DE102010022560A1 - Verfahren zum Betreiben einer Gefahrenmeldeanlage - Google Patents

Verfahren zum Betreiben einer Gefahrenmeldeanlage Download PDF

Info

Publication number
DE102010022560A1
DE102010022560A1 DE201010022560 DE102010022560A DE102010022560A1 DE 102010022560 A1 DE102010022560 A1 DE 102010022560A1 DE 201010022560 DE201010022560 DE 201010022560 DE 102010022560 A DE102010022560 A DE 102010022560A DE 102010022560 A1 DE102010022560 A1 DE 102010022560A1
Authority
DE
Germany
Prior art keywords
subscriber
processor
current
central unit
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE201010022560
Other languages
English (en)
Other versions
DE102010022560B4 (de
Inventor
Peter Ungemach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novar GmbH
Original Assignee
Novar GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novar GmbH filed Critical Novar GmbH
Priority to DE102010022560.6A priority Critical patent/DE102010022560B4/de
Priority to ES11155545T priority patent/ES2433668T3/es
Priority to EP20110155545 priority patent/EP2393073B1/de
Publication of DE102010022560A1 publication Critical patent/DE102010022560A1/de
Application granted granted Critical
Publication of DE102010022560B4 publication Critical patent/DE102010022560B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/12Checking intermittently signalling or alarm systems
    • G08B29/123Checking intermittently signalling or alarm systems of line circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Alarm Systems (AREA)

Abstract

Ein Verfahren zum Betreiben einer Gefahrenmeldeanlage mit einer Zentraleinheit, an die über eine Zweidrahtleitung als Feldbus mehrere Teilnehmer (T01 bis T10) parallel angeschlossen sind, von denen jeder einen Eingang und einen Ausgang für den Feldbus, mindestens einen Prozessor, einen von dem Prozessor gesteuerten Trenner zwischen Eingang und Ausgang, einen Sensor oder Aktor und ein Kommunikationsmodul umfasst, vermeidet einen Totalausfall der Gefahrenmeldeanlage im Fall eines schwerwiegenden Isolationsfehlers der Zweidrahtleitung, wenn in jedem Teilnehmer (T0 bis T10) – der Strom durch den Teilnehmer zwischen dessen Eingang und dessen Ausgang gemessen, mit einem gespeicherten Maximalwert verglichen und bei dessen Überschreitung ein hierfür repräsentatives Signal an den Prozessor erzeugt wird – und dann, wenn nach Ablauf einer teilnehmerspezifischen Verzögerungszeit (VZ) die Überschreitung des Maximalwertes des Stromes fortbesteht, der Trenner geöffnet wird.

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer Gefahrenmeldeanlage mit einer Zentraleinheit (Zentrale oder Koppler), an die über eine Zweidrahtleitung als Feldbus mehrere Teilnehmer parallel angeschlossen sind, von denen jeder einen Eingang (A) und einen Ausgang (B) für den Feldbus, mindestens einen Prozessor, einen von dem Prozessor gesteuerten Trenner zwischen Eingang (A) und Ausgang (B), einen Sensor oder Aktor und ein Kommunikationsmodul umfasst. Die Erfindung betrifft desweiteren eine nach diesem Verfahren arbeitende Gefahrenmeldeanlage.
  • Gefahrenmeldeanlagen mit dem vorstehend genannten, grundsätzlichen Aufbau sind seit langem Stand der Technik. Die Zentraleinheit liefert die Betriebsspannung über die als Feldbus betriebene Zweidrahtleitung an die Teilnehmer und kommuniziert mit diesen digital über definierte, meist proprietäre Protokolle. Zum Schutz der Gefahrenmeldeanlage überwacht die Zentraleinheit unter anderem auch die Spannung und den Strom auf dem Feldbus. Bei Überschreiten eines vorgegebenen Maximalwertes des Stromes, im Regelfall verursacht durch Isolationsfehler, im ungünstigsten Fall einen Kurzschluss, schaltet die Zentraleinheit die Betriebsspannung ab. Die Gefahrenmeldeanlage kann dann im Regelfall erst wieder in Betrieb genommen werden, wenn die Fehlerursache beseitigt ist.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben einer derartigen Gefahrenmeldeanlage zur Verfügung zu stellen, das einen Totalausfall der Gefahrenmeldeanlage als Folge eines im Bereich des Feldbusses, d. h. auf der Zweidrahtleitung oder in einem bestimmten Teilnehmer aufgetretenen Isolationsfehler in aller Regel vermeidet.
  • Diese Aufgabe ist erfindungsgemäß dadurch gelöst, dass in jedem Teilnehmer
    • – der Strom durch den Teilnehmer zwischen dessen Eingang und dessen Ausgang gemessen, mit einem gespeicherten Maximalwert verglichen und bei dessen Überschreitung ein hierfür repräsentatives Signal an den Prozessor erzeugt wird
    • – und dann, wenn nach Ablauf einer teilnehmerspezifischen Verzögerungszeit die Überschreitung des Maximalwertes des Stromes fortbesteht, der Trenner geöffnet wird.
  • Diese Lösung ist auf eine Gefahrenmeldeanlage nach dem aktuellen Stand der Technik abgestellt, bei der die Zentraleinheit und die Teilnehmer digital miteinander kommunizieren. Der Eingang und der Ausgang der Teilnehmer sind gleichberechtigt, so dass der „ankommende” Feldbus auch an den Ausgang und der „abgehende” Feldbus auch an den Eingang angeschlossen werden kann. Die Sensoren in den Teilnehmern können insbesondere Rauchmelder oder Einbruchsmelder sein. Die Aktoren können z. B. optische oder akustische Fluchtwegkennzeichnungen, Löschmittelsteuerungen, und/oder Auslöser für Brandschutztüren oder Rauchabzugsklappen sein. Die erfindungsgemäße Lösung ist jedoch auch bei analog arbeitenden Anlagen anwendbar, die anstelle eines Prozessors mit einer einfachen Logikschaltung im Teilnehmer arbeiten und kein Kommunikationsmodul benötigen.
  • Die Lösung nach der Erfindung eignet sich sowohl für einen Feldbus in Form einer Stichleitung als auch einen ringförmig geschlossenen Feldbus. In beiden Fallen können, wie an sich bekannt, von dem Feldbus weitere Feldbusse als Stichleitungen abzweigen.
  • Der Kern der Erfindung besteht darin, dass beim Auftreten eines Isolationsfehlers, im Folgenden nur beispielhaft als „Kurzschluss” bezeichnet, alle Teilnehmer diesen Fehler durch die Strommessung zwar gleichzeitig erkennen, jedoch nur derjenige Teilnehmer, der dem Fehlerort verdrahtungstechnisch am nächsten liegt, seinen Trenner öffnet, so dass die zwischen dem Teilnehmer mit dem geöffneten Trenner und der Zentraleinheit liegenden, anderen Teilnehmer vollständig funktionsfähig bleiben.
  • Die teilnehmerspezifische Verzögerungszeit wird in Abhängigkeit von der Anzahl der zwischen dem jeweiligen Teilnehmer und der Zentraleinheit liegenden anderen Teilnehmer bestimmt und, vorzugsweise bei der Inbetriebnahme der Gefahrenmeldeanlage, in jedem Teilnehmer einzeln gespeichert.
  • Vorzugsweise wird die teilnehmerspezifische Verzögerungszeit VZ festgelegt als VZ = (N + 1 – i)·t, worin N die Anzahl der Teilnehmer, i die von dem speisenden Anschluss der Zentraleinheit gezählte physikalische Positionsnummer des Teilnehmers und t ein Zeitintervall ist, das größer als die Zeit ist, die jeder Teilnehmer zum vollständigen Abarbeiten seiner Funktionsroutine benötigt. Unter der Funktionsroutine sind hierbei alle dem Teilnehmer zugewiesenen, normalerweise vorprogrammierten und sich zyklisch wiederholenden Teilaufgaben zu verstehen, das heißt auch diejenigen, die der Teilnehmer im normalen Betrieb ausführt, z. B. periodisches Abfragen der Sensoren, Senden von Zustandsmeldungen an die Zentrale, Empfangen und Verarbeiten von Befehlen von der Zentrale usw. Hinzu kommt im Rahmen der Erfindung die Zeit für die aus Gründen der Energieeinsparung im Regelfall ebenfalls nur in periodischen Zeitabständen vorgenommene Messung des Stromes durch den Teilnehmer, den Vergleich mit dem gespeicherten Maximalwert und die Verarbeitung des Vergleichsergebnisses durch den Prozessor sowie für das von diesem gegebenenfalls ausgelöste Öffnen des Trenners. Das Zeitintervall t kann sehr kurz sein, z. B. in der Größenordnung von 1 ms.
  • Zur Erhöhung der Ausfallsicherheit ist bei aktuellen Gefahrenmeldeanlagen der Feldbus häufig als Ringleitung ausgeführt. In diesem Fall besteht das Verfahren nach der Erfindung darin, dass bei der Inbetriebnahme der Gefahrenmeldeanlage in jedem Teilnehmer die für den normalen Betrieb geltende Stromflussrichtung und eine erste Verzögerungszeit für den Fall der Speisung über den A-Anschluss der Zentraleinheit und eine zweite Verzögerungszeit für den Fall der Speisung über den B-Anschluss der Zentraleinheit gespeichert wird, und dass im Betrieb, sobald ein Überstrom („Kurzschlussstrom”) detektiert wird, dessen Richtung zwischen dem Eingang und dem Ausgang des Teilnehmers ermittelt wird und dass in Abhängigkeit von der ermittelten Stromflussrichtung entweder bei Ablauf der ersten Verzögerungszeit oder bei Ablauf der zweiten Verzögerungszeit und jeweils dann noch fortbestehender Überschreitung des Maximalwertes des Stromes der Trenner geöffnet wird.
  • Dadurch wird die Verfügbarkeit der Gefahrenmeldeanlage auch im Fall eines Kurzschlusses erheblich verbessert, denn im Ergebnis wird der Kurzschlussort aus dem Feldbus herausgetrennt, weil die dem Kurzschlussort unmittelbar benachbarten Teilnehmer („vor” und „hinter” dem Kurzschlussort) beide ihre Trenner öffnen, sofern die Zentraleinheit den Feldbus zu diesem Zeitpunkt sowohl über den A-Anschluss als auch über den B-Anschluss speist.
  • Vorzugsweise wird beim Öffnen des Trenners ein hierfür signifikantes Datentelegramm über das Kommunikationsmodul an die Zentraleinheit gesendet. Die Zentraleinheit bzw. das Bedienpersonal erkennt somit nicht nur wie bisher, dass ein Kurzschluss eingetreten ist sondern der Kurzschluss kann sofort lokalisiert und z. B. im Klartext ausgegeben werden.
  • Weil im Fall eines vollständigen Kurzschlusses zwischen den Adern des Feldbusses bzw. der diesen verkörpernden Zweidrahtleitung die Betriebsspannung zumindest der im näheren Bereich des Kurzschlussortes positionierten Teilnehmer auf 0 Volt oder nahezu 0 Volt zusammenbricht, muss auf andere Weise sichergestellt werden, dass die betreffenden Teilnehmer zumindest solange mit ihrer Betriebsspannung versorgt werden, bis der Trenner des dem Kurzschlussort zunächst liegenden Teilnehmers (oder die Trenner der Teilnehmer beidseits des Kurzschlussortes) geöffnet hat und alle verbleibenden Teilnehmer ihre Betriebsspannung wieder von der Zentraleinheit erhalten. Sofern den Teilnehmern keine Betriebsspannung aus einer externen Hilfsspannungsquelle zur Verfügung steht, müssen sie deshalb bei Unterschreitung des Mindestwertes ihrer Betriebsspannung aus einem internen Energiespeicher, z. B. einem Kondensator, ausreichend lange, mindestens bis zum Öffnen des betreffenden Trenners, versorgt werden.
  • Zusätzlich kann in jedem Teilnehmer die anliegende Betriebsspannung gemessenen, mit einem gespeicherten Mindestwert verglichen und das Vergleichsergebnis an den Prozessor geliefert werden.
  • Um die Zeit bis zum Öffnen des oder der Trenner zu verkürzen, kann bei Überschreitung des Maximalwertes des Stromes und/oder bei Unterschreitung des Mindestwertes der Betriebsspannung in jedem Teilnehmer ein Interrupt-Befehl für seinen Prozessor erzeugt werden, so dass letzterer sofort den Befehl zum Öffnen des Trenners ausgibt.
  • Zweckmäßig kann bei geöffnetem Trenner eine diesen Zustand kennzeichnende Signalleuchte des Teilnehmers aktiviert werden. Dadurch vereinfacht sich die Suche des Fehlerortes.
  • Gegenstand der Erfindung ist desweiteren eine Gefahrenmeldeanlage, die entsprechend dem vorgeschlagenen Verfahren betrieben werden kann. Diese Gefahrenmeldeanlage umfasst eine Zentraleinheit (Zentrale oder Koppler), an die über eine Zweidrahtleitung als Feldbus mehrere Teilnehmer parallel angeschlossen sind. Jeder Teilnehmer hat
    • – einen Eingang und einen Ausgang für den Feldbus,
    • – mindestens einen Prozessor,
    • – einen von dem Prozessor gesteuerten Trenner zwischen Eingang und Ausgang
    • – einen Sensor oder Aktor,
    • – ein Modul zur Messung des Stromes zwischen dem Eingang und dem Ausgang des Teilnehmers und
    • – ein Kommunikationsmodul zum Austausch von Datentelegrammen mit der Zentraleinheit und hat erfindungsgemäß desweiteren
    • – mindestens einen Speicher für mindestens eine teilnehmerspezifische Verzögerungszeit,
    • – einen weiteren Speicher zur Speicherung mindestens des Betrages des im Normalbetrieb zulässigen Maximalwertes des Stromes zwischen dem Eingang und dem Ausgang des Teilnehmers,
    • – eine Auswerteschaltung, die den gemessenen Strom mit dem gespeicherten Maximalwert vergleicht und das Vergleichsergebnis an den Prozessor liefert und einen Energiespeicher zum Betrieb des Prozessors bei Wegfall der Betriebsspannung des Teilnehmers.
  • Wenn der Feldbus als Ringleitung ausgeführt ist und dementsprechend von der Zentraleinheit über deren A-Anschluss und/oder deren B-Anschluss gespeist werden kann, ermittelt das Strommessmodul zusätzlich zu dem Betrag des Stromes auch dessen Vorzeichen, d. h. dessen Richtung zwischen dem A-Anschluss und dem B-Anschluss des Teilnehmers.
  • Die Gefahrenmeldeanlage kann zusätzlich ein Spannungsmessmodul umfassen, das die an dem Eingang oder dem Ausgang des Teilnehmers anliegende Betriebsspannung mit einem gespeicherten Mindestwert vergleicht und das Vergleichsergebnis an den Prozessor liefert, der eine Unterschreitung des gespeicherten Mindestwerts der Betriebsspannung als Interrupt-Befehl interpretiert.
  • Die Erfindung wird nachfolgend anhand der Zeichnung erläutert, die sich auf ein stark vereinfacht dargestelltes Ausführungsbeispiel bezieht. Es zeigt:
  • 1: ein Schema einer Gefahrenmeldeanlage
  • 2: ein Blockschaltbild eines der Teilnehmer dieser Gefahrenmeldeanlage
  • 3: eine symbolische Darstellung der Teilnehmerzustände nach dem Auftreten eines Kurzschlusses.
  • In 1 ist, stark vereinfacht, das Schema einer Gefahrenmeldeanlage dargestellt.
  • Sie umfasst eine Zentraleinheit ZE, bei es sich um die Alarmzentrale, bei größeren Anlagen um eine Unterzentrale oder einen an eine Alarmzentrale oder eine Unterzentrale angeschlossenen Koppler handeln kann. Die Zentraleinheit ZE hat einen Anschluss A und einen Anschluss B für einen im Ring geführten, durch eine Zweitdrahtleitung verkörperten Feldbus, dessen Anfang dementsprechend mit dem Anschluss A und dessen Ende mit dem Anschluss B der Zentraleinheit ZE verbunden ist. Der Feldbus versorgt z. B. bis zu 123 Teilnehmer mit ihrer Betriebsspannung und dient gleichzeitig der digitalen Kommunikation zwischen der Zentraleinheit und diesen Teilnehmern. Dargestellt sind der Einfachheit halber lediglich 10 Teilnehmer in einem Ring R. Diese haben die von dem Anschluss A zum Anschluss B gezählten Positionsnummern T01 bis T10 bzw., vom Anschluss B zum Anschluss A gezählt, die Positionsnummern (T01) bis (T10). Jeder Teilnehmer hat einen zweipoligen Eingang a und einen zweipoligen Ausgang b.
  • Die Teilnehmer können sowohl die Funktion von Sensoren als auch die Funktion von Aktoren haben. Zum Beispiel können T01 bis T03 Brandmelder, T04 eine optische oder akustische Fluchtwegkennzeichnung, T05 eine Löschmittelsteuerung usw. sein.
  • Die Zentraleinheit kann den Ring R in einer Betriebsart A über den Anschluss A und/oder in einer Betriebsart B über den Anschluss B mit Betriebsspannung versorgen. Das Gleiche gilt für die Kommunikation zwischen der Zentraleinheit ZE und den Teilnehmern. Wie an sich bekannt, umfasst die Zentraleinheit ZE eine Logik, die die Betriebsart in Abhängigkeit von dem Zustand des Feldbusses bestimmt.
  • Wenn z. B. die Logik im A-Betrieb eine Unterbrechung oder einen Kurzschluss auf dem Feldbus feststellt, versucht sie die Betriebsbereitschaft durch Umschaltung auf den B-Betrieb oder den A-/B-Betrieb, d. h. die Speisung des Feldbusses und die Kommunikation von beiden Anschlüssen A und B aus, aufrecht zu erhalten.
  • Jeder der Teilnehmer in 1 hat zur Durchführung des vorgeschlagenen Betriebsverfahrens den in 2 als Blockschaltbild dargestellten Aufbau. Wird der Feldbus nicht als Ring sondern nur als Stich betrieben, vereinfacht sich der Aufbau entsprechend.
  • Der Teilnehmer hat Eingangsanschlüsse a+ und a– sowie Ausgangsanschlüsse b+ und b–. Die z. B. vom Anschluss A der Zentraleinheit kommende, den Feldbus verkörpernde Zweidrahtleitung ist mit den Eingangsanschlüssen a+ und a– verbunden. Die weiterführende Zweidrahtleitung ist entsprechend mit den Ausgangsanschlüssen b+ und b– verbunden. Zwischen den Anschlüssen a+ und b+ liegt ein im regulären Betrieb geschlossener Trenner TR, z. B. ein Relaiskontakt oder ein gesteuerter Halbleiterschalter. Zwischen den Anschlüssen a– und b– liegt ein Stromsensor IS, z. B. in Form eines Strommesswiderstandes, dessen stromproportionaler Spannungsabfall eine Auswerteschaltung AS misst, mit einem in einem Speicher MA abgelegten Maximalwert vergleicht und das Ergebnis sowie bei ringförmig geführtem Feldbus auch die Stromflussrichtung an einen Prozessor μP übermittelt. Der Prozessor μP ist desweiteren je nach Anwendungsfall mit einem Sensor oder einem Aktor S/A verbunden, also z. B. mit der Detektionsschaltung eines Streulichtrauchmelders oder mit der Steuerschaltung einer Löschmittelanlage. Über ein Kommunikationsmodul KM sendet der Prozessor Zustandsmeldungen an die Zentraleinheit ZE in 1 und erhält von dieser Befehle in Form von Datentelegrammen. Desweiteren steuert der Prozessor μP den Schaltzustand des Trenners TR. Das Kommunikationsmodul KM kann u. a. auch den Schaltzustand des Trenners TR an die Zentraleinheit ZE melden.
  • Die Auswerteschaltung AS fragt über den Stromsensor IS den Strom auf dem Feldbus, das heißt den Strom durch den Teilnehmer, in kurzen Zeitabständen periodisch ab. Der Maximalwert wird vorzugsweise schon bei der Inbetriebnahme der Gefahrenmeldeanlage in dem Speicher MA abgelegt, ebenso die Stromflussrichtung im Normalbetrieb des Ringes. Bei Überschreitung des Maximalwertes startet der Prozessor μP einen Zeitgeber ZG. In Abhängigkeit von der Richtung (dem Vorzeichen) des Stromes ermittelt der Prozessor μP nach Ablauf entweder einer gespeicherten Verzögerungszeit VZa oder nach Ablauf einer gespeicherten Verzögerungszeit VZb, ob das eine Überschreitung des Maximalwertes des Stromes kennzeichnende Signal fortbesteht. Nur dann, wenn dies der Fall ist, löst der Prozessor μP das Öffnen des Trenners TR aus. Das dadurch erzielte Betriebsverhalten wird anschließend anhand von 3 erläutert werden.
  • Wenn der Strom durch den Teilnehmer den vorgegebenen Maximalwert erheblich überschreitet, also z. B. im Kurzschlussfall, bricht die Betriebsspannung an den Anschlüssen a und b zusammen. Deshalb erhält der Prozessor μP seine interne Betriebsspannung aus einem Energiespeicher ES, z. B. einem Kondensator, der so dimensioniert ist, dass mindestens der Prozessor μP und die Strommessschaltung IS, AS mindestens bis zum Öffnen des Trenners TR betriebsfähig bleiben. Der Energiespeicher ES ist an die Leitung zwischen a+ und b+ über Dioden D1 und D2 beidseits des Trenners TR angeschlossen, um zu verhindern, dass der Energiespeicher ES sich im Kurzschlussfall über die Kurzschlussstelle entlädt.
  • Optional hat der Teilnehmer eingangsseitig und ausgangsseitig ein Spannungsmessmodul Sa und Sb.
  • Die Spannungsmessmodule vergleichen die am Eingang und am Ausgang des Teilnehmers anliegende Betriebsspannung mit einem gespeicherten Mindestwert und liefern bei Unterschreitung ein Signal an den Prozessor, der dieses Signal als Interrupt-Befehl interpretieren kann um bestimmte Routinen wie die Steuerung bzw. Abfrage des Sensors oder Aktors S/A oder den Datenverkehr mit dem Kommunikationsmodul KM abzubrechen und unverzüglich den Zeitgeber ZG zu starten. Dadurch verkürzt sich die Zeit bis zum etwa notwendigen Öffnen des Trenners TR.
  • Die dargestellten Funktionsblöcke dienen nur der Erläuterung. In der Praxis können bestimmte Funktionen und/oder die nicht dargestellten A/D-Wandler in dem Prozessor μP integriert und alle zu speichernden Werte in einem gemeinsamen Speicher-IC abgelegt sein.
  • Das Betriebsverhalten einer Gefahrenmeldeanlage gemäß 1 mit Teilnehmern gemäß 2 und insbesondere die Funktion der teilnehmerspezifischen Verzögerungszeiten VZa und VZb wird anhand von 3 erläutert, und zwar im Fall eines Überstromes oder Kurzschlusses durch einen Fehler zwischen den Teilnehmern 06 und 07. Dabei ist angenommen, dass die Gefahrenmeldeanlage bzw. die Zentraleinheit ZE gemäß 1 den Feldbus mindestens ab Eintritt des Kurzschlusses, den auch die Zentraleinheit erkennt, sowohl über den A-Anschluss als auch über den B-Anschluss versorgt.
  • In 3 sind in Ordinatenrichtung die Teilnehmer T01 bis T10, in Abszissenrichtung die von links nach rechts steigenden Verzögerungszeiten VZa und VZb in einem symbolischen Zeitraster aufgetragen.
  • Jedem der Teilnehmer T01 bis T10 ist eine für ihn spezifische Verzögerungszeit zugewiesen. Diese ist abhängig von seinem „Abstand” von dem jeweiligen speisenden Anschluss der Zentraleinheit ZE und umso länger, je näher der betreffende Teilnehmer dem speisenden Anschluss liegt. Mit „Abstand” ist die Zahl der weiteren Teilnehmer bis zu dem (jeweiligen) Anschluss gemeint.
  • Die jeweiligen Verzögerungszeiten können nach der Beziehung VZ = (N + 1 – i)·t bestimmt sein, worin N die Anzahl der Teilnehmer, im vorliegenden Beispiel 10, i die von dem speisenden Anschluss der Zentraleinheit ZE gezählte physikalische Positionsnummer des Teilnehmers und t ein Zeitintervall ist, das mindestens so groß gewählt ist, dass jeder Teilnehmer die anhand von 2 beschriebenen Funktionen im Fall eines den gespeicherten Maximalwert überschreitenden Stromes bis zum etwa notwendigen Öffnen des Trenners TR abarbeiten kann, ohne dass sich diese Abläufe der einzelnen Teilnehmer zeitlich überlappen.
  • Weil der Teilnehmer T01, gesehen von dem A-Anschluss der Zentraleinheit ZE, der erste Teilnehmer, jedoch bei Speisung über den B-Anschluss der Zentraleinheit ZE der letzte Teilnehmer (T10) ist, wird dem Teilnehmer T01 bei Inbetriebnahme der Anlage als Verzögerungszeit VZa der Wert t10 und als Verzögerungszeit VZb der Wert t1 zur Speicherung zugewiesen, usw. Umgekehrt werden z. B. dem Teilnehmer T10 als Verzögerungszeit VZa der Wert t1 und als Verzögerungszeit VZb der Wert t10 zugewiesen und in diesem gespeichert.
  • Folglich hat der Teilnehmer T01 die längste Verzögerungszeit t10 [VZa] und die kürzeste Verzögerungszeit t1 [VZb], der Teilnehmer T09 die Verzögerungszeiten t9 [VZa] und t2 [VZb], usw.
  • Wenn, wie hier angenommen, zwischen den Teilnehmern T06 und T07 ein Fehlerort liegt, der zu einem Überstrom („Kurzschluss”) führt, werden (nur noch) die Teilnehmer T01 bis T06 über den A-Anschluss mit Betriebsspannung versorgt, die Teilnehmer T07 bis T10 hingegen über den B-Anschluss. Deshalb sind für T01 bis T06 nur die Verzögerungszeiten VZa von t10 bis t5 relevant und als Kreise markiert dargestellt. Die im betrachteten Fall nicht relevanten, aber ebenfalls gespeicherten Verzögerungszeiten t4 [VZa] bis t1 [VZa] sind als gestrichelte Kreise dargestellt. Analog sind für die Teilnehmer T10 bis T07 nur die hier relevanten Verzögerungszeiten t7 [VZb] bis t10 [VZb] als Kreise dargestellt. Die ebenfalls gespeicherten, weiteren Verzögerungszeiten t1 [VZb] bis t6 [VZb] sind der Übersichtlichkeit halber nicht gekennzeichnet.
  • Daraus ergibt sich für den zwischen den Teilnehmern T06 und T07 liegenden Fehlerort, der in jedem Teilnehmer einen Strom erzeugt, der größer als der gespeicherte Maximalwert MA ist, Folgendes:
    Alle Teilnehmer T01 bis T10 erkennen diesen im Zeitpunkt t0 auftretenden Zustand gleichzeitig. Somit startet jeder Teilnehmer über seinen Prozessor μP seinen Zeitgeber ZG. Gesteuert von der Information über die Richtung des Stromes, also abhängig davon, ob der betreffende Teilnehmer ab t0 von dem A-Anschluss oder dem B-Anschluss der Zentraleinheit ZE gespeist wird, wartet der Prozessor μP jedes Teilnehmers entweder bis zum Ablauf seiner Verzögerungszeit VZa, im Fall der 3 die Teilnehmer T06 bis T01, oder bis zum Ablauf der Verzögerungszeit VZb, im Fall der 3 die verbleibenden Teilnehmer T07 bis T10. Bis zum Ablauf der jeweiligen Verzögerungszeit oder erst bei deren Ablauf prüft der jeweiligen Prozessor μP, ob die Information über den Überstrom noch fortbesteht. Wenn das der Fall ist, löst der Prozessor μP des betreffenden Teilnehmers das Öffnen des Trenners TR dieses Teilnehmers aus.
  • Weil der Fehlerort zwischen den Teilnehmern T06 und T07 liegt, erkennen der Teilnehmer T06 mit der kürzesten Verzögerungszeit t5 [VZa] und ebenso der Teilnehmer T07 mit der kürzesten Verzögerungszeit t7 [VZb] als Erste diesen Zustand. Diese Verzögerungszeiten sind zusätzlich mit „X” markiert. Diese beiden Teilnehmer öffnen folglich ihre Trenner TR. Damit ist der Fehlerort aus dem Ringbus herausgetrennt. Die Teilnehmer T01 bis T05 und die Teilnehmer T08 bis T10 erkennen hingegen bei Ablauf ihrer jeweils längeren Verzögerungszeiten VZa bzw. VZb, dass der zulässige Maximalwert MA des Stromes (wieder) unterschritten ist. Ihre Trenner TR bleiben deshalb geschlossen. Folglich ist die vorherige Funktionsfähigkeit die Gefahrenmeldeanlage mindestens für die Teilnehmer T01 bis T05 und T08 bis T10 wieder hergestellt. Die Funktionsfähigkeit kann vollständig, d. h. auch für die Teilnehmer T06 und T07 beidseits des Fehlerortes wieder hergestellt sein, wenn diese beiden Teilnehmer ihrerseits auch nach dem Öffnen ihrer Trenner Signale ihrer Sensoren oder Befehle für ihre Aktoren verarbeiten können.
  • Der Befehl des Prozessors μP, der das Öffnen des Trenners TR auslöst, kann gleichzeitig zum Einschalten einer LED (nicht dargestellt) benutzt werden, die dem Wartungspersonal die Lokalisierung des Fehlerortes erleichtert.

Claims (11)

  1. Verfahren zum Betreiben einer Gefahrenmeldeanlage mit einer Zentraleinheit (Zentrale oder Koppler), an die über eine Zweidrahtleitung als Feldbus mehrere Teilnehmer (T01 bis T10) parallel angeschlossen sind, von denen jeder einen Eingang (a) und einen Ausgang (b) für den Feldbus, mindestens einen Prozessor (μP), einen von dem Prozessor gesteuerten Trenner TR zwischen Eingang (a) und Ausgang (a), einen Sensor oder Aktor (S/A) und ein Kommunikationsmodul (KM) umfasst, dadurch gekennzeichnet, dass in jedem Teilnehmer (T01 bis T10) – der Strom durch den Teilnehmer zwischen dessen Eingang (a) und dessen Ausgang (b) gemessen, mit einem gespeicherten Maximalwert verglichen und bei dessen Überschreitung ein hierfür repräsentatives Signal an den Prozessor (μP) erzeugt wird – und dann, wenn nach Ablauf einer teilnehmerspezifischen Verzögerungszeit (VZ) die Überschreitung des Maximalwertes des Stromes fortbesteht, der Trenner (TR) geöffnet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die teilnehmerspezifische Verzögerungszeit (VZ) in Abhängigkeit von der Anzahl der zwischen dem jeweiligen Teilnehmer und der Zentraleinheit (ZE) liegenden anderen Teilnehmern bestimmt und bei der Inbetriebnahme der Gefahrenmeldeanlage in dem jeweiligen Teilnehmer gespeichert wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die teilnehmerspezifische Verzögerungszeit VZ festgelegt wird als VZ = (N + 1 – i)·t, worin N die Anzahl der Teilnehmer (T01 bis T10), i die von dem speisenden Anschluss (A, B) der Zentraleinheit (ZE) gezählte physikalische Positionsnummer des Teilnehmers und t ein Zeitintervall ist, das größer als die Zeit ist, die der Teilnehmer zum vollständigen Abarbeiten seiner Funktionsroutine benötigt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, für eine Gefahrenmeldeanlage, deren Zentraleinheit (ZE) einen A-Anschluss für den Anfang des Feldbusses und einen B-Anschluss für das Ende des Feldbusses hat und letzteren über den A-Anschluss und/oder den B-Anschluss speist, dadurch gekennzeichnet, dass bei der Inbetriebnahme der Gefahrenmeldeanlage in jedem Teilnehmer die für den normalen Betrieb geltende Stromflussrichtung und eine erste Verzögerungszeit (VZa) für den Fall der Speisung über den A-Anschluss der Zentraleinheit (ZE) und eine zweite Verzögerungszeit (VZb) für den Fall der Speisung über den B-Anschluss der Zentraleinheit (ZE) gespeichert wird, und dass im Betrieb bei Überschreitung des gespeicherten Maximalwertes des Stromes dessen Richtung zwischen dem Eingang (a) und dem Ausgang (b) des Teilnehmers ermittelt wird und dass in Abhängigkeit von der ermittelten Stromflussrichtung entweder bei Ablauf der ersten Verzögerungszeit (VZa) oder bei Ablauf der zweiten Verzögerungszeit (VZb) und fortbestehender Überschreitung des Maximalwertes des Stromes der Trenner (TR) geöffnet wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass beim Öffnen des Trenners (TR) ein hierfür signifikantes Datentelegramm über das Kommunikationsmodul (KM) an die Zentraleinheit (ZE) gesendet wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Teilnehmer (T01 bis T10) bei Unterschreitung des Mindestwertes ihrer Betriebsspannung aus einem internen Energiespeicher versorgt werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in jedem Teilnehmer (T01 bis T10) die anliegende Betriebsspannung gemessen, mit einem gespeicherten Mindestwert verglichen und das Vergleichsergebnis an den Prozessor (μP) geliefert wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass bei Unterschreitung des Mindestwertes der Betriebsspannung und/oder bei Überschreitung des Maximalwertes des Stromes in jedem Teilnehmer (T01 bis T10) ein Interrupt-Befehl für seinen Prozessor (μP) erzeugt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass bei geöffnetem Trenner (TR) eine Signalleuchte des Teilnehmers aktiviert wird.
  10. Gefahrenmeldeanlage mit einer Zentraleinheit (Zentrale oder Koppler), an die über eine Zweidrahtleitung als Feldbus mehrere Teilnehmer (T01 bis T10) angeschlossen sind, von denen jeder – einen Eingang (a) und einen Ausgang (b) für den Feldbus, – mindestens einen Prozessor (μP), – einen von dem Prozessor (μP) gesteuerten Trenner (TR) zwischen Eingang (a) und Ausgang (b) – einen Sensor oder Aktor (S/A), – einen Stromsensor (IS) zur Messung des Stromes zwischen dem Eingang (a) und dem Ausgang (b) des Teilnehmers und – ein Kommunikationsmodul (KM) zum Austausch von Datentelegrammen mit der Zentraleinheit (ZE) umfasst, gekennzeichnet durch – mindestens einen Speicher (VZa/VZb) für mindestens eine teilnehmerspezifische Verzögerungszeit (VZ), – einen weiteren Speicher zur Speicherung mindestens des Betrages des im Normalbetrieb zulässigen Maximalwertes des Stromes zwischen dem Eingang (a) und dem Ausgang (b) des Teilnehmers, – eine Auswerteschaltung (AS), die den gemessenen Strom mit dem gespeicherten Maximalwert vergleicht und das Vergleichsergebnis, im Fall eines ringförmig angeschlossenen Feldbusses auch die Richtung des Stromes an den Prozessor (μP) liefert – und einen Energiespeicher zum Betrieb des Prozessors (μP) bei Wegfall der Betriebsspannung des Teilnehmers.
  11. Gefahrenmeldeanlage nach Anspruch 10, gekennzeichnet durch ein Spannungsmessmodul, das die an dem Eingang (a) oder dem Ausgang (b) des Teilnehmers anliegende Betriebsspannung mit einem gespeicherten Mindestwert vergleicht und bei Unterspannung ein Signal an den Prozessor (μP) liefert.
DE102010022560.6A 2010-06-02 2010-06-02 Verfahren zum Betreiben einer Gefahrenmeldeanlage Active DE102010022560B4 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102010022560.6A DE102010022560B4 (de) 2010-06-02 2010-06-02 Verfahren zum Betreiben einer Gefahrenmeldeanlage
ES11155545T ES2433668T3 (es) 2010-06-02 2011-02-23 Procedimiento de funcionamiento de una instalación de aviso de peligro
EP20110155545 EP2393073B1 (de) 2010-06-02 2011-02-23 Verfahren zum Betreiben einer Gefahrenmeldeanlage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010022560.6A DE102010022560B4 (de) 2010-06-02 2010-06-02 Verfahren zum Betreiben einer Gefahrenmeldeanlage

Publications (2)

Publication Number Publication Date
DE102010022560A1 true DE102010022560A1 (de) 2011-12-08
DE102010022560B4 DE102010022560B4 (de) 2017-03-23

Family

ID=44544248

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010022560.6A Active DE102010022560B4 (de) 2010-06-02 2010-06-02 Verfahren zum Betreiben einer Gefahrenmeldeanlage

Country Status (3)

Country Link
EP (1) EP2393073B1 (de)
DE (1) DE102010022560B4 (de)
ES (1) ES2433668T3 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2701132B1 (de) * 2012-08-23 2018-07-04 Novar GmbH Alarmvorrichtung mit einer lokalen Energiespeichereinheit und busbasiertes Alarmsystem
DE102012020127B4 (de) * 2012-10-15 2016-06-09 Telesystems Thorwarth Gmbh Anordnung zur Überwachung und Brandfrühsterkennung für mehrere brand- und/oder explosionsgefährdete Gefäße und/oder Gehäuse
EP3441958B1 (de) * 2017-08-10 2020-05-06 Wagner Group GmbH Ansteuer- und überwachungsmodul
EP3748599B1 (de) * 2019-06-03 2021-07-28 Siemens Schweiz AG Verfahren zum betrieb und tests eines gefahrenmeldesystems mit einem bussystem, melder zum anschluss an ein bussystem und gefahrenmeldesystem mit einem bussystem.
CN110261757A (zh) * 2019-06-10 2019-09-20 南京宏泰半导体科技有限公司 一种数字隔离芯片测试方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19611945C1 (de) * 1996-03-26 1997-11-20 Daimler Benz Ag Einrichtung für den busvernetzten Betrieb eines elektronischen Gerätes mit Microcontroller sowie deren Verwendung
DE19813922A1 (de) * 1998-03-28 1999-09-30 Telefunken Microelectron Verfahren zum Betreiben eines über eine Busleitung vernetzten Rückhaltesystems bei einem Kurzschluß
DE102008013238A1 (de) * 2007-04-25 2008-11-20 Pepperl + Fuchs Gmbh Slave-Module zum Anschluss an einen Bus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19611945C1 (de) * 1996-03-26 1997-11-20 Daimler Benz Ag Einrichtung für den busvernetzten Betrieb eines elektronischen Gerätes mit Microcontroller sowie deren Verwendung
DE19813922A1 (de) * 1998-03-28 1999-09-30 Telefunken Microelectron Verfahren zum Betreiben eines über eine Busleitung vernetzten Rückhaltesystems bei einem Kurzschluß
DE102008013238A1 (de) * 2007-04-25 2008-11-20 Pepperl + Fuchs Gmbh Slave-Module zum Anschluss an einen Bus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Neugebauer H.,Selektivschutz, Meßtechnische Grundlagen Schaltungsmöglichkeiten und Anwendungen, Zweite neubearbeitete Auflage, Springer-Verlag, Berlin/Göttingen/Heidelberg, 1958, Seiten 67 und 68 *

Also Published As

Publication number Publication date
EP2393073B1 (de) 2013-07-31
ES2433668T3 (es) 2013-12-12
DE102010022560B4 (de) 2017-03-23
EP2393073A1 (de) 2011-12-07

Similar Documents

Publication Publication Date Title
EP0067339B1 (de) Verfahren und Anordnung zur Störungserkennung in Gefahren-, insbesondere Brandmeldeanlagen
EP2720098B1 (de) Sicherheitssystem für eine Anlage umfassend einen Testsignalpfad mit Hin- und Rückleitungspfad
EP0279168B1 (de) Schaltungsanordnung zur Stromversorgung einer Vielzahl von Verbrauchern
EP2393073B1 (de) Verfahren zum Betreiben einer Gefahrenmeldeanlage
EP0403763A2 (de) Verfahren zum Vernetzen von Rechnern und/oder Rechnernetzen sowie Vernetzungssystem
EP2017803B1 (de) Aktives Funktionserhaltungs- und Sicherungssystem für Alarmierungs-Lautsprechernetze in Zweidraht-Ringleitungstechnik
EP0007579B1 (de) Schaltungsanordnung zur Überwachung des Zustands von Signalanlagen, insbesondere von Strassenverkehrs-Lichtsignalanlagen
DE3522418C2 (de)
DE3730103A1 (de) Laststeuersystem und verfahren zum trennen eines unter-busses von einem haupt-bus
EP2613463B1 (de) Verfahren zur überwachung eines transmitters und entsprechender transmitter
EP0192120B1 (de) Verfahren und Einrichtung zur Datenübertragung in der Fernwirktechnik
EP0924585B1 (de) Überwachungsvorrichtung für Garagentorantriebe
EP1687681A2 (de) Verfahren zum betreiben eines netzwerks
EP2625678B1 (de) Verfahren zum betreiben einer sprachdurchsageanlage
DE2316433A1 (de) Programmierbarer universal-logikmodul
EP2423897A2 (de) Gefahrenmeldeanlage und Verfahren zu deren Betrieb
EP0698321A1 (de) Kommunikationsnetz mit mehreren stationen und verfahren zu dessen betrieb
DE112013002661T5 (de) Segment mit einer Fehlerschutzeinrichtung für ein zweidrahtiges, kombiniert verbundenes Energie- und Datennetzsystem
EP2487660B1 (de) Gefahrenmeldeanlage
DE4322841C2 (de) Gefahrenmeldeanlage
EP0809361B1 (de) Elektronisches Schaltgerät und Schaltungsanordnung zur Überwachung einer Anlage
DE102008048930A1 (de) Prüfung der Meldelinien einer Gefahrenmeldeanlage
DE4426466C2 (de) Anordnung und Verfahren zum Betreiben von Gefahrenmeldern
DE3637681A1 (de) Gefahrenmeldeanlage nach dem pulsmeldesystem
DE10329196A1 (de) Verfahren zum Reset von elektronischen Fahrzeug-Steuergeräten

Legal Events

Date Code Title Description
R016 Response to examination communication
R082 Change of representative

Representative=s name: PATENTANWAELTE HENKEL, BREUER & PARTNER, DE

Representative=s name: PATENTANWAELTE HENKEL, BREUER & PARTNER MBB, DE

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final