2011/005514 WO2012069135A2 (de) 2010-11-23 2011-11-02 Phasenmischeinrichtung, beleuchtungseinrichtung und verfahren zum verringern der räumlichen kohärenz elektromagnetischer strahlung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010052675A DE102010052675A1 (de) 2010-11-23 2010-11-23 Phasenmischeinrichtung, Beleuchtungseinrichtung und Verfahren zum Verringern der räumlichen Kohärenz elektromagnetischer Strahlung

Publications (1)

Publication Number Publication Date
DE102010052675A1 true DE102010052675A1 (de) 2012-05-24

Family

ID=45093668

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010052675A Withdrawn DE102010052675A1 (de) 2010-11-23 2010-11-23 Phasenmischeinrichtung, Beleuchtungseinrichtung und Verfahren zum Verringern der räumlichen Kohärenz elektromagnetischer Strahlung

Country Status (2)

Country Link
DE (1) DE102010052675A1 (de)
WO (1) WO2012069135A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104820286A (zh) * 2014-02-05 2015-08-05 恩耐激光技术有限公司 单发射器线束系统
US11256076B2 (en) 2011-01-04 2022-02-22 Nlight, Inc. High power laser system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2045A (en) 1841-04-10 Improvement in the form of the screw-propeller for propelling vessels
EP0959378A1 (de) 1998-05-20 1999-11-24 Sony Corporation KohärenzreduzierVerfaren und Vorrichtung, Beleuchtungsanordnung und System
WO2003003098A2 (de) 2001-06-26 2003-01-09 Carl Zeiss Microelectronic Systems Gmbh Einrichtung zur flächigen beleuchtung eines objektfeldes
WO2003029875A2 (de) 2001-09-28 2003-04-10 Carl Zeiss Microelectronic Systems Gmbh Beleuchtungsanordnung
US7457330B2 (en) * 2006-06-15 2008-11-25 Pavilion Integration Corporation Low speckle noise monolithic microchip RGB lasers
US20090003765A1 (en) * 2004-07-02 2009-01-01 The General Hospital Corporation Imaging system and related techniques

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USH2045H1 (en) 1997-04-29 2002-09-03 Usa Narrow band laser speckle suppression
DE10328399A1 (de) * 2003-06-25 2005-01-20 Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm Verfahren zur gerichteten Bestrahlung und/oder zur richtungaufgelösten Detektion von Strahlung
TW200903138A (en) * 2007-07-12 2009-01-16 Young Optics Inc Illumination system
DE102007055443B4 (de) * 2007-11-20 2010-09-23 Carl Zeiss Smt Ag Projektionsbelichtungsanlage für die Mikrolithographie

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2045A (en) 1841-04-10 Improvement in the form of the screw-propeller for propelling vessels
EP0959378A1 (de) 1998-05-20 1999-11-24 Sony Corporation KohärenzreduzierVerfaren und Vorrichtung, Beleuchtungsanordnung und System
WO2003003098A2 (de) 2001-06-26 2003-01-09 Carl Zeiss Microelectronic Systems Gmbh Einrichtung zur flächigen beleuchtung eines objektfeldes
WO2003029875A2 (de) 2001-09-28 2003-04-10 Carl Zeiss Microelectronic Systems Gmbh Beleuchtungsanordnung
US20090003765A1 (en) * 2004-07-02 2009-01-01 The General Hospital Corporation Imaging system and related techniques
US7457330B2 (en) * 2006-06-15 2008-11-25 Pavilion Integration Corporation Low speckle noise monolithic microchip RGB lasers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11256076B2 (en) 2011-01-04 2022-02-22 Nlight, Inc. High power laser system
CN104820286A (zh) * 2014-02-05 2015-08-05 恩耐激光技术有限公司 单发射器线束系统

Also Published As

Publication number Publication date
WO2012069135A2 (de) 2012-05-31
WO2012069135A3 (de) 2012-08-02

Similar Documents

Publication Publication Date Title
DE2852203C3 (de) Lichtleiteinrichtung für eine mit Auflicht betriebene Abbildungsvorrichtung
DE102007063274B4 (de) Mikroskop
DE3137031C2 (de) Mehrfachstrahlenbündel-Abtastoptiksystem
DE19520187C1 (de) Optik zum Herstellen einer scharfen Beleuchtungslinie aus einem Laserstrahl
WO1998028775A2 (de) Rastermikroskop, bei dem eine probe in mehreren probenpunkten gleichzeitig optisch angeregt wird
DE102007057868A1 (de) Vorrichtung zur Strahlformung
DE2210320A1 (de)
DE10130821A1 (de) Einrichtung zur flächigen Beleuchtung eines Objektfeldes
DE2107334A1 (de) Lichtfleckabtasteinnchtung
EP1421415A2 (de) Anordnung und vorrichtung zur optischen strahlhomogenisierung
DE2348025A1 (de) Verfahren und vorrichtung zur behandlung von werkstuecken mittels laserstrahlung
DE19635499A1 (de) Lichtübertragungsvorrichtung
WO1996006377A1 (de) Vorrichtung zum einkoppeln des lichtstrahls eines uv-lasers in ein laser-scanmikroskop
DE102010052675A1 (de) Phasenmischeinrichtung, Beleuchtungseinrichtung und Verfahren zum Verringern der räumlichen Kohärenz elektromagnetischer Strahlung
DE3006071A1 (de) Lichtsammelanordnung mit einer lichtsammelflaeche und einer im wesentlichen senkrecht dazu angeordneten laenglichen optischen lichtablenkvorrichtung
DE3514302A1 (de) Optische abtastvorrichtung
DE4446185A1 (de) Vorrichtung zum Einkoppeln des Lichtstrahls eines UV-Lasers in ein Laser-Scanmikroskop
EP3475750B1 (de) Beleuchtungsvorrichtung für ein mikroskop
DE2631831A1 (de) Abtasteinrichtung fuer strahlung
DE102007038704A1 (de) Substratbelichtungsvorrichtung und Beleuchtungsvorrichtung
DE10331442B4 (de) Anordnung zur Transformation eines optischen Strahlungsfelds
DE10121678B4 (de) Vorrichtung zur Überlagerung von Strahlenbündeln, die von einer Mehrzahl von Einzelstrahlungsquellen ausgehen, in mindestens einem Abbildungsfleck sowie Vorrichtung zur Aufteilung der von einer Strahlungsquelle ausgehenden Strahlung in getrennte Strahlenbündel
WO2007121863A1 (de) Laser-scanning-mikroskop und laser-scanning-mikroskopierverfahren
DE4105989A1 (de) Vorrichtung zum einkoppeln von licht in ein buendel von optischen wellenleitern
DE102007018354A1 (de) Vorrichtung und Verfahren zur Einkopplung von Licht in eine Faser

Legal Events

Date Code Title Description
R016 Response to examination communication
R082 Change of representative

Representative=s name: GRAMM, LINS & PARTNER PATENT- UND RECHTSANWAEL, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee