-
Die Erfindung betrifft allgemein Grillvorrichtung zur Garung von Nahrungsmitteln und insbesondere Grillvorrichtungen, die zum Schutz der Heizquellen Wärmequellen-Schutzschilde aufweisen.
-
Aus dem Stand der Technik sind Glas- und Glaskeramikplatten bekannt, die zur Abdeckung von Wärmequellen, beispielsweise Stahl- oder Keramikheizer, beim Grillen, Braten oder Garen im Allgemeinen verwendet werden. Die Nahrungsmittel werden dabei häufig auf einem oberhalb einer Abdeckplatte angeordneten Rost gegart. Die Abdeckung dient dabei zum einen dem Schutz der Wärmequelle vor Verunreinigungen, die auch beim bestimmungsgemäßen Gebrauch auftreten und die Wärmequelle beschädigen können. Durch das Verbrennen von Nahrungsmittelbestandteilen fallen diese durch einen Rost auf die Wärmequelle. Zum anderen werden auch die zu garenden Lebensmittel vor Verbrennungsrückständen geschützt, die durch die Verbrennung fossiler Brennstoffe entstehen.
-
Darüber hinaus sind Bratplatten aus glas- oder glaskeramischem Material bekannt, die zum Garen von Nahrungsmitteln direkt auf den Bratplatten verwendet werden. Im Folgenden werden die beschriebenen Abdeckplatten der Einfachheit halber und unabhängig von ihrer primären Funktion als Wärmequellen-Schutzschilde bezeichnet. Andere Anwendungen, beispielsweise als Bratplatte, sind ausdrücklich auch als unter diesen Begriff fallend zu verstehen.
-
Den vorgenannten Beispielen ist gemeinsam, dass das Garen mit Hilfe dieser Grillvorrichtungen vorwiegend indirekt erfolgt. Die von der Wärmequelle erzeugte Energie wird zum Teil von der Brat- oder Abdeckplatte absorbiert und als Infrarotenergie wieder abgegeben. Insbesondere glaskeramische Materialien haben sich für diese Anwendungen als geeignet erwiesen, da sie hinreichend temperaturunterschiedsfest sind und sich darüber hinaus gut reinigen lassen.
-
Allerdings weisen herkömmliche Wärmequellen-Schutzschilde den Nachteil einer geringen Langzeitbeständigkeit auf, was insbesondere im kommerziellen Betrieb der Geräte problematisch ist. Je nach verwendetem System, treten Betriebstemperaturen von 600–700°C oder auch darüber auf. Nahrungsmittelreste wie heißes Bratfett, Öle, Gewürze, Pökelsalz, Zucker, Stärke oder auch Grillgutrückstände verbrennen bei diesen Temperaturen auf der Oberfläche des Wärmequellen-Schutzschilds und bilden einen Belag aus, der stark korrosiv wirkt. Schön nach relativ kurzer Betriebszeit kann es auch ohne mechanische Einwirkung von außen zu einem Spannungsbruch des Wärmequellen-Schutzschilds kommen.
-
Die Aufgabe der Erfindung ist daher die Bereitstellung eines Grills mit einem Wärmequellen-Schutzschild, das eine deutlich erhöhte Langzeitbeständigkeit gegenüber aus dem Stand der Technik bekannten Wärmequellen-Schutzschilden aufweist.
-
Diese Aufgabe wird in überraschend einfacher Weise durch den Gegenstand der unabhängigen Ansprüche gelöst. Die Unteransprüche definieren vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung.
-
Demgemäß betrifft die Erfindung eine Grillvorrichtung mit Heizelementen und ein zwischen dem Grillgut und den Heizelementen angeordnetes Wärmequellen-Schutzschild, wobei das Wärmequellen-Schutzschild der Abschirmung der Heizquellen vor Nahrungsmittelrückständen dient, die ohne eine solche Abschirmung auf die Heizelemente fallen oder tropfen würden. Unter dem Begriff „Nahrungsmittelrückstände” wird im Rahmen dieser Erfindung alles verstanden, was beim Grillen auf die Heizelemente fallen, tropfen oder spritzen könnte und mit den zu garenden Lebensmitteln oder mit der Zubereitung der Lebensmittel in Zusammenhang steht. Ohne Beschränkung der Allgemeinheit können Nahrungsmittelrückstände insbesondere heißes Bratfett, Öle, Gewürze, Pökelsalz, Meersalz, Zucker, Stärke oder auch Grillgutrückstände sein.
-
Das Wärmequellen-Schutzschild umfasst dabei ein Glas- oder Glaskeramik-Substrat mit zumindest einer grillgutseitigen Beschichtung. Die Beschichtung vermindert oder verhindert sogar die Diffusion von Stoffen aus Belägen, die durch die Verbrennung von Nahrungsmittelrückständen auf dem Wärmequellen-Schutzschild entstehen, in das Glas- oder Glaskeramik-Substrat hinein. Das erfindungsgemäße Wärmequellen-Schutzschild weist eine Langzeitbeständigkeit von zumindest zwei Monaten, bevorzugt drei Monaten, besonders bevorzugt sechs Monate im Dauerbetrieb bei zumindest 500°C auf, wobei die Beschichtung des Substrats ursächlich für die hohe Langzeitbeständigkeit ist.
-
Wärmequellen-Schutzschilde ohne Beschichtung, also Wärmequellen-Schutzschilde, die nur aus einem Glaskeramik-Substrat bestehen, wie sie aus dem Stand der Technik bekannt sind, halten dagegen unter diesen Bedingungen nur ein bis zwei Wochen. Die Schutzschilde brechen bei einer solchen Dauerbelastung bereits allein aufgrund der Einwirkung der Schwerkraft auf das Schutzschild.
-
Das Wärmequellen-Schutzschild zeichnet sich vorzugsweise darüber hinaus dadurch aus, dass kurzzeitig vorherrschende Maximaltemperaturen von zumindest 700°C, bevorzugt von zumindest 850°C und insbesondere bei inhomogener Belastung keine morphologische Veränderung von der Beschichtung bewirken. Unter einer kurzzeitig vorherrschenden Maximaltemperatur wird insbesondere ein Zeitraum von einer Sekunde bis zu zumindest einer Stunde verstanden. Eine inhomogene Belastung liegt vor, wenn der Wärmequellen-Schutzschild an unterschiedlichen Stellen unterschiedlich heiß wird, beispielsweise, wenn Nahrungsmittelrückstände ungleichmäßig über seine Oberfläche verteilt vorliegen.
-
Unter morphologischen Veränderungen sind nicht nur optische Veränderungen zu verstehen, sondern insbesondere Veränderungen in der Struktur, beispielsweise der Übergang von einer Kristallphase in eine andere Kristallphase oder von einer amorphen Struktur in eine Kristallstruktur. Insgesamt sind alle Veränderungen umfasst, die die Beschichtung und/oder das Substrat wahrnehmbar optisch oder technisch beeinträchtigen.
-
Wie bereits in der Einführung beschrieben, besteht bei Wärmequellen-Schutzschilden, die aus dem Stand der Technik bekannt sind, die Problematik einer zu geringen Langzeitbeständigkeit. Schon nach relativ kurzer Zeit, beispielsweise nach etwa einer Woche, können herkömmliche Wärmequellen-Schutzschilde aus Glaskeramik eine oberflächliche Rissbildung aufweisen, die bei weiterer bestimmungsgemäßer Nutzung zum Bruch des Schildes führt.
-
Beim Einsatz in Haus- oder Industriegrills kommt die Oberfläche des Wärmequellen-Schutzschilds unter hoher Temperaturbelastung mit Bratfetten und mineralischen Verbindungen in Berührung, wie etwa Natrium- und Kaliumsalze, wie z. B. deren Chloride, Nitrate, Nitride aber auch deren Phosphate, Sulfate oder Carbonate. Darüber hinaus können neben Kalziumverbindungen (z. B. aus Knochen) darin organische Phosphor- und Schwefelverbindungen aus dem Fleisch enthalten sein. Es bildet sich u. a. ein stark Natrium-, Kalium- und phosphorhaltiger Belag auf der Glaskeramik, wobei die Beläge im Wesentlichen aus fest miteinander verbundenen und anhaftenden Partikeln bestehen. Die Belagstruktur ähnelt Agglomeraten, die für Sinterkeramiken typisch sind.
-
Bei einer Analyse mittels energiedispersiver Röntgenspektroskopie (EDX) senkrecht zur Oberfläche des Substrats zeigte sich überraschender Weise, dass es im oberflächennahen Bereich des Glas- oder Glaskeramik-Substrats zu einer Anreicherung bestimmter Ionen kommt. Es handelt sich im Wesentlichen um Alkali- und/oder Phosphor-Ionen, die in den oberflächennahen Bereich der Glaskeramik eindiffundiert sind. Es ist anzunehmen, dass die eindiffundierten Ionen aus den Belägen, die durch die Pyrolyse von Nahrungsmittelrückständen auf dem Wärmequellen-Schutzschild entstehen, stammen. Vermutlich erreichen die Ionen durch die hohen Betriebstemperaturen des Grills eine ausreichende Mobilität, um in das Glas- oder Glaskeramik-Substrat diffundieren zu können.
-
Eine andere Problematik bezüglich der Langzeitbeständigkeit liegt bei einer unterseitigen Gasbeheizung vor. Bei der Verbrennung von schwefelhaltigen Brenngasen entsteht durch deren Gehalt an Schwefelwasserstoff, Schwefeldioxid und Wasserdampf schwefelige Säure, eventuell sogar Schwefelsäure, aber auch anderer Säuren, die zur Korrosion der Glaskeramikplatte führt. Es kommt hauptsächlich zu einer Diffusion der Lithium-Ionen aus dem Glaskeramik-Substrat heraus, während Wasserstoff-Ionen aus den Säuren die Gitterplätze der Li-Ionen in der Glaskeramik besetzen. Die ausdiffundierten Lithium-Ionen verbinden sich mit den dissoziierten Säuren z. B. zu Lithium-Sulfat, das als Niederschlag auf der Glaskeramik nachweisbar ist. Diese Korrosion durch Substitution von Bestandteilen der Glaskeramik kann durch das Aufbringen einer Beschichtung reduziert werden.
-
Die Erfinder waren sehr überrascht, als sich herausstellte, dass auch der umgekehrte Vorgang, nämlich nicht das „Ausdiffundieren” von Ionen aus dem Glaskeramik-Substrat, sondern auch das „Eindiffundieren” von Ionen in das Glaskeramik-Substrat aus einem sich auf dem Glaskeramik-Substrat befindenden Belag möglich ist. Insbesondere erstaunlich ist, dass es sich hier um im Vergleich zu den Li-Ionen deutlich größere Ionen, nämlich Alkalien wie Kalium- und Natrium-Ionen sowie um Phosphor-Ionen handelt.
-
Die Erfinder vermuten, dass durch lokal unterschiedliche Substrat-Zusammensetzungen infolge der nachgewiesenen Innenanreicherung und somit lokal unterschiedlichen Gefügezuständen ein hoher Spannungszustand in der Glaskeramik erzeugt wird. Die interne Spannung wird durch die hohen Betriebstemperaturen noch verstärkt, da Bereiche mit unterschiedlichen Zusammensetzungen auch unterschiedliche thermische Ausdehnungskoeffizienten besitzen können, die sich unter Temperaturbelastung unterschiedlich stark ausdehnen. Es wird vermutet, dass die induzierten internen Spannungen schlussendlich bruchauslösend wirken.
-
Überraschender Weise zeigte sich, dass eine Beschichtung, beispielsweise eine erfindungsgemäß bevorzugte SiO2-Beschichtung, die Lanzeitbeständigkeit eines Wärmequellen-Schutzschilds deutlich erhöht. Im Gegensatz zu den gasbeheizten Kochfeldern, deren Beschichtung unterseitig oder auf der dem Gasbrenner zugewandten Seite aufgebracht ist, befindet sich die Beschichtung hier jedoch auf der Oberseite oder genauer der Seite, die dem Grillgut zugewandt ist. Die Unterseite eines Wärmequellen-Schutzschilds kann zur besseren Beständigkeit und insbesondere falls der entsprechende Grill gasbeheizt ist, auch auf der Unterseite eine Beschichtung aufweisen. Eine zweiseitige Beschichtung ist somit möglich, aber erfindungsgemäß nicht notwendig.
-
Gemäß einer bevorzugten Weiterbildung der Erfindung ist daher der K-Gehalt, gemessen als Oxid, 10 μm unterhalb der Oberfläche des Glas- oder Glaskeramik-Substrats maximal 1,5 mal so hoch ist wie 2500 μm unterhalb der Oberfläche und der Na-Gehalt, ebenfalls gemessen als Oxid, ist 10 μm unter der Oberfläche des Glas- oder Glaskeramik-Substrats maximal doppelt so hoch ist wie 2500 μm unter der Oberfläche, gemessen nach 3 Monaten im Dauerbetrieb bei zumindest 500°C. Eine solche Na- und K-Verteilung innerhalb eines verwendeten Glas- oder Glaskeramik-Substrats belegt, dass die Beschichtung das Eindiffundieren von Stoffen aus den Belägen stark vermindert oder sogar verhindern kann.
-
Gemäß einer bevorzugten Weiterbildung der Erfindung kann die Beschichtung des Wärmequellen-Schutzschilds die Elemente Si, Al, Ti, Hf, Zn, Zr, Nb, W, TiAl, Sn, Cr, Ta, In, α-C, AlCr, NiCr, Ag und/oder Edelstahl und/oder Hasteloy umfassen.
-
Gemäß noch einer Weiterbildung kann die Beschichtung des Wärmequellen-Schutzschilds auch Verbindungen umfassen, insbesondere Oxide, Nitride und/oder Oxinitride der Elemente Si, Al, Ti, Hf, Zn, Zr, Nb, W, TiAl, Sn, Cr, Ta, In, AlCr, NiCr.
-
Besonders vorteilhaft sich Beschichtungen, die eine sehr dichte Struktur oder auch eine hohe Dichte aufweisen. Aus diesem Grunde werden die Schichten vorzugsweise mit einem Vakuumbeschichtungsverfahren hergestellt.
-
Insbesondere werden Beschichtungen bevorzugt, die eine Sauerstoff-Permeationsrate von weniger als 1 cm3 pro m2 Beschichtungsoberfläche, pro Bar Druckdifferenz, pro nm Schichtdicke und pro Tag aufweisen. Es wird davon ausgegangen, dass eine amorphe Schichtstruktur, die eine geringe Sauerstoff-Permeationsrate aufweist, die Wanderung der Ionen deutlich reduziert.
-
Darüber hinaus sollte eine erfindungsgemäße Beschichtung auch eine hohe Haftfestigkeit mit dem beschichteten Substrat aufweisen, insbesondere den Klebeband-Test gem. DIN 58196-6 bestehen, und insbesondere chemisch beständig gegenüber den Kontaktmedien und deren Folgeprodukten sein.
-
Es hat sich gezeigt, dass Beschichtungen mit den beschriebenen vorteilhaften Eigenschaften mittels eines chemischen oder physikalischen Gasphasenabscheidungsverfahrens oder auch mittels einer Flüssigphasenabscheidung auf das Glas- oder Glaskeramik-Substrat aufgebracht werden können.
-
In einer besonders bevorzugten Ausführungsform der Erfindung wird die Beschichtung mittels Sputterns, insbesondere bevorzugt mittels Mittelfreuqenz-Magnetronsputterns auf das Glas- oder Glaskermik-Substrat aufgebracht. Sputterverfahren sind in diesem Zusammenhang generell vorteilhaft, da mit diesen Verfahren Schichten mit einer kompakten Mikrostruktur und einer hohen Schichtdichte erzeugt werden können. Eine kompakte amorphe Mikrostruktur und eine hohe Schichtdichte erschweren vorteilhaft die Ionendiffusion.
-
Um eine Beschichtungsdicke im Bereich von mehreren 100 Nanometern, bevorzugt zwischen 50 und 500 nm, zu erzielen kann das zu beschichtende Substrat dabei vorteilhafter Weise vor einem Target, das zumindest einen Teil der Ausgangssubstanzen der Beschichtung umfasst, gependelt werden, so dass die Beschichtung aus mehreren Einzellagen aufgebaut ist.
-
Ein erfindungsgemäßer Wärmequellen-Schutzschild kann so beispielsweise eine mittels Mittelfrequenz-Magnetronsputterns aufgebracht SiO2-Beschichtung von etwa 250 nm Dicke aufweisen, die auf ein Kalk-Natron-Glas-Substrat aufgebracht wurde.
-
Die Oberfläche einer solchen Beschichtung zeigt vorteilhafter Weise nur eine sehr geringe Alkalidiffusion unter Extrembedingungen. Die chemische Beständigkeit des Wärmequellen-Schutzschilds hinsichtlich der Alkalidiffusion kann mit einem. Test in Anlehnung an DIN 52296 nachgewiesen werden. Wird das beschichtete Wärmequellen-Schutzschild in einem Autoklaven bei 98°C für eine Stunde 0,1 mol/l HCl ausgesetzt und die Alkalidiffusion mittels Atomabsorptionsspektroskopie gemessen, so liegt die Na2O-Auslaugung unterhalb von 1 μg/dm2, was der Nachweisgrenze des Gerätes entspricht.
-
Ein Wärmequellen-Schutzschild kann gemäß einer bevorzugten Ausführungsform ein Glas- oder das Glaskeramik-Substrat mit einer Zusammensetzung gemäß
60–73,0 Gew.-% | SiO2, |
15–25,0 Gew.-% | Al2O3, |
2,2–5,0 Gew.-% | Li2O, |
0–5,0 Gew.-% | CaO + SrO + BaO, |
0–5,0 Gew.-% | TiO2, |
0–5,0 Gew.-% | ZrO2, |
0–4,0 Gew.-% | ZnO |
0–3,0 Gew.-% | Sb2O3, |
0–3,0 Gew.-% | MgO, |
0–3,0 Gew.-% | SnO2. |
0–9,0 Gew.-% | P2O5, |
0–1,5 Gew.-% | As2O3, |
0–1,2 Gew.-% | Na2O + K2O, wobei die jeweiligen Anteile innerhalb der nachfolgend angegebenen Bereiche liegen, |
0–1,0 Gew.-% | Na2O, |
0–0,5 Gew.-% | K2O sowie |
0–1,0 Gew.-% | färbende Oxide |
aufweisen.
-
Darüber hinaus kann das Substrat neben der genannten Zusammensetzung auch Verunreinigungen von Cr2O3 im Bereich von 0,0001 bis 0,0026, bevorzugt zwischen 0,0001 und 0,001 m/m und besonders bevorzugt zwischen 0,0001 und 0,0006 m/m umfassen und/oder von Fe2O3 im Bereich von 0,013 bis 0,23 m/m, bevorzugt zwischen 0,013 und 0,14 m/m und besonders bevorzugt zwischen 0,013 und 0,04 m/m.
-
Ein Glas- oder Glaskeramik-Substrat weist vorteilhafter Weise eine hohe Temperaturunterschiedsfestigkeit (TUF) und auch eine hohe mechanische Festigkeit auf. Die hohe Temperaturunterschiedsfestigkeit bewirkt, dass das Wärmequellen-Schutzschild auch bei lokal sehr unterschiedlichen Temperaturen, wie sie bei Grills unterschiedlichster Beheizung auftreten, nicht platzt. Eine hohe mechanische Festigkeit ist dagegen sinnvoll, damit das Wärmequellen-Schutzschild auch bei unsachgemäßer Behandlung nicht sofort Schaden nimmt. Ein Glaskeramik-Substrat der vorgenannten Zusammensetzung kann eine TUE von zumindest 700°C und eine mittlere Biegefestigkeit von zumindest 110 Mpa bei Prüfung nach DIN EN 1288-5 aufweisen.
-
Aufgrund der sehr hohen Langzeitbeständigkeit kann ein wie vorstehend beschriebenes Wärmequellen-Schutzschild besonders vorteilhaft in gewerbsmäßig genutzten Gar- oder Grillgeräten verwendet werden. Natürlich ist auch eine Anwendung in privat genutzten Geräten möglich. Ohne Beschränkung der Allgemeinheit können solche Geräte Grills jeder Art und Beheizung umfassen. Gemäß einer bevorzugten Ausführungsform werden die Wärmequellen-Schutzschilde in Gasgrills verwendet. Denkbar ist beispielsweise auch eine Anwendung in Dönergrillgeräten.
-
Im folgenden wird die Erfindung anhand von Ausführungsbeispielen und unter Bezugnahme auf die Zeichnungen näher erläutert, wobei gleiche und ähnliche Elemente mit gleichen Bezugszeichen versehen sind und die Merkmale verschiedener Ausführungsbeispiele miteinander kombiniert werden können.
-
Es zeigen:
-
1: eine graphische Darstellung einer EDX-Belagsanalyse;
-
2: eine Darstellung eines mittels EDX-Messungen erstellten Linienscans von der Oberfläche bis in 2500 μm Tiefe eines herkömmlichen Glaskeramik-Substrats ohne Beschichtung;
-
3: einen schematischen Querschnitt durch eine Grillvorrichtung;
-
4: einen schematischen Querschnitt durch ein bevorzugtes Ausführungsbeispiel eines Wärmequellen-Schutzschilds.
-
In 1 ist die Zusammensetzung eines typischen Belags auf einem Wärmequellen-Schutzschild diagrammatisch dargestellt. Die aufgetragenen Daten wurden mittels EDX-Messungen erhalten. Die Intensität der emittierten Röntgenstrahlung ist in Abhängigkeit von der Energie der Röntgenquanten dargestellt.
-
Es können mehrere signifikante Peaks unterschieden werden: die von P, Na, Mg, K, Fe, C und O. Natrium und Kalium sind typische Bestandteile von Pökelsalzen, während Phosphor und Eisen typischer Weise in Fleisch enthalten sind.
-
2 zeigt einen mittels EDX erstellten Linienscan bestimmter Bestandteile der unter dem Belag befindlichen Glaskeramik ohne schützende Beschichtung bis in 2500 μm Tiefe. Eine deutliche Anreicherung von Na2O und K2O mit zunehmenden Gehalten in Richtung der Oberfläche des Glaskeramik-Substrats ist zu erkennen. Die übrigen dargestellten Verbindungen zeigen keine signifikanten Trends vom Rand des Glaskeramik-Substrats zu seinem Inneren hin. Es handelt sich bei den übrigen Verbindungen um MgO, Al2O3, TiO2, ZnO, ZrO2 und SnO2. Auf die Darstellung des SiO2-Gehalts, der im Wesentlichen konstant um etwa 68 m/m Oxid liegt, wurde zugunsten einer übersichtlichen Skalierung verzichtet.
-
Ein Ausführungsbeispiel einer erfindungsgemäßen Grillvorrichtung 1 ist schematisch in 3 dargestellt. Auf einer Trägerkonstruktion 6 befinden sich Heizquellen 7, wobei es sich bei den Heizquellen 7 um alle denkbaren Beheizungsformen handeln kann, mit denen ein erfindungsgemäßer Wärmequellen-Schutzschild 2 zum Emittieren infraroter Strahlung 9 angeregt werden kann. Typischer Weise kann eine Gasbeheizung oder eine elektrische Beheizung vorliegen.
-
Oberhalb der Trägerkonstruktion 6 ist ein Wärmequellen-Schutzschild 2, umfassend ein Glas- oder Glaskeramik Substrat 3 mit einer Beschichtung 4, beispielsweise einer SiO2-Beschichtung 4, angeordnet. Oberhalb des Wärmequellen-Schutzschilds 2 kann optional ein Rost 8 oder ein sonstiger Träger 8 für die zu garenden Nahrungsmittel angeordnet sein. Die Nahrungsmittel können jedoch auch direkt auf dem Wärmequellen-Schutzschild 2 gegart werden, indem das Wärmequellen-Schutzschild 2 als Bratplatte verwendet wird.
-
Das Wärmequellen-Schutzschild 2 schützt vorteilhaft die Heizquellen 7 vor herunterfallenden oder heruntertropfenden Nahrungsmittelrückständen, die beim bestimmungsgemäßen Garen von Nahrungsmitteln anfallen. Es kann sich dabei beispielsweise um Fette, Öle, Gewürze, Zucker, Stärke oder Grillgutreste handeln. Diese Nahrungsmittelrückstände bilden unter den vorherrschenden hohen Temperaturen Beläge auf dem Wärmequellen-Schutzschild 2, die schlecht oder gar nicht entfernt werden können.
-
Diese Beläge können in der Langzeitanwendung und wenn keine Beschichtung des Substrats vorliegt, zu einer Korrosion des Glas- oder Glaskeramik-Substrats 3 des Wärmequellen-Schutzschilds 2 führen. Bestimmte Stoffe aus diesen Belägen, beispielsweise Alkali-Ionen wie Na+ oder K+ oder auch Phoshor-Ionen können aus den Belägen in das Glas- oder Glaskeramik-Substrat 3 eindiffundieren und lokal zu veränderten Zusammensetzungen führen. Diese lokal veränderten Zusammensetzungen wiederum begünstigen das Auftreten von unterschiedlichen thermischen Ausdehnungskoeffizienten auf engstem Raum innerhalb des Glas- oder Glaskeramik-Substrats 3, wodurch lokal starke Spannungen erzeugt werden können.
-
Diese Spannungen sind nach Erkenntnissen der Erfinder für die geringe Langzeitbeständigkeit herkömmlicher Wärmequellen-Schutzschilde verantwortlich. Durch die lokal sehr unterschiedlichen Spannungen in dem Glas- oder Glaskeramik-Substrat können zunächst oberflächliche Risse auftreten, die dann später schon ohne weitere äußere mechanische Belastung zum Zerbrechen des gesamten Wärmequellen-Schutzschilds 2 führen können.
-
Eine erfindungsgemäße Beschichtung 4, die grillgutseitig auf das Glas- oder Glaskeramik-Substrat 3 aufgebracht ist, vermindert oder verhindert die Diffusion von Stoffen aus den Belägen in das Glas- oder Glaskeramik-Substrat 3, so dass eine deutlich erhöhte Lebenszeit solcher Wärmequellen-Schutzschilde 2 erreicht werden kann. Eine Langzeitbeständigkeit von zumindest zwei Monaten, bevorzugt drei Monaten und besonders bevorzugt von zumindest sechs Monaten im Dauerbetrieb bei zumindest 500°C sowie eine kurzzeitige Beständigkeit gegenüber deutlich höhere Temperaturen von zumindest 700°C, bevorzugt 850°C für zumindest eine Stunde ist erfindungsgemäß erreichbar. Dies gilt auch, wenn eine inhomogene Belastung des Wärmequellen-Schutzschilds vorliegt, beispielsweise, wenn Nahrungsmittelrückstände ungleichmäßig über die Oberfläche des Schutzschilds verteilt sind.
-
Die Kurzzeitbeständigkeit von Substrat 3 und Beschichtung 4 gegenüber Temperaturen von zumindest 700°C für zumindest eine Stunde schützt zum einen vor lokal erhöhten Temperaturen im Betrieb, andererseits ermöglicht sie aber auch vorteilhaft eine Oberflächenreinigung durch Pyrolyse. Bei der Pyrolyse werden Nahrungsmittelrückstände auf dem Wärmequellen-Schutzschild 2, die im laufenden Betrieb noch nicht verbrannt sind, kurzzeitig stark erhitzt, so dass vorzugsweise alle Fette und festen Bestandteile zu einer Asche verbrennen, die nach dem Abkühlen einfach von der Oberfläche abgewischt werden kann. Weder das Substrat- noch das Beschichtungsmaterial dürfen sich durch die Erhitzung morphologisch verändern. Veränderungen, die das Produkt weder optisch noch technisch beeinträchtigen sind jedoch zulässig.
-
In 4 ist ein Ausführungsbeispiel eines erfindungsgemäßen Wärmequellen-Schutzschilds 2, umfassend ein Glaskeramik-Substrat 3 und eine Beschichtung 4, dargestellt.
-
Das Glaskeramik-Substrat 3 umfasst eine LAS-Glaskeramik (Lithium-Aluminosilikat-Glaskeramik) mit Keatit-Mischkristallen und einem geringen Anteil hoch-Quarz-Mischkristallen, wobei in den Mischkristallen Si-Ionen teilweise durch Al-Ionen ersetzt sind. Die Mischkristalle enthalten neben Li-Ionen zusätzlich noch Mg- und/oder Zn-Ionen, wobei die Zn- und/oder Mg-Ionen in Kanälen der Mischkristalle vorhanden sind. Die LAS-Glaskeramik weist eine amorphe, Li-verarmte Randschicht auf.
-
Das Glaskeramik-Substrat
3 hat folgende Zusammensetzung:
60–73,0 Gew.-% | SiO2, |
15–25,0 Gew.-% | Al2O3, |
2,2–5,0 Gew.-% | Li2O, |
0–5,0 Gew.-% | TiO2, |
0–5,0 Gew.-% | ZrO2, |
0–4,0 Gew.-% | ZnO |
0–3,0 Gew.-% | MgO, |
0–3,0 Gew.-% | SnO2. |
0–1,2 Gew.-% | Na2O + K2O, |
0–1,0 Gew.-% | V2O5. |
-
Auf dieses Glaskeramik-Substrat 3 wird z. B. mittels Mittelfrequenz-Magnetronsputterns eine SiO2-Beschichtung 4 aufgebracht. Die verwendete Sputteranlage ist für den In-Line-Betrieb ausgelegt.
-
Ein Si-Target wird zunächst mittels einer Strahlungsbeheizung auf 300 bis 325°C vorgeheizt und anschließend in die Beschichtungskammer überführt. In der Beschichtungskammer wird unter Verwendung von hohen Flächenleistungen, >> 12 W/cm2, Silizium von einem metallischen Target unter Regelung des Reaktivgases Sauerstoff gesputtert. Die SiO2-Beschichtung 4 wird durch Pendeln vor dem Target auf die Oberseite des Glaskeramik-Substrats 3 abgeschieden, so dass sich die Beschichtung 4 aus mehreren Einzellagen 5 zusammensetzt. Anschließend kühlt das Substrat 3 samt Beschichtung 4 bei Zimmertemperatur ab.
-
Die chemische Beständigkeit der Beschichtung 4 im Hinblick auf die Alkalidiffusion wird mittels Atomabsortptionsspektroskopie (AAS) nach Auslagerung in 0,1 mol/l HCl bei 98°C im Autoklaven in Anlehnung an DIN 52296 nachgewiesen. Bei der Verwendung von Kalk-Natron-Glas als Substratmaterial ohne Beschichtung kommt es unter diesen Bedingungen zu einer starken Auslaugung, etwa 50–60 μg/dm2, von Na2O aus dem Glas in die Salzsäure. Durch die Beschichtung mit einer SiO2-Schicht kann erreicht werden, dass die Na2O-Auslaugung mittels der AAS-Untersuchung nicht mehr nachweisbar ist. Dies bedeutet, dass mit einer etwa 250 nm dicken SiO2-Beschichtung 4 eine Na2O-Auslaugung von kleiner als 1 μg/dm2 erzielt wird, wobei dieser Wert der Nachweisgrenze des Geräts entspricht.
-
ZITATE ENTHALTEN IN DER BESCHREIBUNG
-
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
-
Zitierte Nicht-Patentliteratur
-
- DIN 58196-6 [0025]
- DIN 52296 [0030]
- DIN EN 1288-5 [0033]
- DIN 52296 [0056]