DE102010051962B4 - Kühlanordnung und Arbeitsverfahren für eine Lüftersteuerung - Google Patents

Kühlanordnung und Arbeitsverfahren für eine Lüftersteuerung Download PDF

Info

Publication number
DE102010051962B4
DE102010051962B4 DE102010051962.6A DE102010051962A DE102010051962B4 DE 102010051962 B4 DE102010051962 B4 DE 102010051962B4 DE 102010051962 A DE102010051962 A DE 102010051962A DE 102010051962 B4 DE102010051962 B4 DE 102010051962B4
Authority
DE
Germany
Prior art keywords
cooling
air
unit
components
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102010051962.6A
Other languages
English (en)
Other versions
DE102010051962A1 (de
Inventor
Gerold Scheidler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to DE102010051962.6A priority Critical patent/DE102010051962B4/de
Priority to EP20110182403 priority patent/EP2456293A3/de
Priority to US13/287,209 priority patent/US9060450B2/en
Priority to JP2011250608A priority patent/JP5474030B2/ja
Publication of DE102010051962A1 publication Critical patent/DE102010051962A1/de
Application granted granted Critical
Publication of DE102010051962B4 publication Critical patent/DE102010051962B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20736Forced ventilation of a gaseous coolant within cabinets for removing heat from server blades
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20609Air circulating in closed loop within cabinets wherein heat is removed through air-to-liquid heat-exchanger
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20745Forced ventilation of a gaseous coolant within rooms for removing heat from cabinets, e.g. by air conditioning device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20836Thermal management, e.g. server temperature control

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Kühlanordnung, aufweisend: – ein Gehäuse mit einer Mehrzahl von Einschubpositionen (4) zur Aufnahme von Einschubkomponenten (3), – wenigstens eine Ablufteinheit (9) zum Absaugen von durch elektrische oder elektronische Bauteile der Einschubkomponenten (3) erwärmte Luft, – wenigstens eine Kühleinheit (11) zum Abkühlen der zur Kühlung verwendeten Luft, – wenigstens zwei Temperatursensoren (14, 15, 16) zum Erfassen einer Temperaturdifferenz der zur Kühlung verwendeten Luft und – eine Steuervorrichtung (13) zur Steuerung einer Lüfterdrehzahl der Ablufteinheit (9), wobei – die Steuervorrichtung dazu eingerichtet ist, die Ablufteinheit (9) in Abhängigkeit der Energieaufnahme der Ablufteinheit (9) und der Energieaufnahme der Kühleinheit (11) unter Berücksichtigung der Temperaturdifferenz anzusteuern, – die Kühleinheit (11) in Strömungsrichtung vor der Mehrzahl der Einschubpositionen (4) angeordnet ist, so dass in den Einschubpositionen (4) angeordnete Einschubkomponenten (3) mit gegenüber einer Temperatur einer bereitgestellten Luft abgekühlter Luft angeströmt werden, und – die Kühlanordnung ein offenes Kühlsystem bildet, bei der Luft aus einer Umgebung des Gehäuses im Bereich der Kühleinheit (11) angesaugt und durch die Ablufteinheit (9) an die Umgebung abgegeben wird.

Description

  • Die Erfindung betrifft eine Kühlanordnung aufweisend ein Gehäuse mit einer Mehrzahl von Einschubpositionen zur Aufnahme von Einschubkomponenten. Die Erfindung betrifft des Weiteren ein Arbeitsverfahren für eine Lüftersteuerung einer Kühlanordnung.
  • Kühlanordnungen aufweisend ein Gehäuse mit einer Mehrzahl von Einschubpositionen zur Aufnahme von Einschubkomponenten sind aus dem Stand der Technik bekannt. Beispielsweise ist aus der DE 20 2010 007 046 U1 ein Rackgehäuse umfassend eine Mehrzahl von Einschubpositionen zur Aufnahme einer Mehrzahl von lüfterlosen Einschubkomponenten in einem an eine erste Gehäuseseite angrenzenden ersten Bereich des Rackgehäuses bekannt. Das Rackgehäuse umfasst wenigstens eine Unterdruckkammer in einem an den ersten Bereich angrenzenden zweiten Bereich des Rackgehäuses, wobei zwischen der Unterdruckkammer und den Einschubpositionen erste Öffnungen vorgesehen sind, die eine Abfuhr von durch die Einschubkomponenten erwärmter Luft in die Unterdruckkammer ermöglichen. Die bekannte Kühlanordnung umfasst des Weiteren eine Ablufteinheit zur Erzeugung eines Unterdrucks in der Unterdruckkammer des Rackgehäuses.
  • Die DE 10 2005 005 588 A1 betrifft einen Schaltschrank mit einem geschlossenen Kühlluftkreislauf und einem Wärmetauscher zur Abführung der Verlustwärme von in einem Innenraum angeordneten elektronischen Moduleinheiten. Zur effizienten Kühlung und unter Vermeidung der Abführung des im Wärmetauscher anfallenden Kondenswassers an die Umgebung des Schaltschrankes ist wenigstens eine Zerstäubungseinrichtung vorgesehen, welche das Kondenswasser in Aerosole überführt. Die Kondenswasseraerosole werden sofort dem Kühlluftkreislauf, vorzugsweise dem warmen und trockenen Abluftstrom, zugeführt, wodurch gleichzeitig eine vorteilhafte Luftfeuchtestabilisierung im Schaltschrank gewährleistet ist.
  • Aus der JP 2009-157681 A ist eine Kühlvorrichtung mit einem Gehäuseschrank bekannt. Der Gehäuseschrank weist Öffnungen zur Aufnahme von Einschubkomponenten an zwei gegenüberliegenden Seiten auf. Eine rückwärtige Tür weist Lüfter zum Abführen von Kühlluft auf. Eine Vordertür umfasst einen Verdampfer zum Kühlen angesaugter Luft.
  • Die US 2011/103009 A1 offenbart eine mit einer Rückwand ausgestattete Kühleinrichtung eines Geräteschranks, die eine Evakuierungszone und eine hintere Tür umfasst, in dr Lüfter angeordnet sind.
  • Die DE 20 2006 003 488 U1 offenbart eine Klimatisierungssteuerungsvorrichtung zum Klimatisieren von elektronischen Bauteilen, umfassend ein Gehäuse mit einem Bauraum zur Aufnahme elektronischer Bauteile, eine Umgebungslufteintrittsöffnung und einen Membranfilter, durch die hindurch Umgebungsluft von außerhalb der Vorrichtung in das Gehäuse gelangen kann, mindestens eine Strömungsmaschine zum Erzeugen eines die Umgebungsluft umfassenden Klimatisierungsluftstroms durch das Gehäuse hindurch, eine automatische Steuerung für die Strömungsmaschine, eine Abluftaustrittsöffnung für den Austritt von zumindest einem Teil des durch das Gehäuse hindurchgeströmten Klimatisierungsluftstroms in die Umgebung, einen Umgebungstemperatursensor, der angeordnet ist, die Temperatur eines zumindest die Umgebungsluft umfassenden Luftstroms vor Hindurchtreten durch das Gehäuse zu ermitteln, und einen Innentemperatursensor, der angeordnet ist, die Temperatur des durch die Abluftaustrittsöffnung austretenden Klimatisierungsluftstroms zu messen. Die Steuerungsvorrichtung ist dadurch gekennzeichnet, dass zu individuellen Umgebungstemperaturwerten jeweils eine zulässige Temperaturdifferenz vorgegeben ist, die als Differenz zwischen einer zulässigen Innentemperatur und der Umgebungslufttemperatur definiert ist, und dass die Strömungsmaschinensteuerung eingerichtet ist, den Klimatisierungsluftstrom mittels der Strömungsmaschine abhängig von einer gemessenen Umgebungslufttemperatur so zu regeln, dass die zulässige Temperaturdifferenz möglichst nicht überschritten wird.
  • Aus der JP 2004-286365 A ist ein Klimatierungsgerät für ein Rackgehäuse mit einem Lüfter bekannt. Eine Steuerschaltung steuert den Lüfter in Abhängig einer Eingangsleistung eines elektronisches Geräts und der zugeführten Kühlluft und schickt entsprechende Steuerdaten an eine Klimatisierungsvorrichtung in dem Raum, in dem das Rackgehäuse aufgestellt ist.
  • Diesen und ähnlichen Kühlanordnungen liegt das folgende Funktionsprinzip zugrunde. Durch einen oder mehrere, verhältnismäßig leistungsstarke Lüfter wird Umgebungsluft durch die einzelnen Einschubkomponenten gesaugt oder geblasen, um eine Kühlung der darauf oder darin angeordneten elektrischen oder elektronischen Bauteile zu bewirken. Die erwärmte Luft wird dann entweder direkt nach außen abgeführt, beispielsweise über eine Ventilationseinrichtung einer Gebäudeinstallation, oder zurück in einen Betriebsraum geblasen, wobei hier oftmals eine zusätzliche Kühlung des Raums durch Klimaanlagen oder ähnliche Geräte sichergestellt werden muss.
  • Insbesondere bei mit besonders hochleistungsfähigen Einschubservern bestückten Serverracks entfällt ein erheblicher Teil der zu ihrem Betrieb erforderlichen Leistung entweder direkt oder mittelbar auf deren Kühlung.
  • Ein Problem bekannter Kühlanordnungen besteht darin, dass die verschiedenen Funktionseinheiten, insbesondere Einschubkomponenten, Gehäuse, Ablufteinheit und gegebenenfalls eine vorhandene Kühleinheit von unterschiedlichen Herstellern bereitgestellt werden und daher auch unabhängig voneinander optimiert werden. Beispielsweise nimmt der Wirkungsgrad von Wärmetauschern bei bekannten Anordnungen mit einer höheren Umgebungstemperatur zu, so dass deren Hersteller zum Betrieb bei einer verhältnismäßig hohen Umgebungstemperatur raten. Dies ist aber nachteilig für andere Funktionseinheiten, insbesondere in den Einschubkomponenten angeordnete Halbleiterbauteile.
  • Aufgabe der vorliegenden Erfindung ist es, die Energieeffizienz von Kühlanordnungen zu verbessern.
  • Gemäß einem ersten Aspekt der vorliegenden Erfindung wird eine Kühlanordnung, aufweisend ein Gehäuse mit einer Mehrzahl von Einschubpositionen zur Aufnahme von Einschubkomponenten, wenigstens eine Ablufteinheit zum Absaugen von durch elektrische oder elektronische Bauteile der Einschubkomponenten erwärmte Luft, und wenigstens eine Kühleinheit zum Abkühlen der zur Kühlung verwendeten Luft beschrieben. Die Kühlanordnung ist dadurch gekennzeichnet, dass die Kühleinheit in Strömungsrichtung vor der Mehrzahl der Einschubpositionen angeordnet ist, so dass in den Einschubpositionen angeordnete Einschubkomponenten mit gegenüber einer Temperatur einer bereitgestellten Luft abgekühlter Luft angeströmt werden.
  • Erfindungsgemäß ist die Kühlanordnung durch wenigstens zwei Temperatursensoren zum Erfassen einer ersten Temperaturdifferenz der zur Kühlung verwendeten Luft und eine Steuervorrichtung zur Steuerung einer Lüfterdrehzahl der Ablufteinheit gekennzeichnet. Dabei ist die Steuervorrichtung dazu eingerichtet, die Ablufteinheit in Abhängigkeit einer Energieaufnahme der Ablufteinheit und einer Energieaufnahme der Kühleinheit unter Berücksichtigung der ersten Temperaturdifferenz anzusteuern. Eine derartige Kühlanordnung gestattet den Aufbau eines geschlossenen Regelkreises für die Kühlanordnung, wobei die Energieaufnahme und Auswirkungen der einzelnen Kühlkomponenten aufeinander abgestimmt werden können.
  • Die Anordnung einer Kühleinheit in Strömungsrichtung vor einer Mehrzahl von Einschubpositionen weist den Vorteil auf, dass beim Betrieb der elektrischen oder elektronischen Bauteile der Einschubkomponenten eine geringere Verlustleistung anfällt. Dies liegt unter anderem daran, dass insbesondere Halbleiterkomponenten, wie sie vielfach in Computeranordnungen Verwendung finden, Leckstromverluste aufweisen, die mit steigender Temperatur ansteigen. Wird die zur Kühlung verwendete Luft erst abgekühlt, dann zur Kühlung der Einschubkomponenten verwendet und nachfolgend wieder abgegeben, sinkt daher die Verlustleistung der eingesetzten Einschubkomponenten bei einer im Wesentlichen Beibehaltung der zur Kühlung der Luft eingesetzten Energie ab.
  • Gemäß einer vorteilhaften Ausgestaltung bildet die Kühlanordnung ein offenes Kühlsystem, bei dem Luft aus einer Umgebung des Gehäuses im Bereich der Kühleinheit angesaugt und durch die Ablufteinheit an die Umgebung abgegeben wird. Eine derartige Kühlanordnung benötigt kein gesondertes Ventilationssystem am Ort ihrer Aufstellung.
  • Gemäß einer vorteilhaften Ausgestaltung weist die wenigstens eine Kühleinheit einen Wärmetauscher auf, wobei der Wärmetauscher die von der Kühleinheit entnommene Wärmeenergie an ein flüssiges Kühlmedium überträgt. Die Verwendung eines Wärmetauschers erlaubt eine besonders effiziente Abführung der Wärmeenergie aus der Kühlanordnung und beispielsweise die energetisch günstige Einspeisung in ein Heizungssystem einer Gebäudeinstallation.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung ist das Gehäuse als Rackgehäuse für ein Serverrack mit der Mehrzahl von Einschubpositionen zur Aufnahme einer Mehrzahl von Einschubservern ausgebildet. Dabei weist das Rackgehäuse eine für alle Einschubpositionen zentrale Kühlluftführung auf, die mindestens jeweils eine Öffnung zum Absaugen der erwärmten Luft aus den Einschubpositionen mit der wenigstens einen Ablufteinheit verbindet. Durch die Verwendung einer zentralen Kühlluftführung kann der Aufbau und die Steuerung der Kühlanordnung und insbesondere der Ablufteinheit vereinfacht werden.
  • Gemäß einer vorteilhaften Ausgestaltung weist die zentrale Kühlluftführung eine Unterdruckkammer auf, wobei die wenigstens eine Ablufteinheit dazu eingerichtet ist, einen gegenüber einem Umgebungsluftdruck reduzierten Unterdruck in der Unterdruckkammer herzustellen. Eine derartige Anordnung erlaubt eine sichere Kühlung von lüfterlosen Einschubkomponenten.
  • Gemäß einer weiteren Ausgestaltung ist die Kühleinheit an oder anstelle einer vor der Mehrzahl von Einschubpositionen angeordneten Gehäusetür angeordnet. Die Anordnung der Kühleinheit an oder anstelle einer Gehäusetür erlaubt einen einfachen, modularen Aufbau des Gehäuseracks, wobei die Kühleinheit in räumlicher Nähe und in Strömungsrichtung direkt vor den zu kühlenden Einschubkomponenten angeordnet ist.
  • Gemäß einem weiteren Aspekt der Erfindung wird ein Arbeitsverfahren für eine Lüftersteuerung einer Kühlanordnung mit wenigstens einer Ablufteinheit zum Absaugen von durch elektrische oder elektronische Bauteile einer Mehrzahl von Einschubkomponenten erwärmte Luft und wenigstens einer Kühleinheit zum Kühlen der zur Kühlung verwendeten Luft beschrieben. Das Arbeitsverfahren weist die folgenden Schritte auf:
    • – Bestimmen einer optimierten ersten Temperaturdifferenz für die zur Kühlung des Serverracks verwendeten Luft unter Berücksichtigung der Energieaufnahme der wenigstens einen Ablufteinheit und der wenigstens einen Kühleinheit in Abhängigkeit der Temperaturdifferenz und
    • – Messen wenigstens einer tatsächlichen Temperaturdifferenz zwischen wenigstens zwei Temperaturen der zur Kühlung verwendeten Luft; und
    • – Regeln einer Lüfterdrehzahl für die wenigstens eine Ablufteinheit in Abhängigkeit einer Abweichung zwischen der bestimmten optimierten Temperaturdifferenz und der gemessenen tatsächlichen Temperaturdifferenz.
  • Durch die oben genannten Schritte können zumindest die Energieaufnahme einer Ablufteinheit und einer Kühleinheit in Abhängigkeit einer Temperaturdifferenz des verwendeten Kühlmittels gemeinsam für eine Lüftersteuerung berücksichtigt werden. In dessen Folge kann durch Ansteuerung der Lüftereinheit ein Luftstrom durch die Mehrzahl von Einschubkomponenten zu deren Kühlung erzeugt werden, bei dem die Kombination der Ablufteinheit und der Kühleinheit insgesamt einen möglichst geringen Energiebedarf bzw. einen möglichst großen Wirkungsgrad aufweist.
  • Gemäß einer vorteilhaften Ausgestaltung wird im Schritt des Messens wenigstens eine Temperatur der zur Kühlung verwendeten Luft vor und nach einem Durchströmen der elektrischen oder elektronischen Bauteile gemessen. Durch die Messung der Temperaturdifferenz der durch die Bauteile erwärmten Luft kann ein geschlossener Regelkreis für die Lüftersteuerung aufgebaut werden.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung wird im Schritt des Messens wenigstens eine zweite Temperaturdifferenz der zur Kühlung verwendeten Luft vor und nach einem Durchströmen der Kühleinheit gemessen. Durch die Berücksichtigung einer Temperaturdifferenz der durch die Ablufteinheit abgekühlten Luft kann unter anderem die Auswirkung der Lüftersteuerung auf den Aufstellungsort des Serverracks berücksichtigt werden. Beispielsweise kann sichergestellt werden, dass das Serverrack bezüglich seiner Umgebung temperaturneutral ist, das heißt die zur Kühlung verwendete Luft mit derselben Temperatur wieder abgibt, wie diese zuvor aufgenommen wurde.
  • Weitere vorteilhafte Ausgestaltungen sind in der nachfolgenden ausführlichen Beschreibung von Ausführungsbeispielen sowie den angehängten Patentansprüchen angegeben.
  • Die Erfindung wird nachfolgend anhand unterschiedlicher Ausführungsbeispiele unter Bezugnahme auf die angehängten Figuren näher beschrieben. In den Figuren zeigen:
  • 1 eine erste mögliche, nicht beanspruchte Kühlanordnung,
  • 2 ein Kühlmodell zur Bestimmung der Leistungsaufnahme einer Kühlanordnung,
  • 3 die Kühlleistung einer Kühlanordnung in Abhängigkeit einer Temperaturdifferenz,
  • 4 eine zweite mögliche, beanspruchte Kühlanordnung,
  • 5 die Leistungsaufnahme eines Servereinschubs in Abhängigkeit einer Arbeitstemperatur.
  • 1 zeigt eine erste beispielhafte, nicht beanspruchte Kühlanordnung für ein Serverrack.
  • Die Kühlanordnung weist ein Rackgehäuse 1 zur Aufnahme einer Mehrzahl von Einschubkomponenten 3 auf. Im Ausführungsbeispiel sind die Einschubkomponenten 3 übereinander in Einschubpositionen 4 des Rackgehäuses 1 angeordnet. Die Einschubpositionen 4 sind von einer Vorderseite 2 des Rackgehäuses 1 her zugänglich. Bei den Einschubkomponenten 3 handelt es sich beispielsweise um Servereinschübe, die eine Hauptplatine mit darauf angeordneten Prozessoren und Speichermodulen aufweisen. Gemäß einer vorteilhaften Ausgestaltung umfassen die einzelnen Einschubkomponenten keine aktiven Kühlkomponenten. Insbesondere weisen die Einschubkomponenten 3 keine eigenen Lüfter zum Ansaugen von Kühlluft auf.
  • Um eine zentrale Kühlung sämtlicher Einschubkomponenten 3 in dem Rackgehäuse 1 zu ermöglichen, weist das Rackgehäuse des Weiteren eine Schottwand 5 mit Öffnungen 6 zwischen den einzelnen Einschubpositionen 4 und einer ebenfalls in dem Rackgehäuse 1 angeordneten Unterdruckkammer 7 auf. Zur Kühlung elektrischer oder elektronischer Bauteile der Einschubkomponenten 3 wird Umgebungsluft mit einer Temperatur T1 durch die Einschubpositionen 4 und die Öffnungen 6 in der Schottwand 5 in die Unterdruckkammer 7 abgesaugt. Dabei sorgt die Größe der Öffnungen 6 für eine einfache Einstellung des benötigten Kühlluftstroms. Beispielsweise können einzelne Öffnungen 6 verschlossen werden, wenn in der zugehörigen Einschubpositionen 4 keine Einschubkomponente 3 angeordnet ist.
  • Die erwärmte Kühlluft wird aus der Unterdruckkammer 7 durch Rückschlaggitter 8 von einer Ablufteinheit 9 abgesaugt. Die Ablufteinheit 9 weist im Ausführungsbeispiel zwei in der Schnittdarstellung der 1 hintereinander angeordnete Lüfter 10 auf, wobei jedem Lüfter ein eigenes Rückschlaggitter 8 zugeordnet ist, um eine Absaugöffnung bei Ausfall eines der Lüfter 10 zu verschließen. Im Ausführungsbeispiel handelt es sich bei den Lüftern 10 um Radialventilatoren, die die nach oben gesaugte Kühlluft nach vorne in eine Kühleinheit 11 mit einem darin angeordneten Wärmetauscher 12 abblasen. Bei dem Wärmetauscher 12 handelt es sich beispielsweise um eine Kühlschlange, die von einem flüssigen Kühlmittel durchströmt wird.
  • Der Wärmetauscher 12 überträgt die Energie der erwärmten Kühlluft mit einer Temperatur T2 auf das flüssige Kühlmittel, so dass die Kühlluft nach Durchlaufen der Kühleinheit 11 an der Oberseite des Rackgehäuses 1 mit einer Temperatur T3 austritt. Bevorzugt entspricht die Temperatur T3 der Temperatur T1 der angesaugten Umgebungsluft.
  • Die Drehzahl des Lüfters 10 sowie gegebenenfalls eine Regelung der Temperatur und/oder der Strömungsgeschwindigkeit des Kühlmittels in der Kühleinheit 11 werden durch eine zentrale Steuervorrichtung 13 vorgegeben. Zur Sicherstellung einer ausreichenden Kühlung ist die Steuervorrichtung 13 im Ausführungsbeispiel mit einem ersten Temperatursensor 14 und einem zweiten Temperatursensor 15 verbunden. Der erste Temperatursensor ist im Bereich der Vorderseite 2 des Rackgehäuses 1 angeordnet und bestimmt im Wesentlichen die Temperatur T1 der angesaugten Umgebungsluft. Der zweite Sensor 15 ist in der Unterdruckkammer 7 angeordnet und bestimmt im Wesentlichen die Temperatur T2 der erwärmten Kühlluft. Die Steuervorrichtung 13 kann des Weiteren mit einem optionalen dritten Temperatursensor 16 im Bereich des Luftaustritts der Kühleinheit 11 verbunden sein. Des Weiteren kann die Steuervorrichtung 13 auch weitere Eingangsparameter, wie beispielsweise den absoluten oder relativen Unterdruck in der Unterdruckkammer 7, sowie die Leistungsaufnahme oder Temperatur einzelner Einschubkomponenten 3 erfassen und bei der Ansteuerung des Lüfters 10 berücksichtigen.
  • Die Steuervorrichtung 13 ist dazu eingerichtet, die Lüfterdrehzahl des Lüfters 10 so zu regeln, dass die Energieaufnahme der Ablufteinheit 9 und der Kühleinheit 11 in Kombination möglichst gering ist. Dabei muss selbstverständlich eine ausreichende Kühlung für die einzelnen Einschubkomponenten 3 sichergestellt werden.
  • 2 zeigt ein für die Optimierung der Leistungsaufnahme der beschriebenen Kühlanordnung verwendetes Modell. Wie aus der 2 ersichtlich ist, wird Umgebungsluft mit einer ersten Temperatur T1 durch eine Mehrzahl von Einschubkomponenten 3, beispielsweise Servereinschübe für eine Rackanordnung, gesaugt. Die angesaugte Umgebungsluft dient dabei zur Kühlung elektrischer oder elektronischer Bauteile, die beispielsweise auf einer Platine der Einschubkomponente 3 angeordnet sind. Die Kühlung der elektrischen oder elektronischen Bauteile führt zugleich zu einer Erwärmung der angesaugten Umgebungsluft, die nach Durchströmen den Einschubkomponenten gemäß dem in der 2 dargestellten Modell eine Temperatur T2 aufweist.
  • Die erwärmte Kühlluft wird im in der 2 dargestellten Schema durch eine Ablufteinheit 9 angesaugt, die beispielsweise einen Lüfter 10 oder eine ähnliche Fördereinrichtung aufweist. Zum Ansaugen der Kühlluft nimmt die Ablufteinheit 9 eine elektrische Leistung PM zum Betrieb des Lüfters 10 auf.
  • Um die von der Ablufteinheit ausgestoßene Kühlluft mit der Temperatur T2 wieder auf das Niveau der Umgebungsluft abzukühlen, wird im in der 2 dargestellten Modell eine Kühleinheit 11 eingesetzt. Die Kühleinheit 11 nimmt eine weitere Leistung PC zum Abkühlen der erwärmten Umgebungsluft aus. Nach Durchströmen der Kühleinheit besitzt die zur Kühlung eingesetzte Luft eine gegenüber der zweiten Temperatur T2 verminderte Temperatur T3, die im Falle einer umgebungsneutralen Kühlanordnung der ersten Temperatur T1 entspricht.
  • Gemäß dem in der 2 dargestellten Modell beträgt die Gesamtleistungsaufnahme zur Kühlung des Serverracks Ptot der Summe der Einzelleistungen PM und PC.
  • Die Energieeffizienz der einzelnen Komponenten, hier insbesondere der Ablufteinheit 9 und der Kühleinheit 11, werden durch verschiedene Faktoren bestimmt.
  • Im Falle der Ablufteinheit 9 wird die Energieeffizienz durch die Effizienz eines Lüftermotors, die Gehäusegeometrie des Rackgehäuses 1 und durch einen Volumenstrom V der Kühlluft bestimmt. In dem beschriebenen Ausführungsbeispiel beträgt die Energieaufnahme der Ablufteinheit 9 beispielsweise PM = k1 × Vm, wobei k1 eine gehäusespezifische Konstante darstellt und m eine Konstante für die Effizienz des eingesetzten Lüftermotors darstellt.
  • Der Volumenstrom V, der zur Kühlung der Einschubkomponenten 3 benötigt wird, ist umgekehrt proportional zu der Temperaturdifferenz zwischen der erwärmten Luft mit der Temperatur T2 und der Umgebungsluft mit der Temperatur T1. Es gilt V = k2 (T2 – T1). Hierbei stellt die Konstante k2 wiederum eine für die Gehäusegeometrie des verwendeten Rackgehäuses 1 typische Konstante dar.
  • Mit den Werten k1 = 28.000, k2 = 10–6 und m = 2,5 ergibt sich die in der 3 mit durchgezogener Linie dargestellte Leistungsaufnahme der Ablufteinheit 9 in Abhängigkeit der Temperaturdifferenz ΔT = T2 – T1. Der 3 ist zu entnehmen, dass die Leistungsaufnahme PM mit geringerer Temperaturdifferenz ΔT stark ansteigt. Umgekehrt fällt die Leistungsaufnahme PM der Ablufteinheit mit steigender Temperaturdifferenz ΔT ab.
  • Die von der Kühleinheit 11 aufgenommene Leistung PC hängt stark von der jeweils verwendeten Kühltechnologie ab. Reicht die Umgebungsluft und natürliche Wärmedissipation zur Kühlung der Einschubkomponenten 3 aus, nimmt die Kühleinheit 11 überhaupt keine Energie auf. In den hier relevanten Fällen von Rackanordnungen mit einer Vielzahl von Einschubkomponenten 3 wird jedoch in der Regel eine aktive Kühleinheit 11 verwendet, deren Energieaufnahme wie folgt dargestellt werden kann: PC = Q × (T2 – T1) ÷ (T1 × E). Dabei entspricht Q der thermischen Energie, die durch die Kühleinheit 11 abgeführt wird. Der Wert E entspricht der relativen Energieeffizienz der eingesetzten Kühltechnologie. Bei einem Wärmetauscher 12 beträgt der Wert für E beispielsweise 0,5.
  • Wie sich aus Messungen ergeben hat, ist die Abhängigkeit von der absoluten Umgebungstemperatur T1 für in der Praxis auftretende Werte von beispielsweise 15 bis 25°C unerheblich gegenüber den anderen, die Energieaufnahme PC beeinflussende Faktoren. In der 3 ist daher lediglich die Leistungsaufnahme bei einer Lufteinlasstemperatur von 20°C dargstellt. Auch hier spielt jedoch die Temperaturdifferenz ΔT = T2 – T1 eine wesentliche Rolle für die Energieaufnahme der Kühleinheit 11 insgesamt. Gemäß der Strichpunktlinie der 3 steigt die Energieaufnahme PC der Kühleinheit 11 mit steigender Temperaturdifferenz ΔT im Wesentlichen linear an.
  • In der 3 ist die kombinierte Leistungsaufnahme Ptot der Ablufteinheit 9 und der Kühleinheit 11 gestrichelt dargestellt. Wie sich aus der 3 ergibt, weist die Kurve im mittleren Bereich ein Minimum auf, das der geringsten Gesamtenergieaufnahme Ptot entspricht. Für größere Temperaturdifferenz ΔT = T2 – T1 steigt die Energieaufnahme wegen dem steigenden Energiebedarf der Kühleinheit 11 an. Für niedrigere Temperaturdifferenz ΔT steigt die Energieaufnahme wegen der stark ansteigenden Leistungsaufnahme der Ablufteinheit 9 an.
  • Im zuvor beschriebenen Ausführungsbeispiel mit den oben angegebenen Konstanten ergibt sich ein Minimum für eine Temperaturdifferenz ΔT von 12°C zwischen einer Temperatur T1 der Umgebungsluft und einer Temperatur T2 nach Erwärmung der Umgebungsluft durch die zu kühlenden Komponenten.
  • Bevorzugt bestimmt die Steuereinrichtung 13 die Temperaturen T1, T2 und T3 und regelt den Lüftermotor so an, dass die von der Kühlanordnung abgegebene Kühlluft nicht oder um nicht mehr als einen vorgegebenen Grenzwert wärmer ist als die angesaugt Kühlluft und zugleich der bestimmte, optimale Temperaturdifferenz ΔT eingehalten wird.
  • Um die Effizienz der beschriebenen Rackanordnung noch weiter zu verbessern, wurde die Kühleinheit 11 gemäß einem zweiten Ausführungsbeispiel, das in der 4 dargestellt ist, in Strömungsrichtung vor die zu kühlenden Einschubkomponenten 3 verlagert. Beispielsweise kann die Kühleinheit 11 als Teil einer Gehäusetür 17 ausgestaltet werden. Wegen der verhältnismäßig großen Fläche der Gehäusetür 17 kann die Kühleinheit 11 sehr dünn ausgelegt werden, so dass auch nur ein verhältnismäßig geringer Raumbedarf entsteht. In diesem Fall kann die Luft aus der Unterdruckkammer 7 ungehindert durch den Lüfter 10 nach oben abgegeben werden.
  • Im Ergebnis wird die zur Kühlung verwendete Umgebungsluft jetzt zuerst gegenüber der Temperatur T1 der Umgebungsluft auf die Temperatur T2 abgekühlt und nachfolgend durch die Einschubkomponenten 3 auf die Temperatur T3 aufgewärmt, beispielsweise wieder auf die Temperatur T1 der Umgebungsluft.
  • Der Vorteil einer derartigen Kühlanordnung ergibt sich insbesondere aus der 5. In der 5 ist die elektrische Leistungsaufnahme eines Servereinschubs 3, der innerhalb einer Einschubposition 4 angeordnet ist, über seiner Arbeitstemperatur angegeben. Dabei wird die Arbeitstemperatur des Prozessors beispielsweise über einen chipinternen Temperatursensor erfasst. In Abhängigkeit der Auslastung des Prozessors steigt dessen Kerntemperatur an. Die elektrische Leistungsaufnahme steigt des Weiteren mit zunehmender Chiptemperatur an, weil die in dem Halbleiterbaustein auftretenden Leckströme sich vergrößern.
  • Bei Auslastung des Prozessors mit einer Arbeitsbelastung von 50 Prozent steigt die elektrische Leistungsaufnahme eines Servereinschubs beispielsweise von etwa 190 auf etwa 230 Watt bei einer Chiptemperatur von 50 bis 90°C an. Dabei ist die Chiptemperatur im Wesentlichen abhängig von dem Volumenstrom V der zur Kühlung verwendeten Luft, die im Ausführungsbeispiel eine Temperatur von 24°C aufweist. Wird der Luftstrom geringer, erhöht sich die Temperatur der Chips des Servereinschubs weiter und deren Leistungsaufnahme steigt an. Wird der Luftstrom vergrößert, sinkt die Temperatur der Prozessoren und deren Leistungsaufnahme fällt ab.
  • Noch drastischer ist der Effekt bei einem voll ausgelasteten Prozessor, wie dies im oberen Teil der 5 dargestellt ist. Bei einer Vollauslastung des Prozessors und einem gleichzeitigen, verhältnismäßig geringen Volumenstrom V einer Kühlluft erreicht der Servereinschub schließlich eine Leistungsaufnahme von mehr als 300 Watt, bei der ein interner Schutzmechanismus des Prozessors dessen Arbeitstakt drosselt. Infolgedessen sinkt die Leistungsaufnahme des Servereinschubs leicht ab, wobei dies jedoch gleichzeitig mit einem Verlust an Rechenleistung einhergeht. Trotz fallender absoluter Leistungsaufnahme verringert sich die Energieeffizienz der Anordnung insgesamt.
  • Wie sich aus der 5 ergibt, ist die Leistungsaufnahme von Prozessoren und anderen Halbleiterchips geringer, wenn die Temperatur der Chips reduziert werden kann. Zu diesem Zweck wird in dem Ausführungsbeispiel gemäß 4 die Umgebungsluft zuerst abgekühlt, bevor diese zur Kühlung der Einschubkomponenten 3 verwendet wird.
  • Wird in der Kühlanordnung gemäß 1 beispielsweise eine Kühleinheit 11 eingesetzt, die die Temperatur der sie durchströmenden Luft um 11°C vermindert, werden die einzelnen Bauteile der Einschubkomponenten 3 mit einer Kühlluft, die die erste Temperatur T1 aufweist angeströmt. Beispielsweise handelt es sich bei der Temperatur T1 um eine Umgebungstemperatur von 25°C. Durch die Komponenten wird die Umgebungsluft auf eine Temperatur T2 von beispielsweise 36°C erwärmt und nachfolgend durch die Kühleinheit 11 wieder auf die Umgebungstemperatur von 25°C abgekühlt. Je nach Anordnung der einzelnen Bauteile in den Einschubkomponenten 3 werden diese daher mit einer Kühlluft mit einer Temperatur zwischen 25 und 36°C umgeben.
  • Gemäß der Ausführung der Kühlanordnung nach 4 wird die zur Kühlung verwendete Umgebungsluft jedoch zunächst um 11°C abgekühlt, so dass sie mit einer Temperatur von etwa 14°C in die einzelnen Einschubkomponenten 3 eintritt. Bei Austritt der Kühlluft aus den Einschubkomponenten 3 in die Unterdruckkammer 7 weist sie wiederum eine Temperatur von 25°C aus, die beispielsweise der Temperatur der Umgebungsluft entspricht. In diesem Fall werden die einzelnen Bauelemente der Einschubkomponenten 3 mit einer Temperatur von beispielsweise 14 bis 25°C umgeben, so dass deren Leckstromverluste geringer sind.
  • Die beschriebenen Überlegungen und Konzepte zur Verbesserung der Kühleffizienz von Rackanordnungen ergänzen sich einander, wobei zum Einen durch die vorteilhafte Anordnung der Kühleinheit 11 in Strömungsrichtung vor den zu kühlenden Einschubkomponenten 3 die Verlustleistung der einzelnen Bauteile der Einschubkomponenten 3 reduziert wird und zum anderen durch eine kombinierte Berücksichtigung der Leistungsaufnahme der Ablufteinheit 9 und der Kühleinheit 11 die Leistungsaufnahme des Kühlsystems insgesamt reduziert wird.
  • Obwohl das Kühlsystem unter Bezugnahme auf ein Serverrack als Ausführungsbeispiel beschrieben wurde, eignet sich die beanspruchte Kühlanordnung und das Arbeitsverfahren auch für andere Computersysteme. Beispielsweise eignen sich die beschriebenen Vorrichtungen und Verfahren auch für leistungsfähige Einzelserver mit einer Mehrzahl mit Einzelkomponenten wie beispielsweise Laufwerken, Speichermodulen und Prozessoren oder für so genannte Blade-Server mit einer Mehrzahl von Prozessor- und sonstigen Einschüben in einem gemeinsamen Gehäuse.
  • Bezugszeichenliste
  • 1
    Rackgehäuse
    2
    Vorderseite
    3
    Einschubkomponente
    4
    Einschubposition
    5
    Schottwand
    6
    Öffnung
    7
    Unterdruckkammer
    8
    Rückschlaggitter
    9
    Ablufteinheit
    10
    Lüfter
    11
    Kühleinheit
    12
    Wärmetauscher
    13
    Steuervorrichtung
    14
    erster Temperatursensor
    15
    zweiter Temperatursensor
    16
    dritter Temperatursensor
    17
    Gehäusetür

Claims (8)

  1. Kühlanordnung, aufweisend: – ein Gehäuse mit einer Mehrzahl von Einschubpositionen (4) zur Aufnahme von Einschubkomponenten (3), – wenigstens eine Ablufteinheit (9) zum Absaugen von durch elektrische oder elektronische Bauteile der Einschubkomponenten (3) erwärmte Luft, – wenigstens eine Kühleinheit (11) zum Abkühlen der zur Kühlung verwendeten Luft, – wenigstens zwei Temperatursensoren (14, 15, 16) zum Erfassen einer Temperaturdifferenz der zur Kühlung verwendeten Luft und – eine Steuervorrichtung (13) zur Steuerung einer Lüfterdrehzahl der Ablufteinheit (9), wobei – die Steuervorrichtung dazu eingerichtet ist, die Ablufteinheit (9) in Abhängigkeit der Energieaufnahme der Ablufteinheit (9) und der Energieaufnahme der Kühleinheit (11) unter Berücksichtigung der Temperaturdifferenz anzusteuern, – die Kühleinheit (11) in Strömungsrichtung vor der Mehrzahl der Einschubpositionen (4) angeordnet ist, so dass in den Einschubpositionen (4) angeordnete Einschubkomponenten (3) mit gegenüber einer Temperatur einer bereitgestellten Luft abgekühlter Luft angeströmt werden, und – die Kühlanordnung ein offenes Kühlsystem bildet, bei der Luft aus einer Umgebung des Gehäuses im Bereich der Kühleinheit (11) angesaugt und durch die Ablufteinheit (9) an die Umgebung abgegeben wird.
  2. Kühlanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die wenigstens eine Kühleinheit (11) einen Wärmetauscher (12) aufweist, wobei der Wärmetauscher (12) die von der Kühleinheit (11) entnommene Wärmeenergie an ein flüssiges Kühlmedium überträgt.
  3. Kühlanordnung nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass das Gehäuse als Rackgehäuse (1) für ein Serverrack mit der Mehrzahl von Einschubpositionen (4) zur Aufnahme einer Mehrzahl von Einschubservern ausgebildet ist, wobei das Rackgehäuse (1) eine für alle Einschubpositionen (4) zentrale Kühlluftführung aufweist, die mindestens jeweils eine Öffnung (6) zum Absaugen der erwärmten Luft aus den Einschubpositionen (4) mit der wenigstens einen Ablufteinheit (9) verbindet.
  4. Kühlanordnung nach Anspruch 3, dadurch gekennzeichnet, dass die zentrale Kühlluftführung eine Unterdruckkammer (7) aufweist, wobei die wenigstens eine Ablufteinheit (9) dazu eingerichtet ist, einen gegenüber einem Umgebungsluftdruck reduzierten Unterdruck in der Unterdruckkammer (7) herzustellen.
  5. Kühlanordnung nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass die Kühleinheit (11) an oder anstelle einer vor der Mehrzahl von Einschubpositionen (4) angeordneten Gehäusetür (17) des Rackgehäuses (1) angeordnet ist.
  6. Arbeitsverfahren für eine Lüftersteuerung einer Kühlanordnung mit wenigstens einer Ablufteinheit (9) zum Absaugen von durch elektrische oder elektronische Bauteile einer Mehrzahl von Einschubkomponenten (3) erwärmte Luft und wenigstens einer Kühleinheit (11) zum Kühlen der zur Kühlung verwendeten Luft, aufweisend die Schritte: – Bestimmen einer optimierten Temperaturdifferenz für die zur Kühlung des Serverracks verwendete Luft unter Berücksichtigung der Energieaufnahme der wenigstens einen Ablufteinheit (9) und der wenigstens einen Kühleinheit (11) in Abhängigkeit der Temperaturdifferenz; – Messen wenigstens einer tatsächlichen Temperaturdifferenz zwischen wenigstens zwei Temperaturen der zur Kühlung verwendeten Luft; und – Regeln einer Lüfterdrehzahl für die wenigstens eine Ablufteinheit (9) in Abhängigkeit einer Abweichung zwischen der bestimmten optimierten Temperaturdifferenz und der gemessenen tatsächlichen Temperaturdifferenz.
  7. Arbeitsverfahren nach Anspruch 6, dadurch gekennzeichnet, dass im Schritt des Messens wenigstens eine erste Temperaturdifferenz der zur Kühlung verwendeten Luft vor und nach einem Durchströmen der elektrischen oder elektronischen Bauteile gemessen wird.
  8. Arbeitsverfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass im Schritt des Messens wenigstens eine zweite Temperaturdifferenz der zur Kühlung verwendeten Luft vor und nach einem Durchströmen der Kühleinheit (11) gemessen wird.
DE102010051962.6A 2010-11-19 2010-11-19 Kühlanordnung und Arbeitsverfahren für eine Lüftersteuerung Expired - Fee Related DE102010051962B4 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102010051962.6A DE102010051962B4 (de) 2010-11-19 2010-11-19 Kühlanordnung und Arbeitsverfahren für eine Lüftersteuerung
EP20110182403 EP2456293A3 (de) 2010-11-19 2011-09-22 Kühlanordnung und Arbeitsverfahren für eine Lüftersteuerung
US13/287,209 US9060450B2 (en) 2010-11-19 2011-11-02 Cooling arrangement and method of operation for a fan control
JP2011250608A JP5474030B2 (ja) 2010-11-19 2011-11-16 冷却装置及びファン制御のための動作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010051962.6A DE102010051962B4 (de) 2010-11-19 2010-11-19 Kühlanordnung und Arbeitsverfahren für eine Lüftersteuerung

Publications (2)

Publication Number Publication Date
DE102010051962A1 DE102010051962A1 (de) 2012-05-24
DE102010051962B4 true DE102010051962B4 (de) 2017-03-02

Family

ID=44674557

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010051962.6A Expired - Fee Related DE102010051962B4 (de) 2010-11-19 2010-11-19 Kühlanordnung und Arbeitsverfahren für eine Lüftersteuerung

Country Status (4)

Country Link
US (1) US9060450B2 (de)
EP (1) EP2456293A3 (de)
JP (1) JP5474030B2 (de)
DE (1) DE102010051962B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018131790A1 (de) * 2018-11-15 2020-05-20 Seifert Systems Ltd. Anordnung zur Regelung der Temperatur und/oder Luftfeuchtigkeit

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201424550A (zh) * 2012-12-04 2014-06-16 Hon Hai Prec Ind Co Ltd 風扇控制系統及風扇控制方法
US9648784B2 (en) 2013-03-15 2017-05-09 Inertech Ip Llc Systems and assemblies for cooling server racks
CN104679149B (zh) * 2013-11-26 2018-08-03 鸿富锦精密电子(天津)有限公司 服务器
CN105387555B (zh) * 2014-09-03 2019-02-05 青岛海尔空调器有限总公司 一种用于控制电加热的方法
WO2016122482A1 (en) * 2015-01-28 2016-08-04 Hewlett-Packard Development Company, L.P. Fan control based on measured heat flux
US10080312B2 (en) 2015-03-09 2018-09-18 Vapor IO Inc. Patch panel for QSFP+ cable
US10257268B2 (en) 2015-03-09 2019-04-09 Vapor IO Inc. Distributed peer-to-peer data center management
US10833940B2 (en) 2015-03-09 2020-11-10 Vapor IO Inc. Autonomous distributed workload and infrastructure scheduling
US10039211B2 (en) 2015-03-09 2018-07-31 Vapor IO Inc. Rack for computing equipment
US10404523B2 (en) 2015-03-09 2019-09-03 Vapor IO Inc. Data center management with rack-controllers
WO2017074513A1 (en) 2015-10-30 2017-05-04 Vapor IO Inc. Adapters for rack-mounted computing equipment
US9985842B2 (en) 2015-10-30 2018-05-29 Vapor IO Inc. Bus bar power adapter for AC-input, hot-swap power supplies
US10454772B2 (en) 2015-10-30 2019-10-22 Vapor IO Inc. Compact uninteruptable power supply
DE102018113806A1 (de) * 2018-06-11 2019-12-12 Vertiv Integrated Systems Gmbh Geräteschrank und Verfahren zum Betreiben einer Kühleinrichtung
JP7088323B2 (ja) * 2018-06-26 2022-06-21 日本電気株式会社 サーバラック、制御装置、冷却方法、及びプログラム
CN113970162B (zh) * 2021-11-30 2023-05-02 宁波奥克斯电气股份有限公司 一种移动空调的控制方法和移动空调

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69617089T2 (de) 1995-05-02 2002-04-18 Ntt Power & Building Klimatisierungsverfahren für Maschinenraum mit Schrankgeräten zur Zwangsentlüftung
DE10210417A1 (de) 2002-03-09 2003-10-09 Rittal Gmbh & Co Kg Schaltschrank mit wärmeerzeugenden, luftgekühlten Einbauten
JP2004286365A (ja) 2003-03-24 2004-10-14 Ntt Power & Building Facilities Inc 電子機器収容用ラック、空気調和システム、これに用いる制御ボックス及び空気調和システムの制御方法
US6819563B1 (en) 2003-07-02 2004-11-16 International Business Machines Corporation Method and system for cooling electronics racks using pre-cooled air
DE202006003488U1 (de) 2006-03-06 2006-04-27 W.L. Gore & Associates Gmbh Klimatisierung von in einem Gehäuse aufgenommenen elektronischen Bauteilen
DE102005005588A1 (de) 2005-02-07 2006-08-10 Knürr AG Schaltschrank
JP2009157681A (ja) 2007-12-27 2009-07-16 Sanyo Electric Co Ltd 電子機器冷却装置
US20090207564A1 (en) 2008-02-15 2009-08-20 International Business Machines Corporation Temperature-based monitoring method and system for determining first and second fluid flow rates through a heat exchanger
WO2010039120A1 (en) 2008-09-30 2010-04-08 Hewlett-Packard Development Company, L.P. Data center
DE202010007046U1 (de) 2010-05-20 2010-08-26 Fujitsu Technology Solutions Intellectual Property Gmbh Rackgehäuse zur Aufnahme einer Mehrzahl von lüfterlosen Einschubkomponenten
US20110103009A1 (en) 2008-06-02 2011-05-05 Audrey Julien-Roux Computer bay cooling device and computer equipment comprising same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7752858B2 (en) * 2002-11-25 2010-07-13 American Power Conversion Corporation Exhaust air removal system
US20050207116A1 (en) * 2004-03-22 2005-09-22 Yatskov Alexander I Systems and methods for inter-cooling computer cabinets
DE202004006552U1 (de) * 2004-04-26 2004-07-08 Knürr AG Kühlungssystem für Geräte- und Netzwerkschränke
US7568360B1 (en) * 2005-11-01 2009-08-04 Hewlett-Packard Development Company, L.P. Air re-circulation effect reduction system
JP2007250713A (ja) 2006-03-15 2007-09-27 Nec Corp 電子機器収容ラックおよびその冷却方法
JP4789760B2 (ja) * 2006-09-19 2011-10-12 富士通株式会社 電子機器及びラック状装置
JP2008111588A (ja) * 2006-10-30 2008-05-15 Fujitsu Ltd 空調設備およびコンピュータシステム
JP2010524074A (ja) 2007-04-05 2010-07-15 ジグシンスキー、イェクティエル 強制冷却される電子部品用集積キャビネット/ラック
US7963118B2 (en) * 2007-09-25 2011-06-21 International Business Machines Corporation Vapor-compression heat exchange system with evaporator coil mounted to outlet door of an electronics rack
US7707880B2 (en) * 2008-02-15 2010-05-04 International Business Machines Corporation Monitoring method and system for determining rack airflow rate and rack power consumption
US8250877B2 (en) * 2008-03-10 2012-08-28 Cooligy Inc. Device and methodology for the removal of heat from an equipment rack by means of heat exchangers mounted to a door
JP2010061446A (ja) 2008-09-04 2010-03-18 Gac Corp サーバークーラーシステム
JP4735690B2 (ja) * 2008-09-16 2011-07-27 日立電線株式会社 データセンタ
US8189334B2 (en) * 2010-05-26 2012-05-29 International Business Machines Corporation Dehumidifying and re-humidifying cooling apparatus and method for an electronics rack
US8693198B2 (en) * 2012-04-10 2014-04-08 International Business Machines Corporation Structural configuration of a heat exchanger door for an electronics rack

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69617089T2 (de) 1995-05-02 2002-04-18 Ntt Power & Building Klimatisierungsverfahren für Maschinenraum mit Schrankgeräten zur Zwangsentlüftung
DE10210417A1 (de) 2002-03-09 2003-10-09 Rittal Gmbh & Co Kg Schaltschrank mit wärmeerzeugenden, luftgekühlten Einbauten
JP2004286365A (ja) 2003-03-24 2004-10-14 Ntt Power & Building Facilities Inc 電子機器収容用ラック、空気調和システム、これに用いる制御ボックス及び空気調和システムの制御方法
US6819563B1 (en) 2003-07-02 2004-11-16 International Business Machines Corporation Method and system for cooling electronics racks using pre-cooled air
DE102005005588A1 (de) 2005-02-07 2006-08-10 Knürr AG Schaltschrank
DE202006003488U1 (de) 2006-03-06 2006-04-27 W.L. Gore & Associates Gmbh Klimatisierung von in einem Gehäuse aufgenommenen elektronischen Bauteilen
JP2009157681A (ja) 2007-12-27 2009-07-16 Sanyo Electric Co Ltd 電子機器冷却装置
US20090207564A1 (en) 2008-02-15 2009-08-20 International Business Machines Corporation Temperature-based monitoring method and system for determining first and second fluid flow rates through a heat exchanger
US20110103009A1 (en) 2008-06-02 2011-05-05 Audrey Julien-Roux Computer bay cooling device and computer equipment comprising same
WO2010039120A1 (en) 2008-09-30 2010-04-08 Hewlett-Packard Development Company, L.P. Data center
DE202010007046U1 (de) 2010-05-20 2010-08-26 Fujitsu Technology Solutions Intellectual Property Gmbh Rackgehäuse zur Aufnahme einer Mehrzahl von lüfterlosen Einschubkomponenten

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018131790A1 (de) * 2018-11-15 2020-05-20 Seifert Systems Ltd. Anordnung zur Regelung der Temperatur und/oder Luftfeuchtigkeit
DE102018131790B4 (de) * 2018-11-15 2020-12-17 Seifert Systems Ltd. Anordnung zur Regelung der Temperatur und/oder Luftfeuchtigkeit

Also Published As

Publication number Publication date
JP2012114437A (ja) 2012-06-14
EP2456293A2 (de) 2012-05-23
US9060450B2 (en) 2015-06-16
DE102010051962A1 (de) 2012-05-24
JP5474030B2 (ja) 2014-04-16
US20120128507A1 (en) 2012-05-24
EP2456293A3 (de) 2013-10-16

Similar Documents

Publication Publication Date Title
DE102010051962B4 (de) Kühlanordnung und Arbeitsverfahren für eine Lüftersteuerung
EP1973393B1 (de) Kühlsystem für eine Informationsvorrichtung
EP2255131B1 (de) Entfeuchter und verfahren
EP1614333B1 (de) Kühlungssystem für geräte- und netzwerkschränke und verfahren zur kühlung von geräte- und netzwerkschränken
US9414519B2 (en) Dehumidifying cooling apparatus and method for an electronics rack
US9439327B1 (en) Vertical tray structure for rack in data center
US20100147490A1 (en) Apparatus and method for providing in situ cooling of computer data centers during service calls
US20120041600A1 (en) Load Balancing Tasks in a Data Center Based on Pressure Differential Needed for Cooling Servers
DE102012218328A1 (de) Auf die Zonenleistungsaufnahme ansprechende unabhängige Computersystem-Zonenkühlung
WO2010054786A1 (de) Verfahren zur kühlluftregelung in geräteschränken und sensor-anordnung
WO2011073668A1 (en) Data centre building and method
EP2226701A1 (de) Klimasystem
DE102010021019B9 (de) Gehäuseschrank zur Aufnahme einer Mehrzahl von Einschubkomponenten und Rackgehäuse mit dem Gehäuseschrank und einer Ablufteinheit
US9462729B1 (en) Tile assemblies faciliating failover airflow into cold air containment aisle
WO2016079119A1 (de) Verfahren und anordnung zum klimatisieren eines kaltganges
DE102011109476B3 (de) Server sowie Verfahren zum Kühlen eines Servers
EP0007396B1 (de) Kühleinrichtung für in geschlossenen Gehäusen angeordnete elektrische Baueinheiten
DE102014105051B4 (de) Verfahren und Vorrichtung zum Betreiben einer elektronischen Schaltungsanordnung in einem Schaltschrank
EP2345317B1 (de) Verfahren zur kühlluftregelung in geräteschränken und geräteschrank mit einer sensor-anordnung
DE102012020229A1 (de) Schaltanlagenbelüftungsanordnung sowie elektrische Schaltanlage
EP2066164A2 (de) Einschub für ein Serverrack sowie Anordnung mit einem Einschub und einer Kühlvorrichtung für ein Serverrack
DE10341246B3 (de) Kühlsystem für elektronische Geräte, insbesondere für Computer
CN111669934A (zh) 机柜以及机柜的温度控制方法
EP3232750A1 (de) System und verfahren zum kühlen von rechenvorrichtungen
CN106445041A (zh) 一种防尘式计算机散热器

Legal Events

Date Code Title Description
R016 Response to examination communication
R084 Declaration of willingness to licence

Effective date: 20110413

R016 Response to examination communication
R081 Change of applicant/patentee

Owner name: FUJITSU LTD., KAWASAKI-SHI, JP

Free format text: FORMER OWNER: FUJITSU TECHNOLOGY SOLUTIONS INTELLECTUAL PROPERTY GMBH, 80807 MUENCHEN, DE

R082 Change of representative

Representative=s name: EPPING HERMANN FISCHER, PATENTANWALTSGESELLSCH, DE

Representative=s name: EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHA, DE

R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee