DE10200953A1 - Device for monitoring toxic carbon dioxide concentration in a vehicle air-conditioning unit comprises a gas sensor with a detecting element, and an evaluating electronic unit - Google Patents

Device for monitoring toxic carbon dioxide concentration in a vehicle air-conditioning unit comprises a gas sensor with a detecting element, and an evaluating electronic unit

Info

Publication number
DE10200953A1
DE10200953A1 DE10200953A DE10200953A DE10200953A1 DE 10200953 A1 DE10200953 A1 DE 10200953A1 DE 10200953 A DE10200953 A DE 10200953A DE 10200953 A DE10200953 A DE 10200953A DE 10200953 A1 DE10200953 A1 DE 10200953A1
Authority
DE
Germany
Prior art keywords
carbon dioxide
gas sensor
dioxide concentration
infrared gas
detecting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE10200953A
Other languages
German (de)
Other versions
DE10200953B4 (en
Inventor
Gerhard Wiegleb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE10200953A priority Critical patent/DE10200953B4/en
Publication of DE10200953A1 publication Critical patent/DE10200953A1/en
Application granted granted Critical
Publication of DE10200953B4 publication Critical patent/DE10200953B4/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/008Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being air quality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H3/00Other air-treating devices
    • B60H3/0085Smell or pollution preventing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/004CO or CO2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Atmospheric Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

The device (4) for monitoring toxic carbon dioxide concentrations in a vehicle (12) comprises a gas sensor (3) with a detecting element, and an evaluating electronic unit (11). Preferred Features: A fresh air supply (7) is automatically activated by an actuator (8) when the carbon dioxide concentration exceeds a prescribed value on the gas sensor. The maximum power of the fan (13) is automatically activated when the carbon dioxide concentration exceeds a prescribed value on the sensor. The limiting value is 1-3 vol.% carbon dioxide.

Description

Kohlendioxid eignet sich sehr gut als Ersatz für Fluor-Chlor-Kohlenwasserstoffe (FCKW) in Klimaanlagen (1). Insbesondere in der Fahrzeugtechnik hat das Kohlendioxid aufgrund seiner thermodynamischen Eigenschaften zusätzliche technische Vorteile. Ein Nachteil ergibt sich allerdings bei Schadensereignissen (Unfall, Korrosion, . .), die zu einer Leckage in der Klimaanlage (1) führen können. Tritt das Kohlendioxid dann in den Fahrgastinnenraum (2) ein, so kann es bei einer Konzentration von > ca. 1 Vol.-% CO2 zu ersten Anzeichen einer Beeinflussung (z. B. Müdigkeit, Kopfschmerzen, Übelkeit, . . .) durch das Kohlendioxid kommen. Konzentrationen bis zu 0,5 Vol.-% Kohlendioxid kann ein gesunder Mensch bis zu 8 Stunden ohne größere Probleme ertragen. Aus diesem Grund wurde dieser Wert auch als maximale Arbeitsplatzkonzentration (MAK) definiert. Steigt die Kohlendioxidkonzentration an (1 Vol.-% bis 5 Vol.-%), so kann es zu weiteren Ausfällen (z. B. Ohnmacht) oder gar zum Tod führen. Carbon dioxide is very suitable as a replacement for chlorofluorocarbons (CFCs) in air conditioning systems ( 1 ). In vehicle technology in particular, carbon dioxide has additional technical advantages due to its thermodynamic properties. A disadvantage arises, however, in the event of damage (accident, corrosion,...), Which can lead to a leak in the air conditioning system ( 1 ). If the carbon dioxide then enters the passenger compartment ( 2 ), at a concentration of> approx. 1 vol.% CO 2 it can be the first sign of an influence (e.g. fatigue, headache, nausea,...) the carbon dioxide coming. Concentrations of up to 0.5% by volume of carbon dioxide can be tolerated by a healthy person for up to 8 hours without major problems. For this reason, this value was also defined as the maximum workplace concentration (MAK). If the carbon dioxide concentration increases (1% by volume to 5% by volume), it can lead to further failures (e.g. fainting) or even death.

Wesentlicher Bestandteil einer kontinuierlichen, arbeitende Vorrichtung (14), die vor diesen gefährlichen Kohlendioxidkonzentrationen warnt, ist ein Gassensor (3, 4, 5), der diese Kohlendioxidkonzentration zuverlässig erfasst. A gas sensor ( 3 , 4 , 5 ), which reliably detects this carbon dioxide concentration, is an essential component of a continuous, working device ( 14 ) which warns of these dangerous carbon dioxide concentrations.

Gassensoren auf der Basis von Flüssigelektrolyten scheiden für eine Anwendung in der Fahrzeugtechnik aufgrund der Temperatureinsatzbereiche von -40°C bis 80°C aus. Nachteilig ist bei diesen Sensoren auch die Ansprechgeschwindigkeit, die im Minutenbereich liegt und somit keine reaktionsschnelle Aktionen auslösen kann. Festelektrolytsensoren sind nicht für den Konzentrationsbereich von 0 Vol.-% bis 5 Vol.-% CO2 geeignet und haben außerdem eine hohe Leistungsaufnahme und ein unerwünschtes Einlaufverhalten (Anwärmzeit, Alterung, . . .). Gas sensors based on liquid electrolytes are ruled out for use in vehicle technology due to the temperature range from -40 ° C to 80 ° C. A disadvantage of these sensors is also the response speed, which is in the range of minutes and therefore cannot trigger quick reactions. Solid electrolyte sensors are not suitable for the concentration range from 0 vol.% To 5 vol.% CO 2 and also have a high power consumption and an undesirable running-in behavior (warming-up time, aging,...).

Wärmeleitfähigkeitssensoren sind prinzipiell geeignet, haben jedoch grosse Querempfindlichkeiten zu Wasserdampf, die eine zuverlässige Kohlendioxiderfassung ausschließen. Thermal conductivity sensors are suitable in principle, but they have large ones Cross-sensitivities to water vapor, which ensures reliable carbon dioxide detection exclude.

Die Aufgabe der vorliegenden Erfindung ist daher eine Vorrichtung (14) zu schaffen, die vor einer solchen gefährlichen (toxischen) Kohlendioxidkonzentration zuverlässig und eindeutig warnt und die Gefahr für die Fahrgäste durch eine schnell aktivierte Frischluftzufuhr (7) beseitigt. The object of the present invention is therefore to create a device ( 14 ) which warns of such a dangerous (toxic) carbon dioxide concentration reliably and unambiguously and eliminates the danger for the passengers by means of a quickly activated fresh air supply ( 7 ).

Die Lösung der erfindungsgemässen Aufgabe ergibt sich aus den kennzeichnenden Merkmalen des Anspruches 1 in zusammenwirken mit den Merkmalen des Oberbegriffes. Weitere vorteilhafte Ausführungen der Erfindung ergeben sich aus den Unteransprüchen. The achievement of the object according to the invention results from the characterizing ones Features of claim 1 in cooperation with the features of Preamble. Further advantageous embodiments of the invention result from the subclaims.

In Fig. 1 ist der gesamte Aufbau der Vorrichtung (14) in Verbindung mit der Klimaanlage (1) im Fahrzeug (12) dargestellt In Fig. 1, the entire structure of the device (14) is shown in connection with the air conditioner (1) in the vehicle (12)

Ein wesentlicher Vorteil nach Anspruch 1 besteht darin, das Infrarotgassensoren (3, 4, 15) eingesetzt werden, die extrem schnell auf Konzentrationsänderungen reagieren. Die Ansprechzeit wird dabei im wesentlichen durch die Ausspülzeit der Messküvette bestimmt. Miniaturisierte Infrarotgassensoren (siehe Umweltdiagnostik mit Mikrosystemen, Wiley-VCH Weinheim 1999, Kap. 3.6: v. G. Wiegleb, Miniaturisierte Infrarot- und Wärmeleitfähigkeitssensoren) haben eine sehr kleine Messküvette von wenigen 100 µL, so das dieser Sensortyp besonders geeignet ist. Erfolgt der Gasaustausch lediglich durch Diffusion, so ergeben sich Ansprechzeiten im Bereich von 10 Sekunden bis zu einer Minute. Installiert man den Sensor jedoch in einem Luftstrom (9, 10), so wird die Ansprechzeit deutlich reduziert. Durch eine Anordnung des Infrarotgassensors (3) in den Strömungsbereich der Zuluft (9) beträgt der Gasaustausch dann nur wenige Sekunden, so dass sehr schnell auf zu hohe und damit toxische Kohlendioxidkonzentrationen reagiert werden kann. Dies ist auch der Fall, wenn der Aktor (8) in der Klimaanlage (1) auf Umluft (10) geschaltet hat. Insbesondere in dieser Situation, in Verbindung mit einer Leckage, steigt die Kohlendioxidkonzentration dann sehr schnell an. Da der Einbauort in beiden Fällen identisch sein kann wenn der Einbauort in der Zuluft (9) angeordnet ist, wird auch dieser Fall schnell und zuverlässig detektiert. Für eine erhöhte Sicherheit oder zur Redundanz können auch 2 Infrarotgassensoren (3, 4) im Strömungsbereich der Zuluft (9) und der Umluft (10) installiert werden. Ein dritter Infrarotgassensor (5) könnte dann auch zusätzlich im hinteren Teil des Fahrgastinnenraumes angeordnet werden um alle relevanten Bereich zu erfassen. Da die Infrarotgassensoren (3, 4, 5) mit einer entsprechenden Auswerteelektronik (11) verbunden sind, kann bei Überschreitung eines vorgegebenen Grenzwertes (z. B. 1,5 Vol.-% Kohlendioxid) sofort durch ein Steuersignal (6) der Aktor (8) auf Frischluftzufuhr (7) bei maximaler Leistung des Lüfters (13) umgeschaltet werden. Diese schnelle Reaktion gewährleistet dann eine in jedem Fall sicher Situation für die Fahrgäste. A major advantage according to claim 1 is that infrared gas sensors ( 3 , 4 , 15 ) are used which react extremely quickly to changes in concentration. The response time is essentially determined by the rinsing time of the measuring cell. Miniaturized infrared gas sensors (see environmental diagnostics with microsystems, Wiley-VCH Weinheim 1999, chapter 3.6: v. G. Wiegleb, miniaturized infrared and thermal conductivity sensors) have a very small measuring cell of a few 100 µL, making this type of sensor particularly suitable. If the gas exchange takes place only by diffusion, response times in the range from 10 seconds to one minute result. However, if the sensor is installed in an air stream ( 9 , 10 ), the response time is significantly reduced. By arranging the infrared gas sensor ( 3 ) in the flow area of the supply air ( 9 ), the gas exchange is then only a few seconds, so that it is possible to react very quickly to excessively high and therefore toxic carbon dioxide concentrations. This is also the case if the actuator ( 8 ) in the air conditioning system ( 1 ) has switched to circulating air ( 10 ). Especially in this situation, in connection with a leak, the carbon dioxide concentration then increases very quickly. Since the installation location can be identical in both cases if the installation location is arranged in the supply air ( 9 ), this case is also detected quickly and reliably. For increased security or for redundancy, 2 infrared gas sensors ( 3 , 4 ) can also be installed in the flow area of the supply air ( 9 ) and the recirculating air ( 10 ). A third infrared gas sensor ( 5 ) could then also be arranged in the rear part of the passenger compartment in order to detect all relevant areas. Since the infrared gas sensors (3, 4, 5) are connected to a respective transmitter (11) when exceeding a predetermined limit value can (for. Example, 1.5 vol .-% carbon dioxide) at once by a control signal (6) of the actuator ( 8 ) can be switched to fresh air supply ( 7 ) at maximum fan power ( 13 ). This quick reaction then ensures a safe situation for the passengers in any case.

Weitere Vorteile der Infrarotgassensorik liegen auch in der schnellen Betriebsbereitschaft, die nach wenigen Sekunden nach dem Einschalten (Motorstart) erreicht ist und der extrem guten Langzeitstabilität über mehrere Jahre im Dauerbetrieb. Other advantages of infrared gas sensors are the fast Ready for operation, which is reached a few seconds after switching on (engine start) and the extremely good long-term stability over several years in continuous operation.

Die Kennlinie von Infrarotgassensoren ist außerdem monoton fallend, das heißt bei einer stetig ansteigenden Kohlendioxidkonzentration entsteht nach dem Lambert Beerschen Gesetz eine exponentielle Kennlinie.

I(c) = I0e- α cL
I(c) = Intensität bei einer Gaskonzentration c
I0 = Intensität bei c = 0
c = Gaskonzentration
α = Absorptionskoeffizient
L = Abstand (optischer Weg in der Messküvette) zwischen der Strahlungsquelle und dem Empfangsdetektor
The characteristic curve of infrared gas sensors is also monotonically falling, which means that a steadily increasing carbon dioxide concentration creates an exponential characteristic curve according to the Lambert Beers law.

I (c) = I 0 e - α cL
I (c) = intensity at a gas concentration c
I 0 = intensity at c = 0
c = gas concentration
α = absorption coefficient
L = distance (optical path in the measuring cell) between the radiation source and the reception detector

In Fig. 2 ist die Sensorkennlinie im gesamten Konzentrationsbereich von 0,0 Vol.-% bis 5,0 Vol.-% dargestellt. In FIG. 2, the sensor characteristic in the entire concentration range of 0.0 vol .-% is shown to 5.0 vol .-%.

Die Küvettenlänge L kann dabei so angepasst werden, das die Empfindlichkeit in dem kritischen Arbeitsbereich zwischen 1,0 Vol.-% und 3,0 Vol.-% nahezu linear verläuft, während in den größeren Konzentrationsbereichen, nach der Grenzwertüberschreitung (Sättigungsbereich) zwar auch noch eine Signaländerung zu verzeichnen ist, die aber dann in die "Sättigung" übergeht und somit immer einen Wert oberhalb des Grenzwertes anzeigt. The cuvette length L can be adjusted so that the sensitivity in the critical working range between 1.0 vol.% and 3.0 vol.% almost linear runs, while in the larger concentration ranges, after the Limit violation (saturation range) also a signal change is recorded, but which then goes into "saturation" and thus always one Value above the limit value.

Claims (8)

1. Vorrichtung (14) zur Überwachung toxischer Kohlendioxidkonzentration in einem Fahrzeug (12) bestehend aus mindestens einem Gassensor(3) und mindestens einer Auswerteelektronik (11), dadurch gekennzeichnet, daß als Nachweiselement ein Infrarotgassensor (3) eingesetzt wird. 1. A device (14) toxic to monitor carbon dioxide concentration in a vehicle (12) comprising at least one gas sensor (3) and at least one transmitter (11), characterized in that is used as a detection element, an infrared gas sensor (3). 2. Vorrichtung nach Anspruch 1 dadurch gekennzeichnet, daß die Frischluftzufuhr (7) automatisch durch einen Aktor (8) aktiviert wird, wenn die Kohlendioxidkonzentration am Ort von mindestens einem Infrarotgassensors (3, 4, 5) einen vorgegebenen Grenzwert überschreitet. 2. Device according to claim 1, characterized in that the fresh air supply ( 7 ) is automatically activated by an actuator ( 8 ) when the carbon dioxide concentration at the location of at least one infrared gas sensor ( 3 , 4 , 5 ) exceeds a predetermined limit. 3. Vorrichtung nach Anspruch 1 dadurch gekennzeichnet, daß die maximale Leistung des Lüfters (13) automatisch aktiviert wird, wenn die Kohlendioxidkonzentration am Ort von mindestens einem Infrarotgassensors (3, 4, 5) einen vorgegebenen Grenzwert überschreitet. 3. Device according to claim 1, characterized in that the maximum power of the fan ( 13 ) is automatically activated when the carbon dioxide concentration at the location of at least one infrared gas sensor ( 3 , 4 , 5 ) exceeds a predetermined limit. 4. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Grenzwert zwischen 1 Vol.-% und 3 Vol.-% Kohlendioxid liegt. 4. The device according to claim 2, characterized in that the limit value is between 1 vol .-% and 3 vol .-% carbon dioxide. 5. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Einbauort des Infrarotgassensors (3, 4, 5) die repräsentative Kohlendioxidkonzentration im Fahrgastinnenraum (2) widerspiegelt. 5. The device according to claim 2, characterized in that the installation location of the infrared gas sensor ( 3 , 4 , 5 ) reflects the representative carbon dioxide concentration in the passenger compartment ( 2 ). 6. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß mindestens ein Infrarotgassensor (3, 4) im Strömungsbereich der Zuluft (9) oder Umluft (10) im Fahrgastinnenraum (2) angeordnet ist. 6. The device according to claim 3, characterized in that at least one infrared gas sensor ( 3 , 4 ) is arranged in the flow region of the supply air ( 9 ) or circulating air ( 10 ) in the passenger compartment ( 2 ). 7. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß mindestens ein Infrarotgassensor (5) im hinteren Bereich des Fahrgastinnenraumes außerhalb der Zuluft (9) oder Umluft (10) angeordnet ist. 7. The device according to claim 3, characterized in that at least one infrared gas sensor ( 5 ) is arranged in the rear region of the passenger compartment outside the supply air ( 9 ) or circulating air ( 10 ). 8. Vorrichtung nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Auswerteelektronik ein Steuersignal (6) zur Aktivierung der Frischluftzufuhr (7) und der Leistung des Lüfters (13) generiert. 8. The device according to at least one of claims 1 to 7, characterized in that the evaluation electronics generates a control signal ( 6 ) for activating the fresh air supply ( 7 ) and the power of the fan ( 13 ).
DE10200953A 2002-01-12 2002-01-12 Device for controlling the supply of fresh air in vehicles Expired - Fee Related DE10200953B4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10200953A DE10200953B4 (en) 2002-01-12 2002-01-12 Device for controlling the supply of fresh air in vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10200953A DE10200953B4 (en) 2002-01-12 2002-01-12 Device for controlling the supply of fresh air in vehicles

Publications (2)

Publication Number Publication Date
DE10200953A1 true DE10200953A1 (en) 2003-07-31
DE10200953B4 DE10200953B4 (en) 2007-08-02

Family

ID=7711979

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10200953A Expired - Fee Related DE10200953B4 (en) 2002-01-12 2002-01-12 Device for controlling the supply of fresh air in vehicles

Country Status (1)

Country Link
DE (1) DE10200953B4 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007016696A1 (en) * 2007-04-04 2008-10-09 Behr Gmbh & Co. Kg Carbon-dioxide concentration limiting method for use in motor vehicle, involves determining actual value of carbon-dioxide concentration based on static and dynamic measured variables, and comparing actual valve with preset desired value
US20080268761A1 (en) * 2007-04-27 2008-10-30 Toyota Boshoku Kabushiki Kaisha Condition monitoring apparatus for vehicle passenger compartment
CN102336129A (en) * 2010-07-14 2012-02-01 热之王公司 Demand-based fresh air control system
DE102014205552A1 (en) * 2014-03-25 2015-10-01 MAHLE Behr GmbH & Co. KG Device for detecting a leakage of a motor vehicle air conditioning system operated with carbon dioxide as a refrigerant
FR3046845A1 (en) * 2016-01-20 2017-07-21 Peugeot Citroen Automobiles Sa SYSTEM AND METHOD FOR MEASURING AIR QUALITY IN THE CABIN OF A MOTOR VEHICLE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344743A (en) * 2013-07-23 2013-10-09 无锡伊佩克科技有限公司 Detecting device of air in vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3907049A1 (en) * 1989-03-04 1990-09-13 Bayerische Motoren Werke Ag VEHICLE WITH A SECURITY SYSTEM
DE19607637A1 (en) * 1996-02-29 1997-09-04 Kuehl Entwicklung Und Geraeteb Method to maintain healthy air conditions in motor vehicle passenger compartment
DE19850914A1 (en) * 1998-11-05 2000-05-18 Messer Griesheim Gmbh Air conditioning system for motor vehicle has flap for interrupting air flow into interior of vehicle in ventilation system downstream of heat exchanger and controlled by CO2 sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007016696A1 (en) * 2007-04-04 2008-10-09 Behr Gmbh & Co. Kg Carbon-dioxide concentration limiting method for use in motor vehicle, involves determining actual value of carbon-dioxide concentration based on static and dynamic measured variables, and comparing actual valve with preset desired value
US20080268761A1 (en) * 2007-04-27 2008-10-30 Toyota Boshoku Kabushiki Kaisha Condition monitoring apparatus for vehicle passenger compartment
CN102336129A (en) * 2010-07-14 2012-02-01 热之王公司 Demand-based fresh air control system
DE102014205552A1 (en) * 2014-03-25 2015-10-01 MAHLE Behr GmbH & Co. KG Device for detecting a leakage of a motor vehicle air conditioning system operated with carbon dioxide as a refrigerant
FR3046845A1 (en) * 2016-01-20 2017-07-21 Peugeot Citroen Automobiles Sa SYSTEM AND METHOD FOR MEASURING AIR QUALITY IN THE CABIN OF A MOTOR VEHICLE

Also Published As

Publication number Publication date
DE10200953B4 (en) 2007-08-02

Similar Documents

Publication Publication Date Title
DE102005032722B3 (en) Measuring presence and/or concentration of analyte using gas sensor, by comparing first recorded value with threshold and triggering alarm if threshold is exceeded
DE60306321T3 (en) A system, controller and method for detecting a hazardous condition within a space provided with a ventilation system
DE60300172T2 (en) Apparatus and method for measuring breath alcohol
EP3428554A1 (en) Method for detecting leaks in an air conditioning system
DE19750133C2 (en) Device for monitoring and regulating the CO¶2¶ concentration in the interior of a motor vehicle
DE102005021909A1 (en) Sniffer leak detector with quartz window sensor
EP2066509A1 (en) Air conditioning system with gas sensor for a vehicle and method for operating such an air conditioning system
WO2017137429A1 (en) Aircraft and warning device for an "engine oil smell" in a cabin of an aircraft
WO2010094750A1 (en) Measuring device and method for detecting the hydrocarbon fraction in gases
DE10348164B4 (en) Apparatus and method for preventing overheating of a person or an animal in a motor vehicle
DE10200953A1 (en) Device for monitoring toxic carbon dioxide concentration in a vehicle air-conditioning unit comprises a gas sensor with a detecting element, and an evaluating electronic unit
DE102014010713A1 (en) "Gas sensor arrangement for measuring a target gas concentration"
EP1654132B1 (en) Method for controlling an air circulation part and/or an air supply part in a passenger cell
DE102010003966B3 (en) Sensor arrangement i.e. multifunctional sensor, for determining comfort-relevant data to control e.g. air-conditioning in motor vehicles, has gas-sensitive semiconductor sensor with gas-sensitive semiconductor metal oxide layer
DE19850914A1 (en) Air conditioning system for motor vehicle has flap for interrupting air flow into interior of vehicle in ventilation system downstream of heat exchanger and controlled by CO2 sensor
WO2000054840A1 (en) Method and sensor device for detecting gases or fumes in air
DE10142711B4 (en) Device having a sensor arrangement for determining the ambient air quality and an arrangement of ozone sensors in front of and behind a cooler coated with a catalyst material and method
DE102005031177A1 (en) Vehicle passenger compartment gas mixture constituent measurement procedure uses electrically filtered infrared radiation passed twice through sample holder using mirror on window heat sink
EP1903528A1 (en) Gas warning device and method for monitoring such
DE102006006963A1 (en) Air conditioning system for vehicle, comprises sensor unit for detection of carbon dioxide leak
EP2106940B1 (en) NBC-sealed vehicle with CO2 sensors and method for regulating the quality of internal air
DE10316352A1 (en) Climate control installation, especially for a motor car, has a sensor placed in the air-conducting housing near the evaporator in order to detect any leaks of coolant gas
EP0421100A1 (en) Procedure and equipment for recognizing dangerous conditions in a room
DE112021006716T5 (en) System and method for monitoring and controlling air quality in a vehicle compartment
DE202010013749U1 (en) Warning device for detecting gas

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20140801