DE102010018030A1 - Flächenlichtquelle - Google Patents

Flächenlichtquelle Download PDF

Info

Publication number
DE102010018030A1
DE102010018030A1 DE102010018030A DE102010018030A DE102010018030A1 DE 102010018030 A1 DE102010018030 A1 DE 102010018030A1 DE 102010018030 A DE102010018030 A DE 102010018030A DE 102010018030 A DE102010018030 A DE 102010018030A DE 102010018030 A1 DE102010018030 A1 DE 102010018030A1
Authority
DE
Germany
Prior art keywords
light source
area
source according
semiconductor body
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102010018030A
Other languages
English (en)
Inventor
Dr. Brick Peter
Dr. Frank Joachim
Dr. Hiller Uli
Dr. Kaiser Stephan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to DE102010018030A priority Critical patent/DE102010018030A1/de
Priority to CN201180020516.7A priority patent/CN102859273B/zh
Priority to US13/639,859 priority patent/US9176268B2/en
Priority to KR1020127030727A priority patent/KR20130083839A/ko
Priority to PCT/EP2011/055203 priority patent/WO2011131476A1/de
Priority to EP11713245.6A priority patent/EP2561270B1/de
Publication of DE102010018030A1 publication Critical patent/DE102010018030A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V11/00Screens not covered by groups F21V1/00, F21V3/00, F21V7/00 or F21V9/00
    • F21V11/08Screens not covered by groups F21V1/00, F21V3/00, F21V7/00 or F21V9/00 using diaphragms containing one or more apertures
    • F21V11/14Screens not covered by groups F21V1/00, F21V3/00, F21V7/00 or F21V9/00 using diaphragms containing one or more apertures with many small apertures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • G02B6/0021Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces for housing at least a part of the light source, e.g. by forming holes or recesses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/04Signs, boards or panels, illuminated from behind the insignia
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Abstract

Es wird eine Flächenlichtquelle mit einer Leuchtfläche (6) angegeben, die mindestens einen Halbleiterkörper (2), der im Betrieb elektromagnetische Strahlung von seiner Vorderseite (3) emittiert, umfasst und weiterhin Auskoppelstrukturen (7) aufweist, die dazu geeignet sind, eine lokale Änderung der Leuchtdichte auf der Leuchtfläche 6 zu erzeugen, so dass die Leuchtdichte 6 in zumindest einem Leuchtbereich (8) gegenüber einem Hintergrundbereich (9) erhöht ist.

Description

  • Die vorliegende Erfindung betrifft eine Flächenlichtquelle.
  • Aufgabe der vorliegenden Erfindung ist es, eine Flächenlichtquelle anzugeben, die zur Allgemeinbeleuchtung geeignet ist und einen Glitzer-Effekt aufweist.
  • Diese Aufgabe wird durch eine Flächenlichtquelle mit den Merkmalen des Patentanspruchs 1 gelöst.
  • Eine solche Flächenlichtquelle umfasst insbesondere:
    • – mindestens einen Halbleiterkörper, der im Betrieb elektromagnetische Strahlung von seiner Vorderseite emittiert, und
    • – Auskoppelstrukturen, die dazu geeignet sind, eine lokale Änderung der Leuchtdichte auf einer Leuchtfläche der Flächenlichtquelle zu erzeugen, so dass die Leuchtdichte in zumindest einem Leuchtbereich gegenüber einem Hintergrundbereich erhöht ist.
  • Die lokale Änderung der Leuchtdichte auf der Leuchtfläche der Flächenlichtquelle erzeugt bevorzugt einen Glitzer-Effekt für das menschliche Auge.
  • Eine Idee ist es, das von dem Halbleiterkörper ausgesandte Licht mit Hilfe der Auskoppelstrukturen, punktuell derart auszukoppeln, dass die Leuchtfläche Leuchtbereiche aufweist, in denen die Leuchtdichte lokal sowie bevorzugt auch in Abhängigkeit des Betrachtungswinkels vergleichsweise stark variiert. Hierzu sind die Auskoppelstrukturen zweckmäßigerweise asymmetrisch entlang der Leuchtfläche verteilt. Besonders bevorzugt weisen die Auskoppelstrukturen im Leuchtbereich eine besonders hohe Konzentration auf, während die Konzentration der Auskoppelstrukturen im Hintergrundbereich eher niedrig ist.
  • Besonders bevorzugt ist der Hintergrundbereich nicht vollständig dunkel, sondern weist ebenfalls eine Leuchtdichte auf, die bevorzugt möglichst homogen ausgebildet ist. Bevorzugt weist der Hintergrundbereich eine Leuchtdichte auf, die größer oder gleich 10 cd/m2 ist. Das Verhältnis eines lokalen Maximums der Leuchtdichte zu einem lokalen Minimum der Leuchtdichte Lmax/Lmin im Hintergrundbereich ist bevorzugt nicht größer als zwei.
  • Gemäß einer Ausführungsform der Flächenlichtquelle sind weitere Auskoppelstrukturen dazu vorgesehen, die Abstrahlcharakteristik innerhalb des Hintergrundbereichs der Leuchtfläche zu homogenisieren.
  • Gemäß einer Ausführungsform der Flächenlichtquelle ist die strahlungsemittierende Vorderseite des Halbleiterkörpers parallel zu der Leuchtfläche der Flächenlichtquelle angeordnet. Diese Ausführungsform wird auch als „direkte Hinterleuchtung” bezeichnet.
  • Bei einer Flächenlichtquelle mit direkter Hinterleuchtung ist gemäß einer Ausführungsform eine Streuscheibe zwischen der strahlungsemittierenden Vorderseite des Halbleiterkörpers und der Leuchtfläche angeordnet, wobei die Auskoppelstrukturen in die Streuscheibe eingebracht sind. Die Streuscheibe hat die Aufgabe, Licht des Halbleiterkörpers, das auf die Streuscheibe auftrifft, im Hintergrundbereich zu homogenisieren. In den Bereichen, in denen die Auskoppelstrukturen in die Streuscheibe eingebracht sind, wird hingegen verstärkt Licht ausgekoppelt, so dass zumindest ein Leuchtbereich entsteht. Die Auskoppelstrukturen weisen hierbei bevorzugt Größenordnungen im Bereich der Dicke der Streuscheibe auf.
  • Die Auskoppelstrukturen können beispielsweise durch Löcher in der Streuscheibe gebildet sein. Diese sind besonders bevorzugt im Bereich des Halbleiterkörpers angeordnet. Beispielsweise sind die Löcher über der strahlungsemittierenden Vorderseite des Halbleiterkörpers angeordnet, so dass Licht, das von dem Halbleiterkörper emittiert wird, durch die Löcher direkt zum Betrachter hindurch treten kann. Bevorzugt sind die Löcher auf konzentrischen Kreisen um den Halbleiterkörper angeordnet. Weiterhin können die Löcher auch periodisch oder zufällig über die Streuscheibe verteilt sein.
  • Die Löcher in der Streuscheibe können beispielsweise zylindrisch, kegelförmig oder kegelstumpfförmig ausgebildet sein.
  • Weiterhin sind die Löcher besonders bevorzugt derart in der Streuscheibe angeordnet, dass eine Rotationsachse des jeweiligen Lochs die Mittelachse des Halbleiterkörpers schneidet. Besonders bevorzugt sind mehrere Löcher derart in der Streuscheibe angeordnet, dass sich ihre Rotationsachsen in einem der Punkt der Mittelachse schneiden. Bei dieser Ausführungsform sind die Löcher in verschiedenen Winkeln zur Mittelachse des Halbleiterkörpers angeordnet. Hierdurch kann bevorzugt eine starke Änderung der Leuchtdichte in Abhängigkeit des Betrachtungswinkels erzeugt werden.
  • Gemäß einer weiteren Ausführungsform der Flächenlichtquelle mit direkter Hinterleuchtung ist der Halbleiterkörper in einen Lichtleiter eingebettet, wobei die Auskoppelstrukturen auf der zur Leuchtflächen weisenden Seite des Lichtleiters im Bereich der strahlungsemittierenden Vorderseite des Halbleiterkörpers angeordnet sind. In der Regel ist aus fertigungstechnischen Gründen ein Luftspalt zwischen Halbleiterkörper und Lichtleiter vorhanden. Dieser ist in der Regel zwischen 5 μm und 1000 μm breit, bevorzugt zwischen 5 μm und 100 μm breit, wobei jeweils die Grenzen eingeschlossen sind. Weiterhin kann der Spalt zwischen dem Halbleiterkörper und dem Lichtleiter auch mit einem Kleber, einem Silikonmaterial oder einem Epoxidmaterial gefüllt sein.
  • Hierbei können die Auskoppelstrukturen beispielsweise durch eines der folgenden Elemente gebildet sein: Zylindrische Ausnehmungen, pyramidenförmige Ausnehmungen, kegel- oder kegelstumpfförmige Ausnehmungen, zylindrische Löcher, pyramidenförmige Löcher, kegel- oder kegelstumpfförmige Löcher, Aufrauung, abbildende Strukturen, wie beispielsweise Fresnel-Strukturen. Die Auskoppelstrukturen weisen hierbei bevorzugt Größenordnungen im Bereich der Dicke des Lichtleiters auf.
  • Sind bei der Flächenlichtquelle Elemente als Auskoppelstrukturen verwendet, die eine Rotationsachse aufweisen, wie beispielsweise zylindrische, kegelförmige oder kegelstumpfförmige Licht oder Ausnehmungen, die beispielsweise in dem Lichtleiter oder der Streuscheibe angeordnet sind, so ist die Rotationsachse der Elemente bevorzugt schräg, dass heißt in einem Winkel ungleich 90°, zur Leuchtfläche der Flächenlichtquelle angeordnet. Auf diese Art und Weise kann insbesondere bei einer Flächenlichtquelle mit direkter Hinterleuchtung Leuchtbereiche geschaffen werden, deren Leuchtdichte sich stark mit dem Betrachtungswinkel ändert.
  • Gemäß einer weiteren Ausführungsform der Flächenlichtquelle ist der Halbleiterkörper seitlich der Leuchtfläche angeordnet und koppelt in einen Lichtleiter ein. Diese Ausführungsform wird auch als „indirekte Hinterleuchtung” bezeichnet. Bei einer Flächenlichtquelle mit indirekter Hinterleuchtung können die Auskoppelstrukturen beispielsweise durch Streustellen, wie beispielsweise Diffusorpartikel, Leerstellen, luftgefüllte Partikel, Defekte oder Streugeometrien innerhalb des Lichtleiters gebildet sein.
  • Die Auskoppelstrukturen können hierbei beispielsweise durch linienförmige Bereiche hoher Konzentration an Streustellen, wie Diffusorpartikeln oder auch Leerstellen, luftgefüllte Partikel, Defekte oder Streugeometrien, in dem Lichtleiter ausgebildet sein. Diese linienförmigen Bereiche sind besonders bevorzugt leicht versetzt zur Hauptstrahlachse des Halbleiterkörpers angeordnet, um die Homogenität der Abstrahlcharakteristik der Flächenlichtquelle im Hintergrundbereich zu erhöhen.
  • Asymmetrische Konzentrationen an Diffusorpartikeln innerhalb des Lichtleiters können beispielsweise durch Anlegen eines elektromagnetischen Felds an den Lichtleiter bei Verwendung von Partikeln mit einem elektrischen und/oder magnetischen Dipolmoment erzeugt werden. Ein geeignetes Material für solche Diffusorpartikel ist beispielsweise Bariumstrontiumtitanat.
  • Streugeometrien mit definierter Form und Größe innerhalb des Lichtleiters können beispielsweise mittels eines Lasers in dem Lichtleiter erzeugt werden. Solche Streugeometrien können derart ausgebildet sein, dass sie auch im ausgeschalteten Zustand der Flächenlichtquelle für einen Betrachter sichtbar sind und so einen zusätzlichen Designaspekt darstellen.
  • Weiterhin ist es bei einer Flächenlichtquelle mit indirekter Hinterleuchtung auch möglich, dass die Auskoppelstrukturen durch Vertiefungen in einer der Hauptseiten des Lichtleiters gebildet sind. Bevorzugt sind die Vertiefungen in der zur Leuchtfläche weisenden Hauptfläche des Lichtleiters eingebracht.
  • Besonders bevorzugt beträgt die Änderung der Leuchtdichte mit dem Ort einen Wert größer oder gleich 100 cd/m2, besonders bevorzugt größer oder gleich 1000 cd/m2.
  • Besonders bevorzugt beträgt die relative Änderung der Leuchtdichte mit dem Ort von dem Hintergrundbereich in den Leuchtbereich einen Wert größer oder gleich Faktor 2, besonders bevorzugt einen Wert größer oder gleich Faktor 5.
  • Weiterhin ist der Leuchtbereich besonders bevorzugt größer oder gleich 300 μm. Besonders bevorzugt ist der Leuchtbereich größer oder gleich 1 mm.
  • Besonders bevorzugt tritt die Änderung der Leuchtdichte bei der Flächenlichtquelle nicht nur in Abhängigkeit des Orts sondern auch in Abhängigkeit des Betrachtungswinkels auf.
  • Besonders bevorzugt beträgt die Änderung der Leuchtdichte mit dem Winkel einen Wert größer oder gleich 100 cd/m2, besonders bevorzugt größer oder gleich 1000 cd/m2.
  • Besonders bevorzugt beträgt die relative Änderung der Leuchtdichte mit dem Winkel von dem Hintergrundbereich in den Leuchtbereich einen Wert größer oder gleich Faktor 2, besonders bevorzugt größer oder gleich Faktor 5.
  • Besonders bevorzugt findet die Änderung der Leuchtdichte mit dem Betrachtungswinkel über ein Winkel nicht größer als 10° besonders bevorzugt über einen Winkel nicht größer als 5° statt.
  • Die Flächenlichtquelle kann hierbei einen oder mehrere Halbleiterköper aufweisen. Merkmale, die aus Gründen der Einfachheit vorliegend lediglich in Zusammenhang mit einem Halbleiterköper beschrieben werden, können ebenfalls mit einer Vielzahl von Halbleiterkörpern entsprechend kombiniert werden.
  • Weitere vorteilhafte Ausführungsformen und Weiterbildungen der Erfindung ergeben sich aus den im Folgenden in Verbindung mit den Figuren beschriebenen Ausführungsbeispielen.
  • 1A zeigt eine schematische Schnittdarstellung einer Flächenlichtquelle gemäß einem ersten Ausführungsbeispiel.
  • 1C zeigt eine schematische Darstellung der Leuchtdichte L zweier benachbarter Leuchtbereiche der Flächenlichtquelle gemäß der 1A und 1B in Abhängigkeit des Orts x für zwei verschiedene Betrachtungswinkel θ1 und θ2.
  • 1B zeigt eine Draufsicht auf einen Ausschnitt der Leuchtfläche der Flächenlichtquelle gemäß 1A.
  • 2 und 3 zeigen jeweils eine schematische Schnittdarstellung einer Flächenlichtquelle gemäß zweier weiterer Ausführungsbeispiele.
  • 4A zeigt eine schematische Schnittdarstellung einer Flächenlichtquelle gemäß einem vierten Ausführungsbeispiel.
  • 4B zeigt eine schematische perspektivische Darstellung der Auskoppelstrukturen der Flächenlichtquelle gemäß 4A.
  • 5 zeigt eine schematische Draufsicht auf eine Flächenlichtquelle gemäß einem weiteren Ausführungsbeispiel.
  • 6 zeigt eine schematische Schnittdarstellung einer Flächenlichtquellen gemäß einem weiteren Ausführungsbeispiel.
  • 7 zeigt eine schematische Darstellung der Leuchtdichte L in Abhängigkeit des Ortes x auf der Leuchtfläche einer Flächenlichtquelle.
  • In den Ausführungsbeispielen und Figuren sind gleiche oder gleich wirkende Bestandteile jeweils mit den gleichen Bezugszeichen versehen. Die dargestellten Elemente und deren Größeverhältnisse untereinander sind nicht als maßstabsgerecht anzusehen. Vielmehr können einzelne Elemente, insbesondere Schichtdicken, zum besseren Verständnis übertrieben groß dargestellt sein.
  • Die Flächenlichtquelle gemäß dem Ausführungsbeispiel der 1A weist einen Träger 1 auf, auf den zwei Halbleiterkörper 2 aufgebracht sind, die im Betrieb der Flächenlichtquelle elektromagnetische Strahlung, vorzugsweise sichtbares Licht, von ihrer Vorderseite 3 aussenden. Nachfolgend in Abstrahlrichtung auf die Halbleiterkörper 2 ist eine Streuscheibe 4 angeordnet, auf die eine klare Scheibe 5, beispielsweise aus Glas oder einem durchsichtigen Kunststoff, als Staubschutz aufgebracht ist. Vorliegend bildet die Vorderseite der klaren Scheibe 5 die Leuchtfläche 6 der Flächenlichtquelle aus.
  • Bei der Flächenlichtquelle gemäß der 1A sind die strahlungsemittierenden Vorderseiten 3 der beiden Halbleiterkörper 2 parallel zu der Leuchtfläche 6 der Flächenlichtquelle angeordnet. Es handelt sich daher um eine Flächenlichtquelle mit direkter Hinterleuchtung.
  • Die Streuscheibe 4 weist im Bereich der Halbleiterkörper 2 Löcher als Auskoppelstrukturen 7 auf. Wie in 1B zu sehen, sind die Löcher in der Streuscheibe 4 jeweils auf konzentrischen Kreisen um den Halbleiterkörper 2 herum in der Streuscheibe 4 angeordnet.
  • Die Löcher sind vorliegend zylinderförmig ausgebildet und derart in die Streuscheibe 4 eingebracht, dass ihre Rotationsachsen 10 auf Kegelmänteln liegen. Die Spitzen der Kegelmäntel befinden sich wiederum auf einem gemeinsamen Punkt P der Mittelachse M des jeweiligen Halbleiterkörpers 2. Auf diese Art und Weise kann ein Strahlkegel, der von dem Halbleiterkörper emittiert wird, punktuell durch die Löcher in der Streuscheibe 4 hindurch treten und eine lokale Änderung der Leuchtdichte auf der Leuchtfläche 6 erzeugen.
  • Bei diesem Ausführungsbeispiel ist somit jedem zylindrischen Loch in der Streuscheibe 4 ein Leuchtbereich 8 auf der Leuchtfläche 6 zugeordnet. Der übrige Teil der Leuchtfläche 6 bildet den Hintergrundbereich 9 aus, in dem bei dem vorliegenden Ausführungsbeispiel keine Auskoppelstrukturen 7 eingebracht sind.
  • Bei der Flächenlichtquelle gemäß 1A entsteht somit eine Leuchtfläche 6 mit einer Mehrzahl an Leuchtbereichen 8, wobei jedem Leuchtbereich 8 eine Hauptabstrahlrichtung zugeordnet ist, die von der Ausrichtung des Lochs innerhalb der Streuscheibe 4 abhängt. Da die Ausrichtungen der Löcher innerhalb der Streuscheibe 4 verschieden sind, sind auch die Hauptabstrahlrichtungen der Leuchtbereiche 8 voneinander verschieden. Auf diese Art und Weise kann der Glitzereffekt bei der Flächenlichtquelle der 1A besonders stark ausgebildet werden, wie im Folgenden anhand 1C beschrieben.
  • 1C zeigt eine schematische Darstellung der Leuchtdichte L zweier benachbarter Leuchtbereiche der Flächenlichtquelle gemäß der 1A und 1B in Abhängigkeit des Orts x für zwei verschiedene Betrachtungswinkel θ1 (durchgezogene Linie) und θ2. (gestrichelte Linie). Da die Hauptabstrahlrichtungen der Leuchtbereiche aufgrund der unterschiedlichen Anordnung der Löcher innerhalb der Streuscheibe 4 unterschiedlich sind, unterscheidet sich das Maximum der Leuchtdichte der Leuchtbereiche 8 bei ein und demselben Betrachtungswinkel. Bei Änderung des Betrachtungswinkels, etwa von θ1 zu θ2, ändert sich auch das Maximum der Leuchtdichte für die jeweiligen Leuchtbereiche 8.
  • Weiterhin ist es auch möglich, dass die Löcher in der Streuscheibe 4 kegelförmig oder kegelstumpfförmig ausgebildet sind.
  • Die Streuscheibe 4 der Flächenlichtquelle der 1A ist bevorzugt dicker als 0,5 mm, besonders bevorzugt dicker als 1 mm. Weiterhin beträgt eine maximale Dicke der Streuscheibe 4 bevorzugt 20 mm und besonders bevorzugt 10 mm.
  • Der Durchmesser der zylindrischen Löcher liegt im Bereich der Dicke der Streuscheibe 4.
  • Die Flächenlichtquelle gemäß dem Ausführungsbeispiel der 2 weist einen Halbleiterkörper 2 auf, der auf einem Träger 1 aufgebracht ist. Der Halbleiterkörper 2 ist in einen Lichtleiter 11 eingebettet. Die Leuchtfläche 6 der Flächenlichtquelle wird bei diesem Ausführungsbeispiel durch eine Hauptfläche des Lichtleiters 11 gebildet. Bei der Flächenlichtquelle gemäß der 2 ist die strahlungsemittierende Vorderseite 3 des Halbleiterkörpers 2 parallel zur Leuchtfläche 6 angeordnet. Daher handelt es sich auch bei dem Ausführungsbeispiel der 2 um eine Flächenlichtquelle mit direkter Hinterleuchtung.
  • Als Auskoppelstruktur 7 weist der Lichtleiter 11 vorliegend ein kegelstumpfförmiges Loch auf, das mittig über der strahlungsemittierenden Vorderseite 3 des Halbleiterkörpers 2 angeordnet ist. Das kegelstumpfförmige Loch dient dazu, Strahlung des Halbleiterkörpers 2 punktuell aus dem Lichtleiter 11 auszukoppeln und so einen Leuchtbereich 8 innerhalb der Leuchtfläche 6 zu erzeugen, der einen Glitzereffekt bei einem menschlichen Betrachter hervorruft. Insbesondere kann aufgrund der kegelstumpfförmigen Ausbildung des Lochs eine starke Änderung der Leuchtdichte in Abhängigkeit des Betrachtungswinkels erzielt werden.
  • Weiterhin ist zwischen dem Halbleiterkörper 2 und dem Lichtleiter 11 ein luftgefüllter Spalt vorhanden, der auch mit einem durchsichtigen Füllmaterial, wie beispielsweise Epoxidharz oder Silikonharz, gefüllt sein kann.
  • Der Lichtleiter 11 weist bevorzugt eine Dicke zwischen 1 mm und 10 mm auf, wobei die Grenzen eingeschlossen sind. Die Abmessungen der Auskoppelstrukturen 7, beispielsweise der Durchmesser des oben beschriebenen kegelstumpfförmigen Lochs, liegt bevorzugt im Bereich der Dicke des Lichtleiters 11, also auch zwischen 1 mm und 10 mm, wobei die Grenzen eingeschlossen sind.
  • Auch die Flächenlichtquelle gemäß dem Ausführungsbeispiel der 3 umfasst wie die Flächenlichtquelle der 2 einen Halbleiterkörper 2, der auf einem Träger 1 aufgebracht ist, wobei der Halbleiterkörper 2 in einen Lichtleiter 11 eingebettet ist. Es handelt sich wie bei der Flächenlichtquelle der 2 um eine Flächenlichtquelle mit direkter Hinterleuchtung.
  • Über der strahlungsemittierenden Vorderseite 3 des Halbleiterkörpers 2 sind auf der zur Leuchtfläche 6 weisenden Hauptfläche des Lichtleiters 11 Auskoppelstrukturen 7 eingebracht, die einen Leuchtbereich 8 in der Leuchtfläche 6 erzeugen. Die Auskoppelstrukturen 7 sind durch kegelförmige Vertiefungen in dem Lichtleiter 11 gebildet, deren Dimensionen im Bereich der Dicke des Lichtleiters 11 liegen. Seitlich des Halbleiterkörpers 2 im Hintergrundbereich 9 der Leuchtfläche 6 sind weitere Auskoppelstrukturen 12 in der zur Leuchtfläche 6 weisenden Hauptfläche des Lichtleiters 11 angeordnet, die dazu vorgesehen sind, die Abstrahlcharakteristik der Leuchtfläche 6 im Hintergrundbereich 9 möglichst homogen auszugestalten. Diese weiteren im Hintergrundbereich 9 der Leuchtfläche 6 angeordneten Auskoppelstrukturen 12 sind beispielsweise durch Ausnehmungen oder eine Aufrauung gebildet. Sie weisen im Unterschied zu den Auskoppelstrukturen 7, die dazu vorgesehen sind Leuchtbereich hervorzurufen, Dimensionen auf, die bevorzugt zwischen 10 μm und 100 μm liegen, wobei die Grenzen eingeschlossen sind.
  • Die Flächenlichtquelle gemäß 4A unterscheidet sich von der Flächenlichtquelle gemäß der 2 hinsichtlich der Auskoppelstrukturen 7 in der zur Leuchtfläche 6 weisenden Seite des Lichtleiters 11. Die Auskoppelstrukturen 7 sind wie bei der Flächenlichtquelle gemäß 2 über der strahlungsemittierenden Vorderseite 3 des Halbleiterkörpers 2 angeordnet und dazu vorgesehen einen Leuchtbereich 8 in der Leuchtfläche 6 zu erzeugen. Die Auskoppelstrukturen 7 sind durch zylinderförmige Vertiefungen in der Hauptfläche des Lichtleiters 11 gebildet, deren Tiefe von der Mitte des Halbleiterkörpers 2 zu den Seiten jeweils symmetrisch abfällt.
  • Wie die Pfeile in 4A andeuten, können die Auskoppelstrukturen punktuell Licht des Halbleiterkörpers 2 aus dem Lichtleiter 11 auskoppeln und gleichzeitig Strahlung, die seitlich oder in einem flachen Winkel von der Vorderseite 3 des Halbleiterkörpers 2 emittiert wird, totalreflektierend in den Lichtleiter 11 hineinführen. Hierdurch wird punktuell in dem Bereich der Auskoppelstrukturen 7 eine starke Auskopplung aus dem Lichtleiter 11 erzeugt und so ein Leuchtbereich 8 mit Glitzereffekt in der Leuchtfläche 6 erzielt, während die Leuchtdichte des Hintergrundbereichs 9 der Leuchtfläche 6 homogenisiert wird.
  • 4B zeigt die Auskoppelstrukturen 7 in dem Lichtleiter 11 gemäß 4A in einer schematischen perspektivischen Weise. Hier ist zu sehen, dass die Vertiefungen in dem Lichtleiter 11 in durchgehenden konzentrischen Kreisen um den Halbleiterkörper 2 in die Hauptfläche des Lichtleiters 11 eingebracht sind.
  • Die Flächenlichtquelle gemäß dem Ausführungsbeispiel der 5 weist einen Lichtleiter 11 auf, wobei an jeder Seite des Lichtleiters 11 mehrere Halbleiterkörper 2 angeordnet sind, die in den Lichtleiter 11 einkoppeln. Die Halbleiterkörper 2 sind somit vorliegend seitlich der Leuchtfläche 6 angeordnet, die bei der Flächenlichtquelle der 5 durch eine Hauptfläche des Lichtleiters 11 gebildet ist. Bei der Flächenlichtquelle der 5 handelt es sich somit um eine Flächenlichtquelle mit indirekter Hinterleuchtung.
  • Der Lichtleiter 11 der Flächenlichtquelle gemäß 5 weist Streustellen als Auskoppelstrukturen 7 auf, die vorliegend durch Diffusorpartikel gebildet sind. Die Diffusorpartikel sind in den Lichtleiter 11 derart eingebracht, dass linienförmige Bereiche 13 mit einer hohen Konzentration an Diffusorpartikel entstehen. Die Diffusorpartikel erhöhen die Lichtauskopplung aus dem Lichtleiter 11 und erzeugen so linienförmige Leuchtbereiche 8 in der Leuchtfläche 6, wobei die linienförmigen Leuchtbereiche 8 in der Regel eine größere Breite als die linienförmigen Bereiche 13 mit Diffusorpartikeln aufweisen. Liegt die Breite der linienförmigen Bereiche 13 mit Diffusorpartikeln im Bereich einiger 100 μm, so liegt die Breite der linienförmigen Leuchtbereiche 8 im Bereich einiger mm. Der Abstand der linienförmigen Bereiche 13 mit Diffusorpartikeln liegt bevorzugt im Bereich der Dicke der Lichtleiters 11, das heißt, zwischen 1 mm und 10 mm.
  • Die linienförmigen Bereiche 13 mit Diffusorpartikeln sind jeweils leicht versetzt zu den Hauptabstrahlachsen der Halbleiterkörper 2 angeordnet. Auf diese Art und Weise kann die Homogenität der Flächenlichtquelle im Hintergrundbereich 9 der Leuchtfläche 6 vorteilhafterweise erhöht werden. Eine ungleichmäßige Diffusorpartikelkonzentration, etwa in linienförmige Bereiche 13, kann beispielsweise mittels Diffusorpartikeln erzeugt werden, die ein Dipolmoment aufweisen. Bei Verwendung solcher Diffusorpartikel wird bei der Herstellung des Lichtleiters 11 ein elektromagnetisches Feld angelegt, sodass sich die Diffusorpartikel innerhalb des Lichtleiters 11 auf eine gewünschte Art und Weise anordnen.
  • Anstelle von Diffusorpartikeln zur Bildung der Auskoppelstrukturen 7 können auch thermisch oder optisch erzeugte Leerstellen bzw. Defekte oder luftgefüllte Partikel in dem Lichtleiter 11 eingesetzt werden. Weiterhin können zur Bildung der Auskoppelstrukturen 7 auch kleine Eindrücke in einer der Hauptflächen des Lichtleiters 11 verwendet werden, wobei die Eindrücke beispielsweise prismenförmig ausgebildet sind.
  • Die Flächenlichtquelle gemäß 6 weist ebenfalls eine indirekte Hinterleuchtung auf. In den Lichtleiter 11 der Flächenlichtquelle der 6 sind als Auskoppelstrukturen 7 Streugeometrien eingebracht, von denen eine würfelförmig, eine oktoederförmig und eine pyramidenförmig ausgebildet ist. Diese Streugeometrien können mit definierter Form und Größe beispielsweise mit Hilfe von Laserstrukturierung in einen Lichtleiter 11 aus PMMA oder Glas eingearbeitet werden. Solche Streugeometrien sind bevorzugt kleiner oder gleich 1 mm, besonders bevorzugt kleiner oder gleich 100 μm.
  • Alternativ ist es auch möglich, dass die Streugeometrien durch separate Partikel in dem Lichtleiter 11 gebildet sind, wobei die Partikel bevorzugt eine der oben beschriebenen Geometrien aufweisen. Diese Partikel sind bevorzugt kleiner oder gleich 30 μm.
  • Die Streugeometrien sind dazu geeignet, als Auskoppelstrukturen 7 zu dienen und punktuell Licht aus dem Lichtleiter 11 derart auszukoppeln, das im Betrieb der Flächenlichtquelle ein Leuchtbereich 8 entsteht, wobei der Leuchtbereich 8 eine Leuchtdichte aufweist, die gegenüber einem Hintergrundbereich 9 erhöht ist. Diese Streugeometrien können derart ausgebildet sein, dass sie auch im ausgeschalteten Zustand sichtbar sind und so einen positiven Designaspekt darstellen.
  • 7 zeigt schematisch die Leuchtdichte 1 in Abhängigkeit des Orts x auf der Leuchtfläche 6 einer Flächenlichtquelle, wie sie beispielsweise in 1 dargestellt ist. Eine solche Leuchtdichte L ist dazu geeignet einen Glitzereffekt für das menschliche Auge hervorzurufen. In den Bereichen der Halbleiterkörper 2 weist die Leuchtdichte L jeweils ein lokales Maximum auf, das lokal eng begrenzt ist. Die Breite der lokalen Maximas beträgt bevorzugt ca. 300 μm. Diese lokalen Maxima stellen die Leuchtbereiche 8 der Leuchtfläche 6 dar. Außerhalb der Leuchtbereiche 6, also im Hintergrundbereich 9 ist die Leuchtdichte bevorzugt möglichst homogen ausgebildet. Die Leuchtdichte L beträgt im Hintergrundbereich 9 bevorzugt einen Wert von mindestens 10 cd/m2. Die lokale Änderung der Leuchtdichte ΔL beträgt bevorzugt mindestens 100 cd/m2, besonders bevorzugt mindestens 1000 cd/m2.
  • Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele auf diese beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist.

Claims (15)

  1. Flächenlichtquelle mit einer Leuchtfläche (6), umfassend: – mindestens einen Halbleiterkörper (2), der im Betrieb elektromagnetische Strahlung von seiner Vorderseite (3) emittiert, und – Auskoppelstrukturen (7), die dazu geeignet sind, eine lokale Änderung der Leuchtdichte auf der Leuchtfläche 6 zu erzeugen, so dass die Leuchtdichte 6 in zumindest einem Leuchtbereich (8) gegenüber einem Hintergrundbereich (9) erhöht ist.
  2. Flächenlichtquelle nach Anspruch 1, bei der die strahlungsemittierende Vorderseite (3) des Halbleiterkörpers (2) parallel zu der Leuchtfläche (6) der Flächenlichtquelle angeordnet ist.
  3. Flächenlichtquelle nach dem vorherigen Anspruch, bei der die Auskoppelstrukturen (7) in eine Streuscheibe (4) eingebracht sind, die zwischen der strahlungsemittierenden Vorderseite (3) des Halbleiterkörpers (2) und der Leuchtfläche (6) angeordnet ist.
  4. Flächenlichtquelle nach dem vorherigen Anspruch, bei der die Auskoppelstrukturen (7) durch Löcher in der Streuscheibe (4) gebildet sind, die im Bereich des Halbleiterkörpers (2) angeordnet sind.
  5. Flächenlichtquelle nach Anspruch 2, bei der der Halbleiterkörper (2) in einen Lichtleiter (11) eingebettet ist und die Auskoppelstrukturen (7) auf der zur Leuchtfläche (6) weisenden Seite des Lichtleiters (11) im Bereich der strahlungsemittierenden Vorderseite (3) des Halbleiterkörpers (2) angeordnet sind.
  6. Flächenlichtquelle nach dem vorherigen Anspruch, bei der die Auskoppelstrukturen (7) durch eines der folgenden Elemente gebildet sind: Zylindrische Ausnehmungen, pyramidenförmige Ausnehmungen, kegel- oder kegelstumpfförmige Ausnehmungen, zylindrische Löcher, pyramidenförmige Löcher, kegel- oder kegelstumpfförmige Löcher, Aufrauung, abbildende Strukturen, wie beispielsweise Fresnel-Strukturen.
  7. Flächenlichtquelle nach einem der obigen Ansprüche, bei der die Elemente, die die Auskoppelstrukturen (7) bilden, eine Rotationsachse aufweisen, die schräg zur Leuchtfläche (6) verläuft.
  8. Flächenlichtquelle nach Anspruch 1, bei dem der Halbleiterkörper (2) seitlich der Leuchtfläche (6) angeordnet ist und in einen Lichtleiter (11) einkoppelt.
  9. Flächenlichtquelle nach dem vorherigen Anspruch, bei dem die Auskoppelstrukturen (7) durch Streustellen innerhalb des Lichtleiters (11) gebildet sind.
  10. Flächenlichtquelle nach dem vorherigen Anspruch, bei dem die Bereiche hoher Konzentration an Streustellen linienförmig ausgebildet sind.
  11. Flächenlichtquelle nach Anspruch 8, bei dem die Auskoppelstrukturen (7) durch Vertiefungen in einer der Hauptseiten des Lichtleiters (11) gebildet sind.
  12. Flächenlichtquelle nach einem der obigen Ansprüche, bei der die lokale Änderung der Leuchtdichte größer oder gleich 1000 cd/m2 ist.
  13. Flächenlichtquelle nach einem der obigen Ansprüche, bei der der Leuchtbereich (8) größer oder gleich 300 μm ist.
  14. Flächenlichtquelle nach einem der obigen Ansprüche, bei der die Änderung der Leuchtdichte auch in Abhängigkeit des Betrachtungswinkels auftritt.
  15. Flächenlichtquelle nach einem der obigen Ansprüchen, bei der der Hintergrundbereich eine möglichst homogene Leuchtdichte aufweist.
DE102010018030A 2010-04-23 2010-04-23 Flächenlichtquelle Withdrawn DE102010018030A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102010018030A DE102010018030A1 (de) 2010-04-23 2010-04-23 Flächenlichtquelle
CN201180020516.7A CN102859273B (zh) 2010-04-23 2011-04-04 面光源
US13/639,859 US9176268B2 (en) 2010-04-23 2011-04-04 Surface light source
KR1020127030727A KR20130083839A (ko) 2010-04-23 2011-04-04 표면 광원
PCT/EP2011/055203 WO2011131476A1 (de) 2010-04-23 2011-04-04 Flächenlichtquelle
EP11713245.6A EP2561270B1 (de) 2010-04-23 2011-04-04 Flächenlichtquelle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010018030A DE102010018030A1 (de) 2010-04-23 2010-04-23 Flächenlichtquelle

Publications (1)

Publication Number Publication Date
DE102010018030A1 true DE102010018030A1 (de) 2011-10-27

Family

ID=44146335

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010018030A Withdrawn DE102010018030A1 (de) 2010-04-23 2010-04-23 Flächenlichtquelle

Country Status (6)

Country Link
US (1) US9176268B2 (de)
EP (1) EP2561270B1 (de)
KR (1) KR20130083839A (de)
CN (1) CN102859273B (de)
DE (1) DE102010018030A1 (de)
WO (1) WO2011131476A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012205188A1 (de) * 2012-03-30 2013-10-02 Tridonic Gmbh & Co. Kg LED-Leuchte
DE102013207716A1 (de) * 2013-04-26 2014-10-30 Zumtobel Lighting Gmbh LED-Leuchte mit einer Lichtleiter-Anordnung
DE102014115825A1 (de) * 2014-10-30 2016-05-04 Itz Innovations- Und Technologiezentrum Gmbh Leuchtenbaugruppe mit optischem Element
DE102019118005A1 (de) * 2019-07-03 2021-01-07 Automotive Lighting Reutlingen Gmbh Kraftfahrzeugbeleuchtungseinrichtung mit einer Lichtleiterplatte

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9880345B2 (en) * 2011-07-26 2018-01-30 Lg Innotek Co., Ltd. Lighting module
RU2673878C2 (ru) * 2013-07-04 2018-12-03 Филипс Лайтинг Холдинг Б.В. Осветительное устройство с оптическим элементом, имеющим канал текучей среды
JP6430104B2 (ja) * 2013-07-09 2018-11-28 オリンパス株式会社 照明装置
ITFI20130290A1 (it) * 2013-11-29 2015-05-30 Iguzzini Illuminazione Dispositivo per la sagomatura di fasci luminosi emessi da apparecchi di illuminazione.
US9470834B2 (en) * 2014-12-01 2016-10-18 Shenzhen China Star Optoelectronics Technology Co., Ltd Light guide plate and manufacturing method thereof
CN108884983B (zh) * 2016-03-11 2021-06-08 昕诺飞控股有限公司 具有闪烁效果的照明装置
ES2945231T3 (es) * 2019-05-07 2023-06-29 Signify Holding Bv Una guía de luz y un dispositivo de iluminación que comprende una guía de luz
EP3832201A1 (de) * 2019-12-04 2021-06-09 VitreaLab GmbH Optische vorrichtung zur steuerung von licht aus einer externen lichtquelle
EP3835587B1 (de) * 2019-12-10 2022-02-09 Wilo Se Steuerungselektronik für eine kreiselpumpe mit wenigstens einem optischen anzeigeelement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8606421U1 (de) * 1986-03-08 1986-05-22 Koch, Bodo, 5000 Koeln Licht-Display
DE19925784A1 (de) * 1999-06-05 2000-12-14 Berthold Westhoff Effektleuchte
DE69735732T2 (de) * 1996-09-24 2006-09-21 Seiko Epson Corp. Beleuchtungsvorrichtung und diese verwendende Anzeigevorrichtung
DE202008015080U1 (de) * 2008-11-13 2009-01-15 Ozols, Eric Lichtobjekt

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130531A (en) * 1989-06-09 1992-07-14 Omron Corporation Reflective photosensor and semiconductor light emitting apparatus each using micro Fresnel lens
JPH08241051A (ja) * 1995-03-02 1996-09-17 Nakaya:Kk 両面発光型面状光源
US6667576B1 (en) 1999-06-05 2003-12-23 Berthold Westhoff Optical-effect light
US6987613B2 (en) * 2001-03-30 2006-01-17 Lumileds Lighting U.S., Llc Forming an optical element on the surface of a light emitting device for improved light extraction
US6880948B2 (en) * 2002-12-16 2005-04-19 Zeolux Corporation Illuminant and method
ITBS20030037U1 (it) * 2003-04-07 2004-10-08 Flos Spa Diffusore luminoso con parti ad emissione di luce differenziata per ap parecchi di illuminazione
JP4497348B2 (ja) * 2004-01-13 2010-07-07 株式会社小糸製作所 車両用灯具
US7997771B2 (en) * 2004-06-01 2011-08-16 3M Innovative Properties Company LED array systems
US7161188B2 (en) * 2004-06-28 2007-01-09 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element, semiconductor light emitting device, and method for fabricating semiconductor light emitting element
CN2763846Y (zh) * 2004-12-30 2006-03-08 群康科技(深圳)有限公司 导光板
US8022827B2 (en) * 2005-10-13 2011-09-20 Bae Systems Information And Electronic Systems Integration Inc. Omnidirectional RFID antenna
JP4280283B2 (ja) 2006-01-27 2009-06-17 株式会社オプトデザイン 面照明光源装置及びこれを用いた面照明装置
US7909496B2 (en) * 2006-02-01 2011-03-22 Koninklijke Philips Electronics N.V. Lighting system for creating an illuminated surface
US7795600B2 (en) * 2006-03-24 2010-09-14 Goldeneye, Inc. Wavelength conversion chip for use with light emitting diodes and method for making same
DE102010018031A1 (de) 2010-04-23 2011-10-27 Osram Opto Semiconductors Gmbh Flächenlichtleiter und Verfahren zur Herstellung eines Flächenlichtleiters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8606421U1 (de) * 1986-03-08 1986-05-22 Koch, Bodo, 5000 Koeln Licht-Display
DE69735732T2 (de) * 1996-09-24 2006-09-21 Seiko Epson Corp. Beleuchtungsvorrichtung und diese verwendende Anzeigevorrichtung
DE19925784A1 (de) * 1999-06-05 2000-12-14 Berthold Westhoff Effektleuchte
DE202008015080U1 (de) * 2008-11-13 2009-01-15 Ozols, Eric Lichtobjekt

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012205188A1 (de) * 2012-03-30 2013-10-02 Tridonic Gmbh & Co. Kg LED-Leuchte
DE102013207716A1 (de) * 2013-04-26 2014-10-30 Zumtobel Lighting Gmbh LED-Leuchte mit einer Lichtleiter-Anordnung
DE102014115825A1 (de) * 2014-10-30 2016-05-04 Itz Innovations- Und Technologiezentrum Gmbh Leuchtenbaugruppe mit optischem Element
DE102019118005A1 (de) * 2019-07-03 2021-01-07 Automotive Lighting Reutlingen Gmbh Kraftfahrzeugbeleuchtungseinrichtung mit einer Lichtleiterplatte

Also Published As

Publication number Publication date
CN102859273B (zh) 2016-02-10
WO2011131476A1 (de) 2011-10-27
US9176268B2 (en) 2015-11-03
CN102859273A (zh) 2013-01-02
KR20130083839A (ko) 2013-07-23
EP2561270B1 (de) 2018-02-14
EP2561270A1 (de) 2013-02-27
US20130100696A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
EP2561270B1 (de) Flächenlichtquelle
DE602005004564T2 (de) Flaches flächenbeleuchtungssystem
DE102010007751A1 (de) Optoelektronisches Halbleiterbauelement, Beleuchtungseinrichtung und Linse
DE102010018033A1 (de) Flächenlichtleiter und Flächenstrahler
DE102015122343A1 (de) Led-lichtquelle, hintergrundbeleuchtungsmodul und flüssigkristallanzeigevorrichtung
DE102010028246A1 (de) Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
DE102010039859A1 (de) Leseleuchte für Kraftfahrzeuge
DE102004046256A1 (de) Oberflächenleuchtsystem
WO2021023743A1 (de) Leuchtfolie mit mikrooptischer struktur
DE102016109647B4 (de) Linse und Leuchte mit einer solchen Linse
DE102007006348A1 (de) Strahlungsemittierendes Bauelement
DE112017000574B4 (de) Leuchtvorrichtung
DE102014213549A1 (de) Hinterleuchtungseinrichtung
EP3097346B1 (de) Leuchtmittel mit vorgebbarer abstrahlcharakteristik und herstellungsverfahren für einen optikkörper
EP3523572B1 (de) Lichtumlenkvorrichtung, verfahren zur herstellung einer lichtumlenkvorrichtung und beleuchtungsvorrichtung
DE102013222702A1 (de) Optoelektronisches Bauelement, optoelektronische Anordnung, Verfahren zum Herstellen eines optischen Elements und Verfahren zum Herstellen eines optoelektronischen Bauelements
DE102015225602B4 (de) Verbesserter Flachlampenaufbau
WO2014095713A2 (de) Oled/qled-leuchtmodul
EP2760009B1 (de) Hinweistafel, insbesondere für eine Notbeleuchtungsanlage
DE102012104148A1 (de) Optoelektronisches Halbleiterbauelement mit einem optischen Diffusorelement und Verfahren zum Herstellen eines derartigen Halbleiterbauelements
EP2924343A1 (de) Led-leuchte mit refraktiver optik zur lichtdurchmischung
DE102018218441A1 (de) Flächenleuchtelement und Innenausstattungselement für ein Kraftfahrzeug mit einem Flächenleuchtelement
DE102014010372A1 (de) Vorrichtung zur Lichtemission und Fahrzeugleuchte
DE102018215988A1 (de) Lichtmodul, insbesondere zur Verwendung in einer Beleuchtungsvorrichtung für ein Kraftfahrzeug
EP2578930B1 (de) Lichtmodul für eine Außenleuchte

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee