-
Die Erfindung betrifft ein Verfahren zur Suche und Erkennung von in landwirtschaftlichen Flächen versteckten Tieren bei einer in Streifen ablaufenden, maschinellen Bearbeitung, insbesondere Mahd, dieser landwirtschaftlichen Flächen unter Verwendung einer oder mehrerer an einem landwirtschaftlichen Fahrzeug angebrachter und zum Boden hin ausgerichteter Kameras, deren aufgenommene und gespeicherte Bilder einem Mustererkennungsalgorithmus übergeben werden, wobei dann, wenn durch den Mustererkennungsalgorithmus auf ein detektiertes Tier entschieden wird, ein Alarmsignal abgegeben wird.
-
Die Erfindung betrifft auch eine Vorrichtung zur Durchführung des Verfahrens.
-
Bei der Bearbeitung landwirtschaftlicher Flächen sterben nach Schätzungen jedes Jahr ca. 500 000 Wildtiere allein in Deutschland. Ein Großteil davon fällt der Grünlandmahd zum Opfer, die größtenteils zur Futtergewinnung für Milchkühe dient. Vor allem Rehkitze, die üblicherweise genau in der Mähperiode geboren werden, werden unbeabsichtigt, aber unvermeidbar verletzt und erleiden zumeist einen qualvollen Tod. Aber auch junge Hasen, Gelege und geschlüpfte Bodenbrüter fallen der Frühjahrsmahd zum Opfer. Grund dafür ist das instinktive Verharren der neugeborenen Tiere bei Gefahr (Drückverhalten) bzw. das zu langsame Fliehen. Darüber hinaus kann bei der Silage des durch Kadaverteile kontaminierten Mähguts rasch ein geruchloses tödliches Gift namens Botulinumtoxin entstehen, das die mit einem derart kontaminierten Mähgut gefütterten Tiere ebenfalls eines qualvollen Todes sterben lässt. Durch den Verlust der Nutztiere wird der Landwirtschaft außerdem ein erheblicher finanzieller Schaden zugefügt.
-
Für die maschinelle landwirtschaftliche Bearbeitung von Flächen, insbesondere die maschinell durchgeführte Grünlandmahd, sollte es also immer ein Ziel sein, verbesserte Verfahren und Vorrichtungen einzusetzen, die zu einer Reduzierung von getöteten Wildtieren führen.
-
Es ist bekannt, Rehkitze und andere junge Wildtiere mit Infrarot-Sensoren zu erkennen. Ein Gerät mit derartigen Sensoren detektiert Temperaturunterschiede in einer Wiese und funktioniert sehr gut am frühen Morgen, wenn die Sonne die Wiese noch nicht erwärmt hat. Da die Wiesen aber vorwiegend bei Sonnenschein gemäht werden, also dann, wenn die Wiesen von der Sonne bereits erwärmt wurden, und deswegen die Infrarot-Sensoren des Geräts viele Fehlalarme verursachen, ist ein solches Gerät für den Einsatz am Mähwerk ungeeignet.
-
Eine Einrichtung zur Erkennung von in landwirtschaftlich genutztem Grund versteckten Wildtieren mittels einer an einem landwirtschaftlichen Bearbeitungsfahrzeug angebrachten optischen Sensoranordnung aus Infrarot-Detektoren ist z.B. aus
DE 37 30 449 C2 bekannt.
-
Im Forschungsstadium befindet sich ein traktortaugliches Gerät, das auf Basis von Mikrowellen-Radarsensoren Rehkitze und andere Tiere an Hand des hohen Wassergehalts erkennen kann.
-
Daneben wird auch an bildgebenden Verfahren gearbeitet. Hier werden Kameras eingesetzt, die an einem am landwirtschaftlichen Bearbeitungsfahrzeug befestigten Auslegerarm senkrecht von oben etwa im Abstand von 1,20 m zum Erdboden in den nächsten Mähstreifen hineinblicken. Die Bildaufnahmen werden gespeichert und in einem Rechner an einen Mustererkennungsalgorithmus übergeben. Dieser entscheidet automatisch, ob auf dem Bild ein Rehkitz enthalten ist oder nicht. Als Kameras werden RGB-, Monochrom- oder thermische Infrarot-Kameras eingesetzt.
-
Die Erschütterungen der Kameras, die durch das raue Gelände verursacht werden, führen zu unscharfen Bildern. Dieses und die komplexen Lichtverhältnisse aufgrund des Einsatzes im Freien, d.h. eine ständig wechselnde Intensität der Beleuchtung, stellen eine enorme Herausforderung an den Mustererkennungsalgorithmus dar. Standardverfahren, wie sie in der industriellen Bildverarbeitung verwendet werden (wie z.B. Schwellwert-Detektion, Kantendetektion, Blob-Detection, ...) sind dieser Aufgabe nicht gewachsen. Deshalb muss ein aufwändigerer Algorithmus verwendet werden. Diese Algorithmen benötigen in der Regel sehr viel Rechenzeit (einige Sekunden bis Minuten). Eine echtzeitfähige Verarbeitung ist nicht möglich, wenn z.B. alle 33,3 ms ein neues Bild analysiert werden muss. Dies wäre nämlich dann der Fall, wenn die Kameras im Videomodus mit einer Bildabtastrate von 30 Hz betrieben würden. Bei einer Fahrtgeschwindigkeit des landwirtschaftlichen Bearbeitungsfahrzeugs von 20 km/h, einem Gesichtsfeldwinkel von 25° und einem Kameraabstand von 1,20 m zum Boden würden sich die Bilder zu ca. 35 % überlappen.
-
In den Lagern der Jungtiere sind oftmals so starke Kontrastverhältnisse, verursacht durch Sonnenlicht und Schatten, dass die digitalen Kamerachips im VIS-Bereich auf Grund ihrer eingeschränkten Dynamik keine ausreichende Bildqualität liefern, um die Jungtiere gut und einwandfrei zu detektieren.
-
In
DE 100 16 688 C2 ist bereits eine erweiterte Einrichtung behandelt, bei der am landwirtschaftlichen Bearbeitungsfahrzeug eine oder mehrere Multisensoreinheiten vorgesehen sind, die jeweils aus einem IR-Strahlungssensor, einem Radar-Mikrowellensensor und/oder einer bildgebenden Kamera bestehen. Aus den Mess-Signalen der Sensoren jeder Multisensoreinheit wird ein gleitender Mittelwert gebildet, aus dem ein etwas größerer gleitender Schwellenwert abgeleitet wird, der ständig mit dem aktuellen Messwert verglichen wird. Bei Überschreiten des gleitenden Schwellenwertes wird ein Alarmsignal ausgelöst, das anzeigt, dass sich ein Objekt vor dem Fahrzeug befindet, das wärmer und/oder feuchter als der Untergrund ist. Auf einem durch die Kamera aufgenommenen Bild lässt sich dann die Situation vor dem Fahrzeug betrachten.
-
Aus
DE 102 58 347 A1 ist ein Verfahren zur Detektion von Tieren bekannt, bei dem mehrere im gleichen Abstand zueinander und in gleicher Höhe angeordnete Sensoren verwendet werden.
-
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung zu schaffen, mit denen sich versteckte Jungtiere während der Bearbeitung landwirtschaftlicher Flächen bei unterschiedlichsten
-
Lichtverhältnissen sicher entdecken lassen und sich darüber hinaus die Anzahl der aufzunehmenden Bilder reduzieren lässt, so dass auch der für die Bildauswertung benötigte Rechenaufwand gesenkt wird.
-
Gemäß der vorliegenden Erfindung, die sich auf ein Verfahren der eingangs genannten Art bezieht, wird die gestellte Aufgabe dadurch gelöst, dass die Suche und Erkennung der versteckten Tiere durch der/den Kamera/s in Fahrtrichtung des landwirtschaftlichen Fahrzeugs vorgelagerte Vorfeldsensoren ergänzt wird, indem die Suche und Erkennung in zwei Bereiche aufgeteilt wird, die bei Bewegung des landwirtschaftlichen Fahrzeugs nacheinander den zu untersuchenden Bearbeitungsstreifen überprüfen, wobei der erste, in Fahrtrichtung vordere Bereich mit den Vorfeldsensoren und der zweite, dem ersten Bereich nachfolgende Bereich mit der/den Kamera/s untersucht wird, dass bei Auftreten eines für das Vorhandensein eines Tieres charakteristischen Detektionssignals eines der Vorfeldsensoren eine nachfolgende Kamera in diese vorangegangene, bei der Auslösung dieses Detektionssignals bestandene Position dieses Vorfeldsensors gefahren wird und dass mittels dieser Kamera von der Stelle, an der dieses Detektionssignal ausgelöst worden ist, unter gleichzeitiger Triggerbarkeit eines Blitzlichtes ein Bild zur anschließenden Auswertung mittels des Mustererkennungsalgorithmus angefertigt wird.
-
Das Verfahren nach der vorliegenden Erfindung bewältigt also sowohl die Aufgabe der Bildreduzierung, nämlich durch die Vorselektion von tierrelevanten Geländestellen („Points of Interest“) mittels der Vorfeldsensoren, als auch das Problem der Erkennung versteckter Tiere bei unterschiedlichsten Licht- und Kontrastverhältnissen, und zwar indem zusätzlich mit der Kameraauslösung gleichzeitig ein Blitzlicht getriggert wird.
-
Als Vorfeldsensoren können Infrarot-Sensoren eingesetzt werden, wie beispielsweise diejenigen, die bei dem im Handel erhältlichen tragbaren Infrarot-Wildretter eingebaut sind. Es können aber auch andere Sensoren als Vorfeldsensoren dienen. Ein Mikrowellen-Radarsensor könnte beispielsweise Stellen mit einem hohen Wassergehalt finden, die dann mit einer Kamera näher untersucht werden, um festzustellen, ob es sich hier tatsächlich um ein Jungtier handelt oder um etwas anderes.
-
Bei der Wahl des Vorfeldsensors ist nur Folgendes zu berücksichtigen. Die Vorfelddetektion sollte mit einer so hohen Sensitivität ausgelegt sein, dass die Wahrscheinlichkeit sehr hoch ist, dass ein tatsächlich in der landwirtschaftlichen Fläche vorhandenes Jungtier bei der Suche auch erkannt wird. Fehler sollen diesbezüglich möglichst gering sein. Die Sensitivität der Vorfeldsensoren soll also möglichst so hoch sein, dass alle Jungtiere erfasst werden und keines ausgelassen ist. Die Sensitivität der Vorfeldsensoren muss also so ausgelegt werden, dass zumindest alle Tiere erfasst werden und dabei Fehler, die in einer Nichterfassung eines Tieres bestehen (Fehler 2. Art), nicht vorkommen. Es dürfen aber bei der Suche mittels der Vorfeldsensoren jedoch insofern Fehler (Fehler 1. Art) auftreten, als in der landwirtschaftlichen Fläche auch Stellen für eine folgende Nachprüfung durch die nachfolgende/n Kamera/s signalisiert werden, an denen kein Tier vorhanden ist. Fehler 1. Art dürfen ruhig etwas höher sein.
-
Es gilt demnach: Hohe Sensitivität = kleiner Fehler 2. Art; niedrige Relevanz = hoher Fehler 1. Art. Sensitivität ist hier die Wahrscheinlichkeit, dass ein tatsächlich in der Wiese vorhandenes Jungtier von den Vorfeldsensoren auch erkannt wird. Relevanz ist hier die Wahrscheinlichkeit, dass bei einem Signal eines Vorfeldsensors auch wirklich ein Jungtier in der Wiese lag.
-
Der zu verwendende Vorfeldsensor muss also auf ein Merkmal ansprechen, das bei den gesuchten Tieren in jedem Fall besteht.
-
Der bereits vorgeschlagene Infrarot-Sensor weist eine hohe Sensitivität und niedrige Relevanz auf, wenn er generell auf hohe Empfindlichkeit eingestellt wird und die Messungen über den gesamten Tagesverlauf gemittelt werden. In der Wiese liegende Tiere werden von einem derartigen Sensor mit hoher Wahrscheinlichkeit erkannt; jedoch wird auch bei vielen Objekten, die kein Tier sind, Alarm ausgelöst. Insofern bietet er sich als Vorfeldsensor gut an.
-
Der Mikrowellen-Radarsensor hat bezüglich Sensitivität und Relevanz ein ähnliches Verhalten und kann deswegen ebenfalls vorteilhaft als Vorfeldsensor verwendet werden.
-
Für die korrekte Funktion des erfinderischen Verfahrens ist die zeitkorrekte Triggerung der Kamera/s nach einer vom Vorfeldsensor gesendeten Signalisierung erforderlich. Die Aufnahmen der Kamera/s müssen erfolgen, wenn die Kamera/s am Ort des durch einen Vorfeldsensor erkannten Merkmals ist/sind. Hierzu wird eine möglichst genaue Positionsbestimmung des Merkmalsortes benötigt. Der zeitliche Abstand zwischen dem Zeitpunkt A, zu dem der Vorfeldsensor ein in der Wiese liegendes Tier passiert, und dem Zeitpunkt B, zu dem die Kamera das Tier passiert, ist von der Fahrtgeschwindigkeit des landwirtschaftlichen Fahrzeugs abhängig. Bei konstanter Geschwindigkeit ist die Verwendung der vom Tachometer des landwirtschaftlichen Fahrzeugs gemessenen Geschwindigkeit zur Positionsbestimmung ausreichend. Sobald aber zwischen den Zeitpunkten A und B eine Beschleunigung ungleich 0 auftritt, würde die Kamera an der falschen Stelle eine Aufnahme machen. Damit wäre das System unbrauchbar. Aus diesem Grund ist eine genauere Positionsbestimmung besonders wichtig.
-
Um die Anzahl der genauer zu untersuchenden tierrelevanten Geländestellen („Points of Interest“) weiter zu reduzieren, kann beim Vorfeldsensor eine zusätzliche Selektion stattfinden. Im Falle eines Infrarotsensors kann mit Hilfe der durch den Positionsgeber bekannten Fahrtgeschwindigkeit ein zu kurzes Signal (hervorgerufen durch ein Objekt, das beispielsweise kleiner als ein Rehkitz ist) oder ein zu langes Signal (hervorgerufen durch ein Objekt, das größer als ein Rehkitz ist) verworfen werden. Nur wenn das Signal wie im Falle der Erfassung eines Tieres von charakteristischer Dauer ist, wird ein für eine Nachführung und Triggerung einer Kamera wirksames Detektionssignal abgegeben.
-
Ebenso kann in vorteilhafter Weise durch eine Messung der Sonnenlichtstrahlung die Empfindlichkeit der als Infrarot-Sensoren realisierten Vorfeldsensoren automatisch eingestellt werden, wodurch die Anzahl der Fehlalarme drastisch reduziert werden kann.
-
Eine die gestellte Aufgabe vorteilhaft lösende Vorrichtung zur Durchführung des Verfahrens nach der vorliegenden Erfindung zeichnet sich dadurch aus, dass ein oder mehrere Vorfeldsensoren am landwirtschaftlichen Fahrzeug in einem ersten, in Fahrtrichtung vorderen Bereich angeordnet sind und die Kamera/s, die bei Bedarf (im Falle von VIS-Kameras) mit einem Blitzlicht ausgestattet ist/sind, in einem zweiten, dem ersten Bereich in Fahrtrichtung nachfolgenden Bereich am landwirtschaftlichen Fahrzeug angeordnet ist/sind, dass am landwirtschaftlichen Fahrzeug ein Steuergerät angebracht ist, mittels dessen Steuersignalen eine Kamera bei Auftreten eines für das Vorhandensein eines Tieres charakteristischen Detektionssignals eines der Vorfeldsensoren in die betreffende Position dieses Vorfeldsensors fahrbar ist, dass das Steuergerät auch die Funktionen zur Steuerung der Auslösezeitpunkte der Kamera/s und zur Auswertung der Kamerabilder umfasst, so dass eine mittels eines Positionsgebers in die betreffende Position eines Vorfeldsensors gefahrene Kamera von der Stelle, an der das Detektionssignal des betreffenden Vorfeldsensors ausgelöst worden ist, ein Bild zur anschließenden Auswertung mittels des Mustererkennungsalgorithmus anfertigt, und dass dem Steuergerät der Signalgeber zugeordnet ist, der dann, wenn durch den Mustererkennungsalgorithmus auf ein sicher detektiertes Tier entschieden wurde, ein Alarmsignal abgibt.
-
Vorteilhafte und zweckmäßige Weiterbildungen und Ausgestaltungen des Verfahrens und der Vorrichtung nach der vorliegenden Erfindung sind in den sich auf die unabhängigen Patentansprüche unmittelbar oder mittelbar rückbeziehenden Ansprüchen angegeben.
-
Die Erfindung wird nachfolgend im Einzelnen anhand von Figuren und vorteilhaften Ausführungsbeispielen von Vorrichtungen für die Durchführung des Verfahrens erläutert. Es zeigen:
- 1 die schematische Darstellung des Aufbaus einer Anordnung von Vorfeldsensor und Kamera an einem Traktorauslegerarm,
- 2 in einem fahrstreckenabhängigen Diagramm den Signalverlauf des Ausgangssignals Uout [V] eines Vorfeldsensors, der durch einen schnellen pyroelektrischen Infrarot-Sensor realisiert ist, beim Passieren eines Rehkitzes,
- 3 das im Diagrammbeispiel von 2 vom Vorfeldsensor passierte Rehkitz in einer bildlichen Ansicht mit weißer Passierlinie,
- 4 in einem fahrtstreckenabhängigen Diagramm mögliche Signale eines Vorfeldsensors bei Fahrt über eine Wiese, wobei das Diagramm lediglich der Veranschaulichung dienen soll, da in einer realen Wiese die Signale wesentlich seltener vorkommen, und
- 5 eine perspektivische Ansicht eines an einem landwirtschaftlichen Fahrzeug anzubringenden Positionsgebers mit Reflexlichtschranken.
-
1 zeigt in einer Seitenansicht den schematischen Aufbau einer beispielhaften Vorrichtung nach der vorliegenden Erfindung. Die zur Suche und Erkennung von Jungtieren 1 in einer Wiese 2 dienende Sensoranordnung mit einem Vorfeldsensor 3 und einer Kamera 4 ist an einem Auslegerarm 5 eines mähenden landwirtschaftlichen Fahrzeugs montiert. Da der Vorfeldsensor 3 in Fahrtrichtung 6 des Fahrzeugs vorn sitzt, „sieht“ er eine tierrelevante Geländestelle („Point of Interest“) als erstes. Erst danach passiert die Kamera zur genaueren Untersuchung diese Geländestelle. An dieser Geländestelle befindet sich in 1 ein Jungtier 1 am Boden. Die Kamera 4 ist mit einem Blitzlicht 7 ausgestattet, das zusätzlich zum Kameraauslösungszeitpunkt getriggert werden kann. Das Blitzlicht 7 ist besonders deswegen zweckmäßig, weil in den Lagern der Jungtiere 1 in der Wiese 2 häufig sehr ausgeprägte, durch Sonnenlicht und Schatten verursachte Kontrastverhältnisse anzutreffen sind, so dass die digitalen Kamerachips im VIS-Bereich infolge ihrer eingeschränkten Dynamik keine ausreichende Bildqualität liefern, um die Jungtiere 1 gut zu detektieren.
-
Die Aufnahme der Kamera 4 muss dann erfolgen, wenn die Kamera 4 den Ort der durch den Vorfeldsensor 3 erkannten tierrelevanten Geländestelle mit dem in 1 dargestellten Jungtier 1 durchläuft. Es wird deswegen eine genaue Positionsbestimmung dieser Geländestelle durchgeführt, worauf im weiteren Verlauf dieser Beschreibung noch im Einzelnen eingegangen wird.
-
Als Vorfeldsensor 3 wird vorzugsweise ein pyroelektrischer Infrarot-Sensor verwendet, ähnlich dem des tragbaren Infrarot-Wildretters. Er weist jedoch demgegenüber eine relativ konstante Responsivity-Kurve im Frequenzbereich von 1 Hz - 500 Hz auf, um die Frequenz- bzw. Fahrtgeschwindigkeitsabhängigkeit der Detektionsrate zu unterbinden.
-
Zusätzlich wird dieser Vorfeldsensor 3 um eine Photodiode erweitert, die in Richtung Himmel blickt, um die Empfindlichkeit des als Infrarot-Sensor realisierten Vorfeldsensors 3 zu regulieren. Denn bei starkem Sonnenlicht wird sowohl das Fell des Jungtieres 1 als auch die Wiese erwärmt. Allerdings erwärmt sich ein Tierfell deutlich stärker (bis über 60°C) als Grashalme und Blätter einer Wiese 2 (bis ca. 40°C) - bei einem sonnigen Tag mit ca. 30°C im Schatten. Das Jungtier 1 wird dann trotz weniger empfindlichem Vorfeldsensor 3 noch erkannt; die Fehlalarme bei großblättrigen Pflanzen reduzieren sich aber stark. Am frühen Morgen, wenn noch keine Sonne am Himmel steht, wird eine höhere Empfindlichkeit des Vorfeldsensors 3 benötigt, um die ca. 25°C warmen Tierkörper aus einer durchschnittlich 17°C warmen Umgebung herausfiltern zu können.
-
Ein schneller pyroelektrischer Infrarot-Sensor wird beim Passieren eines Rehkitzes in der Wiese ein Signal ausgeben, das ähnlich zu demjenigen von 2 ist. Pyroelektrische Sensoren reagieren nur auf Temperaturänderungen. Der Wechsel von einer kalten zu einer warmen Stelle äußert sich in einem positiven impulsartigen Amplitudenausschlag, der Wechsel von einer warmen zu einer kalten Stelle dagegen in einem negativen impulsartigen Amplitudenausschlag. An Hand des zeitlichen Abstandes der beiden äußeren Maxima kann über Hinzunahme des Positionssignals die Größe des passierten Objektes, in diesem Fall des in 3 dargestellten Rehkitzes, abgeschätzt werden. In dem in 2 und 3 dargestellten Beispiel der Geländeabtastung mittels eines pyroelektrischen Infrarot-Sensors wird die das Rehkitz aufweisende Geländeszene von 3 von links nach rechts entlang der weißen Linie vom Vorfeldsensor passiert, der infolgedessen das in 2 gezeigte Ausgangssignal Uout [V] in Abhängigkeit von der Wegstrecke x [m] abgibt. Wenn die anhand des Ausgangssignals des Infrarot-Sensors ermittelte Größe zu derjenigen von gesuchten Tieren passt, wird die als Hauptsensor dienende Kamera im nächsten Schritt zur richtigen Zeit getriggert. Wenn nicht, wird diese wegen der Temperaturverhältnisse an sich als tierrelevant angenommene Geländestelle („Point of Interest“) verworfen.
-
4 zeigt in einem Diagramm mögliche Signale des als pyroelektrischer Infrarot-Sensor ausgeführten Vorfeldsensors in Abhängigkeit von der vom Traktor bei der Bearbeitung zurückgelegten Fahrtstrecke [mm]. Die im Bereich a liegenden Impulsausschläge sind zu dicht beieinander, um einem in der Wiese liegenden Rehkitz zu entsprechen. Der Bereich b liegt zwischen zwei signifikanten Impulsausschlägen. In diesem Bereich sind die Ausschläge dazwischen sehr klein. Die Länge zwischen den beiden signifikanten Impulsausschlägen passt zu einem in der Wiese verborgenen Rehkitz. In diesem Fall muss also ein zu einer Kameratriggerung führendes Detektionssignal ausgelöst werden. Der Bereich c entspricht im Hinblick auf die darin auftretenden impulsartigen Signale dem Bereich b, ist jedoch zwischen dem großen positiven und dem großen negativen Impulsausschlag zu lang für ein in der Wiese verstecktes Rehkitz. Durch diese neuartige Filterung der Detektionssignale der Vorfeldsensoren kann die Zahl der falschen Alarme, die eine Kameratriggerung hervorrufen würden, reduziert werden.
-
Alternativ oder in Kombination zu einem pyroelektrischen Infrarot-Sensor kann auch ein Mikrowellen-Radarsensor als Vorfeldsensor verwendet werden. Gerichtete Mikrowellenstrahlung einer bestimmten Frequenz wird von einer Antenne in Richtung zur Oberfläche (z.B. Erdboden) unter einem bestimmten Einfallswinkel ausgestrahlt. Ein schräger Einfall der Wellen zur Oberfläche bringt den Vorteil, dass die Wellen von einer ebenen, stark reflektierenden Oberfläche, z.B. einer Wasserpfütze, nicht zur Antenne zurück reflektiert werden. An der Empfangsantenne werden die von der Bodenoberfläche und die vom verdeckenden Material (z.B. Gras) gestreuten Mikrowellen und die von einem interessierenden Objekt reflektierten Wellen empfangen. Durch das Mischen des Empfangssignals mit dem ursprünglich ausgesendeten Signal erhält man ein Signal mit der Dopplerfrequenz, was den Vorteil bringt, dass nur relativ zum landwirtschaftlichen Fahrzeug bewegte Objekte einen Beitrag zur Detektion liefern. Statische Objekte wie Auslegerarm, Sensoren oder die direkte Signalüberkopplung zwischen der Sende- und Empfangsantenne erzeugen bei der Mischung einen Gleichanteil, der nicht dopplerrelevant ist und herausgefiltert werden kann. Der ideale Frequenzbereich der Mikrowellenstrahlung hängt von den Materialeigenschaften des Bodens, des verdeckenden Materials und der Größe des zu detektierenden Objektes ab. Der Öffnungswinkel der Antenne wird idealerweise so groß gewählt, dass der ausgeleuchtete Bereich auf der Oberfläche genauso groß ist wie die Projektion des zu detektierenden interessierenden Objekts auf dem Boden. Es können Objekte mit hohem Wassergehalt, wie z.B. Lebewesen, oder Metallteile detektiert werden. Als verwendbare Mikrowellen-Frequenzen kommen nur Frequenzen aus lizenzfreien ISM-Bändern in Frage. Die vorteilhaft gewählte Frequenz liegt hier bei 5,8 GHz, da weniger Störungen durch Streuung am Bewuchs als z.B. bei 24 GHz auftreten. Außerdem sind bei niedrigeren Frequenzen günstigere Systemkomponenten erhältlich.
-
Als Positionsgeber kommen vorzugsweise zwei Varianten in Betracht.
-
Die erste Variante ist ein Positionsgeber, der die Umdrehungen eines in ständigem Bodenkontakt befindlichen Rades eines landwirtschaftlichen Fahrzeugs misst. Hier bietet sich in vorteilhafter Weise ein auf die Achse eines solchen Rades montierter Integralgeber an.
-
Alternativ kann aber auch ein Positionsgeber verwendet werden, wie er in 5 abgebildet ist. Hier werden zwei Reflexlichtschranken 8 verwendet, die ein Schwarz-Weiß-Streifenmuster 9 abtasten, das am Rand eines sich in ständigem Bodenkontakt befindlichen, auf einer Achse 10 montierten Rades 11 angebracht ist. Es sind zwei Reflexlichtschranken 8 erforderlich, damit Vorwärts- und Rückwärtsbewegungen des landwirtschaftlichen Fahrzeugs bei der Zählung der überstrichenen Streifen berücksichtigt werden können.
-
Die zweite Variante eines Positionsgebers besteht in der Kombination eines Satellitennavigationsempfängers (Differential GPS oder Galileo) mit einem Beschleunigungssensor. Der Beschleunigungssensor kann hohe Beschleunigungen sehr gut wahrnehmen und genau bestimmen. Bei langsamen Änderungen wird die Messung ungenau. Mit der zusätzlichen Information eines Satellitennavigationsempfängers kann dieses Defizit ausgeglichen werden. Denn dieses System kann langsame Beschleunigungsänderungen feststellen, ist aber für sich allein zu ungenau für Zentimeterauflösung, die für Vorrichtungen gemäß der vorliegenden Erfindung benötigt wird.
-
Die Positionsbestimmung wird zur Steuerung des Zeitpunkts des Kameraauslösungszeitpunkts verwendet. Dabei wird die Geometrie der aus Vorfeldsensor/en und Kamera/s bestehenden Sensoranordnung berücksichtigt, also der Abstand zwischen Vorfeldsensor/en (gegebenenfalls unter Berücksichtigung der „Blickrichtung“ - vor allem beim Mikrowellen-Radarsensor) und Kamera/s.
-
Bezugszeichenliste
-
- 1
- Jungtier; Tier; Rehkitz
- 2
- Wiese; Feld
- 3
- Vorfeldsensor
- 4
- Kamera
- 5
- Auslegerarm
- 6
- Fahrtrichtung
- 7
- Blitzlicht
- 8
- Reflexlichtschranke
- 9
- Schwarz-Weiß-Streifenmuster
- 10
- Achse
- 11
- Rad