DE102007054368A1 - Steuerarchitektur zur Auswahl eines optimalen Modus oder einer optimalen Übersetzung und Antriebsdrehzahl für ein Hybridantriebsstrangsystem - Google Patents

Steuerarchitektur zur Auswahl eines optimalen Modus oder einer optimalen Übersetzung und Antriebsdrehzahl für ein Hybridantriebsstrangsystem Download PDF

Info

Publication number
DE102007054368A1
DE102007054368A1 DE102007054368A DE102007054368A DE102007054368A1 DE 102007054368 A1 DE102007054368 A1 DE 102007054368A1 DE 102007054368 A DE102007054368 A DE 102007054368A DE 102007054368 A DE102007054368 A DE 102007054368A DE 102007054368 A1 DE102007054368 A1 DE 102007054368A1
Authority
DE
Germany
Prior art keywords
operating range
preferred
torque
operating
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102007054368A
Other languages
English (en)
Inventor
Anthony H. Ann Arbor Heap
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of DE102007054368A1 publication Critical patent/DE102007054368A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • B60W2050/0006Digital architecture hierarchy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/102Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts the input or output shaft of the transmission is connected or connectable to two or more differentials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/104Power split variators with one end of the CVT connected or connectable to two or more differentials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/10Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts
    • F16H2037/105Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts characterised by number of modes or ranges, e.g. for compound gearing
    • F16H2037/106Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing at both ends of intermediate shafts characterised by number of modes or ranges, e.g. for compound gearing with switching means to provide two variator modes or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2041Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with four engaging means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Abstract

Es sind ein Verfahren und ein Steuersystem für ein Antriebsstrangsystem vorgesehen, das eine Brennkraftmaschine und einen ersten und zweiten Elektromotor und ein elektromechanisches Getriebe umfasst, das selektiv betreibbar ist, um Drehmoment dazwischen zu übertragen, und in mehreren Modi mit fester Übersetzung und stufenlos verstellbaren Modi betreibbar ist. Das Verfahren umfasst, dass ein Ausgang des Getriebes, eine Bedienerdrehmomentforderung und verfügbare Batterieleistung überwacht werden. Es wird zumindest ein zulässiger Betriebsbereichszustand identifiziert, und es wird ein Drehmomentbereich für jeden zulässigen Betriebsbereichszustand bestimmt. Es werden bevorzugte Betriebsbedingungen und bevorzugte Kosten für jeden zulässigen Betriebsbereichszustand bestimmt. Es wird ein bevorzugter Betriebsbereichszustand auf der Basis der bevorzugten Kosten für die zulässigen Betriebsbereichszustände ausgewählt.

Description

  • TECHNISCHES GEBIET
  • Diese Erfindung betrifft allgemein Steuersysteme für Antriebsstrangsteuersysteme, die elektromechanische Getriebe anwenden.
  • HINTERGRUND DER ERFINDUNG
  • Antriebsstrangarchitekturen umfassen Drehmomenterzeugungseinrichtungen, die Brennkraftmaschinen und Elektromotoren umfassen, die Drehmoment durch eine Getriebeeinrichtung auf einen Fahrzeugendantrieb übertragen. Ein derartiges Getriebe umfasst ein kombiniert leistungsverzweigtes, elektromechanisches Two-Mode-Getriebe (two-mode, compound-split, electro-mechanical transmission), das ein Antriebselement, um Bewegungsdrehmoment von einer Antriebsaggregat-Leistungsquelle, typischerweise einer Brennkraftmaschine, aufzunehmen, und ein Abtriebselement benutzt, um Bewegungsdrehmoment von dem Getriebe an den Fahrzeugendantrieb abzugeben. Elektromotoren, die funktional mit einer Speichereinrichtung für elektrische Energie verbunden sind, umfassen Motoren/Generatoren, die betreibbar sind, um Bewegungsdrehmoment zum Eingang in das Getriebe unabhängig von dem Drehmomenteingang von der Brennkraftmaschine zu erzeugen. Die Elektromotoren sind darüber hinaus betreibbar, um kinetische Energie des Fahrzeugs, die durch den Fahrzeugendantrieb übertragen wird, in ein elektri sches Energiepotenzial umzuformen, das in der Speichereinrichtung für elektrische Energie gespeichert werden kann. Ein Steuersystem überwacht verschiedene Eingänge von dem Fahrzeug und dem Bediener und stellt eine Steuerung des Betriebs des Antriebsstrangsystems bereit, die eine Steuerung des Gangschaltens des Getriebes, eine Steuerung der Drehmomenterzeugungseinrichtungen und ein Regeln des elektrischen Leistungsaustauschs zwischen der Speichereinrichtung für elektrische Energie und den Elektromotoren umfasst.
  • Die beispielhaften elektromechanischen Getriebe sind selektiv in Modi mit fester Übersetzung und stufenlos verstellbaren Modi durch Betätigung der Drehmomentübertragungskupplungen betreibbar, die typischerweise einen Hydraulikkreis anwenden, um eine Kupplungsbetätigung zu bewirken. Ein Modus mit fester Übersetzung tritt auf, wenn die Drehzahl des Getriebeabtriebselements, typischerweise aufgrund einer Betätigung von einer oder mehreren Drehmomentübertragungskupplungen, ein festes Verhältnis der Drehzahl des Antriebselements von der Maschine ist. Ein stufenlos verstellbarer Modus tritt auf, wenn die Drehzahl des Getriebeabtriebselements auf der Basis von Betriebsdrehzahlen von einem oder mehreren Elektromotoren variabel ist. Die Elektromotoren können mit der Abtriebswelle über Betätigung einer Kupplung oder durch eine direkte Verbindung verbunden sein. Die Kupplungsbetätigung und -deaktivierung wird typischerweise durch einen Hydraulikkreis bewirkt.
  • Ingenieure, die Antriebsstrangsysteme mit elektromechanischen Getrieben implementieren, stehen vor der Aufgabe, Steuerschemata zu implementieren, um Systemzustände effektiv zu überwachen und den Betrieb von verschiedenen Systemen und Aktoren zu steuern, um den Antriebsstrangbetrieb effektiv zu steuern. Ein derartiges System wird nachstehend beschrieben.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • Gemäß einer Ausführungsform der Erfindung sind ein Verfahren und eine Vorrichtung zum Steuern des Betriebes eines Antriebsstrangssystems vorgesehen, das eine Drehmomentübertragungseinrichtung umfasst, die betreibbar ist, um einen Drehmomenteingang von mehreren Drehmomenterzeugungseinrichtungen zu übertragen.
  • Das Verfahren umfasst, dass ein Ausgang des Getriebes, eine Bedienerdrehmomentforderung und verfügbare Batterieleistung überwacht werden. Es wird zumindest ein zulässiger Betriebsbereichszustand identifiziert, und es wird ein Drehmomentbereich für jeden zulässigen Betriebsbereichszustand bestimmt. Es werden bevorzugte Betriebsbedingungen und bevorzugte Kosten für jeden zulässigen Betriebsbereichszustand bestimmt. Es wird ein bevorzugter Betriebsbereichszustand auf der Basis der bevorzugten Kosten für die zulässigen Betriebsbereichszustände ausgewählt.
  • Diese und andere Aspekte der Erfindung werden Fachleuten beim Lesen und Verstehen der folgenden ausführlichen Beschreibung der Ausführungsformen deutlich werden.
  • KURZBESCHREIBUNG DER ZEICHNUNGEN
  • Die Erfindung kann physikalische Form in bestimmten Teilen und einer bestimmten Anordnung von Teilen annehmen, wobei eine Ausführungsform derselben in den begleitenden Zeichnungen, die einen Teil hiervon bilden, ausführlich beschrieben und dargestellt ist, und wobei:
  • 1 ein schematisches Diagramm eines beispielhaften Antriebsstrangs gemäß der vorliegenden Erfindung ist;
  • 2 ein schematisches Diagramm einer beispielhaften Architektur für ein Steuersystem und einen Antriebsstrang gemäß der vorliegenden Erfindung ist;
  • 3 eine graphische Darstellung gemäß der vorliegenden Erfindung ist; und
  • 4 bis 8 schematische Flussdiagramme gemäß der vorliegenden Erfindung sind.
  • DETAILLIERTE BESCHREIBUNG EINER AUSFÜHRUNGSFORM DER ERFINDUNG
  • In den Zeichnungen, in denen die Darstellungen allein zum Zweck der Veranschaulichung der Erfindung dienen und nicht zum Zweck selbige einzuschränken, zeigen die 1 und 2 ein System mit einer Brennkraftmaschine 14, einem Getriebe 10, einem Steuersystem und einem Endantrieb, das gemäß einer Ausführungsform der vorliegenden Erfindung gebaut worden ist.
  • Mechanische Aspekte des beispielhaften Getriebes 10 sind ausführlich in dem gemeinschaftlich übertragenen U.S.-Patent Nr. 6,953,409 mit dem Titel "Two-Mode, Compound-Split, Hybrid Electro-Mechanical Transmission having Four Fixed Ratios" (Kombiniert leistungsverzweigtes, elektromechanisches Two-Mode-Hybridgetriebe mit vier festen Übersetzungsverhältnissen), dessen Offenbarungsgehalt hierin durch Bezugnahme miteingeschlossen ist, offenbart. Das beispielhafte, kombiniert leistungsverzweigte, elektromechanische Two-Mode-Hybridgetriebe, das die Konzepte der vorliegenden Erfindung ausführt, ist in 1 dargestellt und allgemein mit dem Bezugszeichen 10 bezeichnet. Das Getriebe 10 umfasst eine Antriebswelle 12, die eine Antriebsdrehzahl NI aufweist und die bevorzugt durch die Brennkraftmaschine 14 angetrieben ist. Die Maschine 14 weist eine Kurbelwelle auf, die eine charakteristische Drehzahl NE besitzt und funktional mit der Getriebeantriebswelle 12 verbunden ist. Wenn eine Kupplungseinrichtung (die nicht gezeigt ist) die Maschine und das Getriebe funktional verbindet, können die Maschinendrehzahl NE und das Maschinenabtriebselement TE von der Getriebeantriebsdrehzahl NI und dem Getriebeantriebsdrehmoment TI abweichen.
  • Das Getriebe 10 benutzt drei Planetenradsätze 24, 26 und 28 und vier Drehmomentübertragungseinrichtungen, d.h. Kupplungen C1 70, C2 62, C3 73 und C4 75. Ein elektrohydraulisches Steuersystem 42, das bevorzugt von dem Getriebesteuermodul 17 gesteuert ist, dient dazu, die Betätigung und Deaktivierung der Kupplungen zu steuern. Die Kupplungen C2 und C4 umfassen bevorzugt hydraulisch betätigte rotierende Reibkupplungen. Die Kupplungen C1 und C3 umfassen bevorzugt hydraulisch betätigte feststehende Einrichtungen, die an dem Getriebegehäuse 68 an Masse festgelegt sind.
  • Die drei Planetenradsätze 24, 26 und 28 umfassen jeweils einfache Planetenradsätze. Darüber hinaus sind der erste und zweite Planetenradsatz 24 und 26 darin zusammengesetzt, dass das innere Zahnradelement des ersten Planetenradsatzes 24 mit einem äußeren Zahnradelement des zweiten Planetenradsatzes 26 zusammengefügt ist und mit einem ersten Elektromotor, der einen als MG-A bezeichneten Motor/Generator 56 umfasst, verbunden ist.
  • Die Planetenradsätze 24 und 26 sind darüber hinaus darin zusammengesetzt, dass der Träger 36 des ersten Planetenradsatzes 24 durch eine Welle 60 mit dem Träger 44 des zweiten Planetenradsatzes 26 zusammengefügt ist. Daher sind die Träger 36 und 44 des ersten und zweiten Planetenradsatzes 24 bzw. 26 zusammengefügt. Die Welle 60 ist auch selektiv mit dem Träger 52 des dritten Planetenradsatzes 28 durch die Kupplung C2 62 verbunden. Der Träger 52 des dritten Planetenradsatzes 28 ist direkt mit dem Getriebeabtriebselement 64 verbunden, das eine Abtriebsdrehzahl NO aufweist. Ein inneres Zahnradelement des zweiten Planetenradsatzes 26 ist mit einem inneren Zahnradelement des dritten Planetenradsatzes 28 durch eine Hohlwelle 66 verbunden, die die Welle 60 umgibt, und ist mit einem zweiten Elektromotor verbunden, der einen als MG-B bezeichneten Motor/Generator 72 umfasst.
  • Alle Planetenradsätze 24, 26 und 28 sowie MG-A 56 und MG-B 72 sind koaxial orientiert, wie etwa um die axial angeordnete Welle 60. MG-A und MG-B sind beide von einer kreisringförmigen Konfiguration, die zulässt, dass diese die drei Planetenradsätze 24, 26 und 28 derart umgeben können, dass die Planetenradsätze 24, 26 und 28 radial innen von MG-A und MG-B angeordnet sind. Das Getriebeabtriebselement 64 ist funktional mit einem Fahrzeugendantrieb 90 verbunden, um Bewegungsdrehmoment TO an Fahrzeugräder zu liefern. Jede Kupplung ist bevorzugt hydraulisch betätigt, wobei sie Hydraulikdruckfluid von einer Pumpe, die nachstehend beschrieben ist, über einen elektrohydraulischen Steuerkreis 42 aufnimmt.
  • Das Getriebe 10 nimmt Antriebsdrehmoment von den Drehmomenterzeugungseinrichtungen, die die Brennkraftmaschine 14 und den MG-A 56 und den MG-B 72 umfassen, und welches als 'TI', 'TA' bzw. 'TB' bezeichnet ist, als ein Ergebnis einer Energieumwandlung aus Kraftstoff oder elektri schem Potenzial, das in einer Speichereinrichtung für elektrischen Energie (ESD) 74 gespeichert ist, auf. Die ESD 74 umfasst typischerweise eine oder mehrere Batterien. Andere Speichereinrichtungen für elektrische Energie und elektrochemische Energie, die die Fähigkeit haben, elektrische Leistung zu speichern und elektrische Leistung abzugeben, können anstelle der Batterien verwendet werden, ohne die Konzepte der vorliegenden Erfindung zu verändern. Die ESD 74 ist vorzugsweise auf der Basis von Faktoren bemessen, die regenerative Anforderungen, Anwendungsgegebenheiten, die mit typischer Straßensteigung und Temperatur in Beziehung stehen, und Antriebsanforderungen, wie etwa Emissionen, Hilfskraftunterstützung und elektrischer Bereich/Reichweite, umfassen. Die ESD 74 ist mit dem TPIM 19 über Gleichstrom-Übertragungsleiter 27 hochspannungs-gleichstromgekoppelt. Das TPIM 19 ist ein Element des Steuersystems, das nachstehend anhand von 2 beschrieben ist. Das TPIM 19 überträgt elektrische Energie auf und von MG-A 56 durch Übertragungsleiter 29, und das TPIM 19 überträgt ähnlich elektrische Energie auf und von MG-B 72 durch Übertragungsleiter 31. Elektrischer Strom ist auf die oder von der ESD 74 dementsprechend übertragbar, ob die ESD 74 aufgeladen oder entladen wird. Das TPIM 19 umfasst das Paar Stromumrichter und jeweilige Motorsteuermodule, die konfiguriert sind, um Motorsteuerbefehle zu empfangen und daraus Umrichterzustände zu steuern und somit eine Motorantriebs- oder Regenerationsfunktionalität bereitzustellen.
  • Bei der Motorantriebssteuerung empfängt der jeweilige Umrichter Strom von den Gleichstrom-Getriebeleitungen und liefert Wechselstrom an den jeweiligen Elektromotor, d.h. MG-A und MG-B, über Übertragungsleiter 29 und 31. Bei der Regenerationssteuerung nimmt der jeweilige Umrichter Wechselstrom von dem Elektromotor über Übertragungsleiter 29 und 31 auf und überträgt Strom auf die Gleichstromleitungen 27. Der Netto- Gleichstrom, der zu oder von den Umrichtern geliefert wird, bestimmt den Aufladungs- oder Entladungsbetriebsmodus der Speichereinrichtung für elektrische Energie 74. Bevorzugt sind MG-A 56 und MG-B 72 Dreiphasen-Wechselstrommaschinen, die jeweils einen Rotor aufweisen, der derart betreibbar ist, dass er sich in einem an einem Gehäuse des Getriebes montierten Stator dreht. Die Umrichter umfassen bekannte komplementäre Einrichtungen mit Dreiphasen-Leistungselektronik.
  • In 2 ist ein schematisches Blockdiagramm des Steuersystems gezeigt, das eine verteilte Steuermodularchitektur umfasst. Die nachstehend beschriebenen Elemente umfassen einen Teilsatz einer gesamten Fahrzeugsteuerarchitektur und dienen dazu, eine koordinierte Systemsteuerung des hierin beschriebenen Antriebsstrangsystems bereitzustellen. Das Steuersystem dient dazu, sachdienliche Informationen und Eingänge zu synthetisieren und Algorithmen auszuführen, um verschiedene Aktoren zu steuern und somit Steuerziele zu erreichen, die solche Parameter umfassen wie die Kraftstoffwirtschaftlichkeit, Emissionen, Leistungsvermögen, Fahreigenschaften und den Schutz von Bauteilen, die die Batterien der ESD 74 und MG-A und MG-B 56, 72 umfassen. Die verteilte Steuermodularchitektur umfasst ein Maschinensteuermodul ('ECM' von Engine Control Module) 23, ein Getriebesteuermodul ('TCM' von Transmission Control Module) 17, ein Batteriepaketsteuermodul ('BPCM' von Battery Pack Control Module) 21 und ein Getriebestromumrichtermodul ('TPIM' von Transmission Power Inverter Module) 19. Ein Hybridsteuermodul ('HCP' von Hybrid Control Module) 5 liefert eine übergreifende Steuerung und Koordination der vorstehend erwähnten Steuermodule. Es gibt eine Benutzerschnittstelle ('UI' von User Interface) 13, die funktional mit mehreren Einrichtungen verbunden ist, durch die ein Fahrzeugbediener typischerweise den Betrieb des Antriebsstrangs, der das Getriebe 10 umfasst, über eine Forderung nach einem Drehmomentausgang steuert oder an weist. Beispielhafte Fahrzeugbediener-Eingabeeinrichtungen für die UI 13 umfassen ein Gaspedal, ein Bremspedal, eine Getriebegangwahleinrichtung und eine Fahrzeugfahrtregelung. Jedes der vorstehend erwähnten Steuermodule kommuniziert mit anderen Steuermodulen, Sensoren und Aktoren über einen Bus 6 eines lokalen Netzes ('LAN' von Local Area Network). Der LAN-Bus 6 erlaubt eine strukturierte Übermittlung von Steuerparametern und Befehlen zwischen den verschiedenen Steuermodulen. Das besondere benutzte Kommunikationsprotokoll ist anwendungsspezifisch. Der LAN-Bus und geeignete Protokolle sorgen für eine robuste Nachrichtenübermittlung und Mehrfach-Steuermodul-Schnittstellenbildung zwischen den vorstehend erwähnten Steuermodulen und anderen Steuermodulen, die eine Funktionalität, wie etwa Antiblockierbremsen, Traktionssteuerung und Fahrzeugstabilität, bereitstellen.
  • Das HCP 5 stellt eine übergreifende Steuerung des Hybrid-Antriebsstrangsystems bereit, wobei es dazu dient, einen Betrieb des ECM 23, des TCM 17, des TPIM 19 und des BPCM 21 zu koordinieren. Auf der Basis von verschiedenen Eingangssignalen von der UI 13 und dem Antriebsstrang, der das Batteriepaket umfasst, erzeugt das HCP 5 verschiedene Befehle, die umfassen: eine Bedienerdrehmomentforderung ('TO_REQ'), die an den Endabtrieb 90 ausgegeben wird, das Antriebsdrehmoment TI, das von der Maschine ausgeht, das Kupplungsdrehmoment ('TCL_N') für die N verschiedenen Drehmomentübertragungskupplungen C1, C2, C3, C4 des Getriebes 10; und Motorantriebsdrehmomente TA und TB für MG-A und MG-B. Das TCM 17 ist funktional mit dem elektrohydraulischen Steuerkreis 42 verbunden, wobei eingeschlossen ist, dass verschiedene Druckerfassungseinrichtungen (die nicht gezeigt sind) überwacht werden und Steuersignale für verschiedene Solenoide erzeugt und angewendet werden, um darin enthaltene Druckschalter und Steuerventile zu steuern.
  • Das ECM 23 ist funktional mit der Maschine 14 verbunden und arbeitet, um Daten von einer Vielfalt von Sensoren zu beschaffen bzw. eine Vielfalt von Aktoren der Maschine 14 über mehrere diskrete Leitungen zu steuern, die gemeinsam als Sammelleitung 35 gezeigt sind. Das ECM 23 empfängt den Maschinendrehmomentbefehl von dem HCP 5 und erzeugt ein Soll-Achsdrehmoment und eine Angabe des Ist-Antriebsdrehmoments TI für das Getriebe, die an das HCP 5 übermittelt wird. Der Einfachheit halber ist das ECM 23 derart gezeigt, dass es allgemein eine bidirektionale Schnittstelle mit der Brennkraftmaschine 14 über Sammelleitung 35 aufweist. Verschiedene andere Parameter, die von dem ECM 23 erfasst werden können, umfassen die Maschinenkühlmitteltemperatur, die Maschinenantriebsdrehzahl NE für Welle 12, die sich zu der Getriebeantriebsdrehzahl NI umsetzen, den Krümmerdruck, die Umgebungslufttemperatur und den Umgebungsdruck. Verschiedene Aktoren, die von dem ECM 23 gesteuert werden können, umfassen Kraftstoffeinspritzvorrichtungen, Zündmodule und Drosselklappensteuermodule.
  • Das TCM 17 ist funktional mit dem Getriebe 10 verbunden und arbeitet, um Daten von einer Vielfalt von Sensoren zu beschaffen und Befehlssignale an das Getriebe zu liefern. Eingänge von dem TCM 17 in das HCP 5 umfassen geschätzte Kupplungsdrehmomente (TCL_EST_N) für jede der N Kupplungen C1, C2, C3 und C4 und eine Drehzahl NO der Abtriebswelle 64. Andere Aktoren und Sensoren können verwendet werden, um zusätzliche Information von dem TCM an das HCP zu Steuerzwecken zu liefern. Das TCM 17 überwacht Eingänge von Druckschaltern und betätigt selektiv Drucksteuersolenoide und Schaltsolenoide, um verschiedene Kupplungen zu betätigen und somit verschiedene Getriebebetriebsmodi zu erreichen, wie es nachstehend beschrieben ist.
  • Das BPCM 21 ist signaltechnisch mit einem oder mehreren Sensoren verbunden, die dazu dienen, elektrische Strom- oder Spannungsparameter der ESD 74 zu überwachen und somit Information über den Zustand der Batterien an das HCP 5 zu liefern. Derartige Informationen umfassen den Batterieladezustand, die Batteriespannung und die verfügbare Batterieleistung.
  • Das TPIM 19 umfasst die zuvor erwähnten Stromumrichter und Motorsteuermodule, die konfiguriert sind, um Motorsteuerbefehle zu empfangen und daraus Umrichterzustände zu steuern und somit eine Motorantriebs- oder Regenerationsfunktionalität bereitzustellen. Das TPIM 19 ist betreibbar, um die Drehmomentbefehle für MG-A 56 und MG-B 72, d.h. TA und TB, auf der Basis eines Eingangs von dem HCP 5 zu erzeugen, das durch eine Bedienereingabe durch die UI 13 und Systembetriebsparameter angesteuert wird. Die Motordrehmomentbefehle für MG-A und MG-B werden durch das Steuersystem implementiert, das das TPIM 19 umfasst, um MG-A und MG-B zu steuern. Einzelne Motordrehzahlsignale für MG-A und MG-B werden von dem TPIM 19 aus der Motorphaseninformation oder von herkömmlichen Rotationssensoren abgeleitet. Das TPIM 19 bestimmt und übermittelt Motordrehzahlen an das HCP 5. Die Speichereinrichtung für elektrische Energie 74 ist an das TPIM 19 über Gleichstromleitungen 27 hochspannungs-gleichstromgekoppelt. Elektrischer Strom ist zu oder von dem TPIM 19 dementsprechend übertragbar, ob die ESD 74 aufgeladen oder entladen wird.
  • Jedes der vorstehend erwähnten Steuermodule ist vorzugsweise ein Vielzweck-Digitalcomputer, der im Allgemeinen einen Mikroprozessor oder eine zentrale Verarbeitungseinheit, Speichermedien, die einen Nurlesespeicher (ROM), einen Direktzugriffsspeicher (RAM) und einen elektrisch programmierbaren Nurlesespeicher (EPROM) umfassen, einen Hochge schwindigkeitstaktgeber, eine Analog/Digital-(A/D-)- und Digital/Analog-(D/A)-Schaltung, eine Eingabe/Ausgabe-Schaltung und -Vorrichtungen (I/O) und eine geeignete Signalaufbereitungs- und Pufferschaltung umfasst. Jedes Steuermodul weist einen Satz Steueralgorithmen auf, die residente Programmanweisungen und Kalibrierungen umfassen, die in dem ROM gespeichert sind und ausgeführt werden, um die jeweiligen Funktionen jedes Computers zu erfüllen. Die Informationsübertragung zwischen den verschiedenen Computern wird bevorzugt unter Verwendung des vorstehend erwähnten LAN 6 bewerkstelligt.
  • Algorithmen zur Steuerung und Zustandsschätzung in jedem der Steuermodule werden typischerweise während voreingestellter Schleifenzyklen ausgeführt, so dass jeder Algorithmus zumindest einmal in jedem Schleifenzyklus ausgeführt wird. Algorithmen, die in den nichtflüchtigen Speichereinrichtungen gespeichert sind, werden durch eine der zentralen Verarbeitungseinheiten ausgeführt und dienen dazu, Eingänge von den Erfassungseinrichtungen zu überwachen und Steuer- und Diagnoseroutinen zur Steuerung des Betriebs der jeweiligen Einrichtung unter Verwendung voreingestellter Kalibrierwerte auszuführen. Schleifenzyklen werden typischerweise in regelmäßigen Intervallen, beispielsweise alle 3,125, 6,25, 12,5, 25 und 100 Millisekunden ('ms'), während des fortwährenden Maschinen- und Fahrzeugbetriebs ausgeführt. Alternativ können Algorithmen in Abhängigkeit von dem Auftreten eines Ereignisses ausgeführt werden.
  • Das beispielhafte, kombiniert leistungsverzweigte, elektromechanische Two-Mode-Getriebe (two-mode, compound-split, electro-mechanical transmission) arbeitet in mehreren Betriebsbereichszuständen, die Betriebsmodi mit fester Übersetzung und stufenlos verstellbare Betriebsmodi bei ein- und ausgeschalteter Maschine umfassen, wie es anhand von
  • 1 und Tabelle 1 unten beschrieben ist. Tabelle 1
    Getriebebetriebsbereichszustand Betätigte Kupplungen
    Modus I – Maschine Aus (M1_Eng_Off) C1 70
    Modus I – Maschine Ein (M1_Eng_On) C1 70
    Festes Verhältnis 1 (GR1) C1 70 C4 75
    Festes Verhältnis 2 (GR2) C1 70 C2 62
    Modus II – Maschine Aus (M2_Eng_Off) C2 62
    Modus II – Maschine Ein (M2_Eng_On) C2 62
    Festes Verhältnis 3 (GR3) C2 62 C4 75
    Festes Verhältnis 4 (GR4) C2 62 C3 73
  • Die verschiedenen in der Tabelle beschriebenen Getriebebetriebsbereichszustände geben an, welche der spezifischen Kupplungen C1, C2, C3 und C4 für jeden der Betriebsbereichszustände eingerückt oder betätigt sind. Zusätzlich können MG-A und MG-B in verschiedenen Getriebebetriebsbereichszuständen jeweils als Elektromotoren arbeiten, um Bewegungsdrehmoment zu erzeugen, oder als Generator, um elektrische Energie zu erzeugen. Ein erster Modus, d.h. Modus I, wird gewählt, wenn die Kupplung C1 70 betätigt wird, um das äußere Zahnradelement des dritten Planetenradsatzes 28 "an Masse festzulegen". Die Maschine 14 kann entweder ein oder aus sein. Ein zweiter Modus, d.h. Modus II, wird gewählt, wenn die Kupplung C1 70 gelöst wird und die Kupplung C2 62 gleichzeitig betätigt wird, um die Welle 60 mit dem Träger des dritten Planetenradsat zes 28 zu verbinden. Wieder kann die Maschine 14 entweder ein oder aus sein. Zu Zwecken der Beschreibung ist „Maschine Aus" dadurch definiert, dass die Maschinenantriebsdrehzahl NE gleich null Umdrehungen pro Minute (RPM oder U/min) ist, d.h. die Maschinenkurbelwelle nicht rotiert. Andere Faktoren außerhalb des Schutzumfangs der Erfindung beeinflussen, wann die Elektromotoren 56, 72 als Motoren und Generatoren arbeiten, und werden hierin nicht besprochen.
  • Das Steuersystem, das vorwiegend in 2 gezeigt ist, ist betreibbar, um einen Bereich von Getriebeabtriebsdrehzahlen an Welle 64 von relativ langsam bis relativ schnell innerhalb jedes Betriebsbereichszustands bereitzustellen. Die Kombination von zwei Modi mit einem Abtriebsdrehzahlbereich von langsam bis schnell in jedem Bereichszustand lässt zu, dass das Getriebe 10 ein Fahrzeug von einer stehenden Bedingung aus bis zu Autobahngeschwindigkeiten antreiben kann und verschiedene andere Forderungen erfüllt, wie sie zuvor beschrieben wurden. Zusätzlich koordiniert das Steuersystem den Betrieb des Getriebes 10, um synchronisierte Schaltvorgänge zwischen den Modi zuzulassen.
  • Der erste und zweite Betriebsmodus beziehen sich auf Umstände, unter denen die Getriebefunktionen durch eine Kupplung, d.h. entweder Kupplung C1 62 oder C2 70, und durch die gesteuerte Drehzahl und das gesteuerte Drehmoment der Elektromotoren 56 und 72 gesteuert werden, was als ein stufenlos verstellbarer Getriebemodus bezeichnet werden kann. Nachstehend werden bestimmte Betriebsbereiche beschrieben, bei denen feste Übersetzungsverhältnisse erreicht werden, indem eine zusätzliche Kupplung angewandt wird. Diese zusätzliche Kupplung kann Kupplung C3 73 oder C4 75 sein, wie es in der Tabelle oben gezeigt ist.
  • Wenn die zusätzliche Kupplung angewandt wird, wird ein Betrieb mit festem Verhältnis von Antriebsdrehzahl zu Abtriebsdrehzahl des Getriebes, d.h. NI/NO, erreicht. Die Rotationen der Motoren MG-A und MG-B 56, 72 hängen von der internen Rotation des Mechanismus ab, wie durch das Kuppeln definiert und proportional zu der Antriebsdrehzahl, die an der Welle 12 gemessen wird. Die Motoren MG-A und MG-B arbeiten als Motoren oder Generatoren. Sie sind vollständig unabhängig von dem Leistungsfluss von der Maschine zu dem Abtrieb, wodurch ermöglicht wird, dass beide Motoren sind, beide als Generatoren arbeiten oder irgendeine Kombination davon. Dies lässt zu, dass beispielsweise während des Betriebs Festes Verhältnis GR1 die Bewegungsausgangsleistung von dem Getriebe an Welle 64 durch Leistung von der Maschine und Leistung von MG-A und MG-B durch den Planetenradsatz 28 bereitgestellt wird, indem elektrische Leistung von der ESD 74 übertragen wird.
  • In 3 sind verschiedene Getriebebetriebsmodi als Funktion der Getriebeabtriebsdrehzahl NO und der Getriebeantriebsdrehzahl NI für das beispielhafte in den 1 und 2 gezeigte Antriebsstrangsteuersystem aufgetragen. Der Betrieb Festes Verhältnis ist als einzelne Linien für jedes der spezifischen Übersetzungsverhältnisse GR1, GR2, GR3 und GR4 gezeigt, wie es anhand von Tabelle 1 oben beschrieben ist. Der Betrieb im stufenlos verstellbaren Modus ist als Betriebsbereiche für jeden von Modus I und Modus II gezeigt. Der Getriebebetriebsbereichszustand wird zwischen einem Betrieb Festes Verhältnis und einem Betrieb in einem stufenlos verstellbaren Modus umgeschaltet, indem spezifische Kupplungen aktiviert oder deaktiviert werden. Das Steuersystem ist betreibbar, um einen spezifischen Getriebebetriebsmodus auf der Basis verschiedener Kriterien unter Verwendung von Algorithmen und Kalibrierwerten zu bestimmen, die von dem Steuersystem abgearbeitet werden, und liegt außerhalb des Umfangs dieser Erfindung. Die Auswahl des Betriebsbereichszustands des Getriebes hängt vorwiegend von der Bedienerdrehmomentforderung TO_REQ und der Fähigkeit des Antriebsstrangs, dieser Abtriebsdrehmomentforderung nachzukommen, ab.
  • Unter Bezugnahme auf Tabelle 1 und wieder auf 3 umfasst der Niederbereichsbetriebszustand eine selektive Betätigung der Kupplungen C2, C1 und C4, wobei der Betrieb in irgendeinem von dem stufenlos verstellbaren Modus I und den festen Übersetzungen oder Gängen GR1 GR2 und GR3 ermöglicht wird. Der Hochbereichsbetriebszustand umfasst eine selektive Betätigung der Kupplungen C2, C3 und C4, wobei der Betrieb in irgendeinem von dem stufenlos verstellbaren Modus II und den festen Übersetzungen oder Gängen GR3 und GR4 ermöglicht wird. Es ist festzustellen, dass sich Bereiche eines stufenlos verstellbaren Betriebs für Modus I und Modus II überlappen können.
  • In Ansprechen auf eine Handlung des Bedieners, wie sie durch die UI 13 erfasst wird, bestimmen das Aufsicht führende HCP-Steuermodul 5 und eines oder mehrere der anderen Steuermodule die Bedienerdrehmomentforderung TO_REQ an Welle 64. Selektiv betriebene Komponenten des Getriebes 10 werden geeignet gesteuert und betätigt, um auf die Bedieneranforderung zu reagieren. Wenn der Bediener beispielsweise in der in den 1 und 2 gezeigten beispielhaften Ausführungsform einen Vorwärtsfahrbereich ausgewählt hat und entweder das Gaspedal oder das Bremspedal betätigt, bestimmt das HCP 5 ein Abtriebsdrehmoment, das beeinflusst, wie und wann das Fahrzeug beschleunigt oder verzögert.
  • Eine abschließende Fahrzeugbeschleunigung wird durch andere Faktoren beeinflusst, die z.B. die Straßenlast, die Straßensteigung und die Fahrzeugmasse umfassen. Der Betriebsmodus wird für das beispielhafte Getriebe auf der Basis einer Vielfalt von Betriebseigenschaften des Antriebs strangs bestimmt. Dies umfasst eine Anforderung für eine Bedieneranforderung von Drehmoment, die typischerweise durch Eingänge in die UI 13 übermittelt wird, wie es zuvor beschrieben wurde. Zusätzlich basiert eine Anforderung für Abtriebsdrehmoment auf äußeren Bedingungen, die z.B. Straßensteigung, Straßenoberflächenbedingungen oder Windlast umfassen. Der Betriebsmodus kann auf einer Antriebsstrangdrehmomentanforderung basieren, die von einem Steuermodulbefehl verursacht wird, um die Elektromotoren in einem elektrische Energie erzeugenden Modus oder in einem Drehmoment erzeugenden Modus zu betreiben. Der Betriebsmodus kann durch einen Optimierungsalgorithmus oder eine Optimierungsroutine, die dazu dienen, einen optimalen Systemwirkungsgrad zu bestimmen, auf der Basis einer Bedieneranforderung nach Leistung, dem Batterieladezustand und Energiewirkungsgraden der Maschine 14 und von MG-A und MG-B 56, 72, bestimmt werden. Das Steuersystem verwaltet Drehmomenteingänge von der Maschine 14 und MG-A und MG-B 56, 72 auf der Basis eines Erfolgs der ausgeführten Optimierungsroutine, und es tritt eine Systemoptimierung auf, um Systemwirkungsgrade zu optimieren und somit die Kraftstoffwirtschaftlichkeit zu verbessern und das Laden der Batterie zu verwalten. Darüber hinaus kann der Betrieb auf der Basis eines Fehlers in einem Bauteil oder System bestimmt werden. Das HCP 5 überwacht die Parameterzustände der Drehmomenterzeugungseinrichtungen und bestimmt den Ausgang des Getriebes, der erforderlich ist, um zu dem Soll-Drehmomentausgang zu gelangen, wie es nachstehend beschrieben wird. Unter der Anweisung des HCP 5 arbeitet das Getriebe 10 über einen Bereich von Abtriebsdrehzahlen von langsam bis schnell, um der Bedieneranforderung zu entsprechen.
  • Anhand der 4 bis 8 wird nun das Steuern eines Betriebs eines Hybridantriebsstrangs mit Bezugnahme auf den in den 1, 2 und 3 beschriebenen beispielhaften Antriebsstrang beschrieben. Insbesondere nach 4 umfassen das hierin beschriebene Verfahren und System einen Aspekt einer strategischen Steueroptimierung (Block 110), wobei ein bevorzugter oder Soll-Betriebsbereichszustand (Op_RangeDES) vorwiegend auf der Basis der Abtriebsdrehzahl NO der Welle 64 und der Bedienerdrehmomentforderung TO_REQ ausgewählt wird. Der Ausgang der strategischen Steuerung umfasst den bevorzugten oder Soll-Betriebsbereichszustand ('Op_RangeDES') und die Soll-Antriebsdrehzahl ('NI_DES'), die alle in einen Schaltausführungssteuerblock 120 eingegeben werden. Andere Aspekte der Gesamtarchitektur für eine strategische Optimierung und Steuerung des beispielhaften Antriebsstrangs sind beschrieben in der ebenfalls anhängigen U.S.-Patentanmeldung mit der Seriennummer 11/561,140 (Aktenzeichen des Anwalts Nr. GP-308478-PTH-CD) mit dem Titel CONTROL ARCHITECTURE FOR OPTIMIZATION AND CONTROL OF A HYBRID POWERTRAIN SYSTEM (Steuerarchitektur zur Optimierung und Steuerung eines Hybridantriebsstrangsystems), deren Offenbarungsgehalt hierin durch Bezugnahme mit aufgenommen ist und die hierin nicht beschrieben werden muss.
  • Nach den 58 umfasst das Verfahren die folgenden Schritte, die als ein oder mehrere Algorithmen in den Steuermodulen der verteilten Steuermodularchitektur ausgeführt werden. Das Verfahren umfasst, dass ein Ausgang des Getriebes, typischerweise NO, die Bedienerdrehmomentforderung TO_REQ und die verfügbare Batterieleistung PBAT_MIN und PBAT_MAX überwacht werden. Es wird zumindest ein erlaubter Betriebsbereichszustand, der anhand von Tabelle 1 beschrieben ist, zusammen mit Bereichen von erlaubten Antriebsdrehzahlen NI und Antriebsdrehmomenten TI für jeden identifiziert. Es wird ein Abtriebsdrehmomentbereich für jeden der erlaubten Bereichszustände bestimmt. Es werden Kosten für einen Betrieb in jedem der Betriebsbereichszustände berechnet, und einer wird auf der Basis der der berechneten Kosten als ein bevorzugter Betriebsbe reichszustand ausgewählt. Der Antriebsstrang wird danach auf den bevorzugten Betriebsbereichszustand gesteuert. Dieser Betrieb wird bevorzugt in jedem 100 ms Schleifenzyklus ausgeführt. Dieser Betrieb wird nun ausführlich beschrieben.
  • Nach 5 gibt nun ein Funktionsblockdiagramm detailliert den Block der strategischen Steuerung 110 von 4 an und zeigt Eingänge NO und TO_REQ in ein strategisches Managementeinrichtungssegment 220, das Ausgänge zu einem Systemrandbedingungssegment 240 und einem Optimierungssegment 260 aufweist. Der Ausgang des Systemrandbedingungssegments 240 wird in das Optimierungssegment 260 eingegeben. Die Ausgänge des Optimierungssegments 260 werden in ein Schaltstabilisierungs- und Arbitrierungssegment 280 eingegeben, das einen Ausgang aufweist, der den bevorzugten Betriebsbereichszustand OP_RANGEDES und die Soll-Antriebsdrehzahl NI_DES umfasst.
  • Nach 6 umfasst nun das strategische Managementeinrichtungssegment 220 Bedienereingänge, typischerweise Drehmomentforderungen und andere Eingänge durch die UI 13, Kostenstrukturinformation, die nachstehend beschrieben wird, und rohe strategische Eingänge, die rohe Parametersignale umfassen, die mit den Hybridantriebsstrangbetriebsbedingungen in Beziehung stehen, einschließlich jene, die mit der ESD 74 in Beziehung stehen. Ausgänge von dem strategischen Managementeinrichtungssegment 220 umfassen Kostenstrukturinformation (COST) und strategische Eingänge, die die Getriebeabtriebsdrehzahl NO, den Bereich der verfügbaren Batterieleistung PBAT_MIN und PBAT_MAX und die Bedienerdrehmomentforderung TO_REQ einschließen.
  • Nun wird anhand von 7 das strategische Systemrandbedingungssegment 240 detailliert beschrieben. Die Abtriebsdrehzahl NO wird in das strategische Drehzahlrandbedingungssegment 230 eingegeben. Das Drehzahlrandbedingungssegment 230 bestimmt maximale und minimale Antriebsdrehzahlen für einen Betrieb in jedem stufenlos verstellbaren Modus, d.h., NI_MIN_M1, NI_MAX_M1, NI_MIN_M2 und NI_MAX_M2, um zu bestimmen, welche der Hybridbetriebsbereichszustände, d.h. GR1, GR2, GR3, GR4, M1_Eng_Off, M1_Eng_On, M2_Eng_Off und M2_Eng_On auf der Basis der gegenwärtigen Betriebsrandbedingungen, speziell die Abtriebsdrehzahl NO, erlaubt sind.
  • Die erlaubten Hybridbetriebsbereichszustände werden an das strategische Optimierungssegment 260 ausgegeben. Die erlaubten Hybridbetriebsbereichszustände werden an das strategische Systemrandbedingungssegment 250 zusammen mit dem Bereich der verfügbaren Batterieleistung PBAT_MIN und PBAT_MAX und der Bedienerdrehmomentforderung TO_REQ ausgegeben, um einen Bereich von erlaubten Antriebsdrehzahlen NI_MIN, NI_MAX und/oder Antriebsdrehmomenten TI_MIN, TI_MAX für jeden der Hybridbetriebsbereichszustände, d.h. GR1, GR2, GR3, GR4, M1_Eng_Off, M1_Eng_On, M2_Eng_Off und M2_Eng_On, auf der Basis von gegenwärtigen Betriebsrandbedingungen zu bestimmen. Es gibt drei Ausgangsstrecken 242, 244, 246 von dem Segment 240, die dem Optimierungssegment 260 Eingänge zuführen. Die Ausgangsstrecke 242 liefert relevante Systemrandbedingungsinformation, die einen Bereich von Drehmomentwerten in der Form von minimalen und maximalen Abtriebsdrehmomenten (TO_MAX, TO_MIN) und minimalen und maximalen Antriebsdrehmomenten (TI_MAX, TI_MIN) über den Bereich von Maschinenantriebsdrehzahlen NI_MIN_M1, NI_MAX_M1, NI_MIN_M2 und NI_MAX_M2 für jeden Betriebsmodus (M1, M2) bei eingeschalteter Maschine umfassen. Diese Information wird an jedes der Segmente 262 und 264 von Segment 260 übermittelt. Die Ausgangsstrecke 244 liefert relevante Systemrandbedingungsinformation, die einen Bereich von Drehmomentwerten in der Form von minimalen und maximalen Abtriebsdrehmomenten (TO_MAX, TO_MIN) und minimalen und maximalen Antriebsdrehmomenten (TI_MIN, TI_MAX) für jeden der Betriebsabläufe mit fester Übersetzung, d.h. GR1, GR2, GR3, GR4 umfasst. Diese Information wird an jedes der Segmente 270, 272, 274 und 276 von Segment 260 übermittelt. Die Ausgangsstrecke 246 liefert relevante Systemrandbedingungsinformation, die einen Bereich von Drehmomentwerten in der Form von Abtriebsdrehmomenten (TO_MAX, TO_MIN) für jeden Betriebsmodus (M1, M2) bei ausgeschalteter Maschine umfasst. Diese Information wird an jedes der Segmente 266 und 268 von Segment 260 übermittelt.
  • Anhand von 8 wird nun das strategische Optimierungssegment 260 beschrieben. Die erlaubten Hybridbetriebsbereichszustände, die von Segment 240 an das strategische Optimierungssegment 260 ausgegeben werden, werden dazu verwendet, zu identifizieren, welche der Optimierungssegmente 262, 264, 266, 268, 270, 272, 274 und 276 auszuführen sind. Die Segmente 262, 264, 266, 268, 270, 272, 274 und 276 umfassen jeweils Optimierungssegmente, wobei optimale Betriebskosten (PCOST) für jeden der zulässigen Betriebsbereichszustände auf der Basis der zuvor beschriebenen Eingängen, einschließlich des zuvor beschriebenen Drehmomentwertebereichs und der Kosten, die mit Fahreigenschaften, Kraftstoffwirtschaftlichkeit, Emissionen und Batterielebensdauer in Beziehung stehen, bestimmt werden. Die optimalen Betriebskosten umfassen vorzugsweise minimale Betriebskosten bei einem Antriebsstrangbetriebs-ΔPunkt innerhalb des Bereichs von erzielbaren Drehmomentwerten für jeden Betriebsbereichszustand.
  • Jedes der Segmente 262, 264, 266, 268, 270, 272, 274 und 276 erzeugt einen Ausgang, der als Eingang in das Segment 280 bereitgestellt wird. Die Ausgänge umfassen die jeweiligen optimalen Betriebskosten Pcost wie folgt: Pcost[M1_Eng_On] und korrelierte Soll-Antriebsdrehzahl NI_DES[M1], die von Segment 262 ausgegeben werden; Pcost[M2_Eng_On] und korrelierte Soll-Antriebsdrehzahl NI_DES[M2], die von Segment 264 ausgegeben werden; Pcost[M1_Eng_Off], die von Segment 266 ausgegeben werden; Pcost[M2_Eng_Off], die von Segment 268 ausgegeben werden; Pcost[GR1], die von Segment 270 ausgegeben werden; Pcost[GR2], die von Segment 272 ausgegeben werden; Pcost[GR3], die von Segment 274 ausgegeben werden; und Pcost[GR4], die von Segment 276 ausgegeben werden.
  • Die Ausgänge des Optimierungssegments 260 werden in das Schaltstabilisierungs- und Arbitrierungssegment 280 eingegeben. In diesem Segment wird einer der bestimmten Betriebsbereichszustände auf der Basis der vorstehend beschriebenen, berechneten Kosten als ein bevorzugter Betriebsbereichszustand, d.h. OP_RangeDES, ausgewählt. Der bevorzugte Betriebsbereichszustand ist typischerweise der Betriebsbereichszustand mit den minimalen zugehörigen Kosten, wie dies in Segment 260 bestimmt wird. Der Antriebsstrang wird danach auf den bevorzugten Betriebsbereichszustand gesteuert, obwohl das Schalten von Gängen und das Schalten des Betriebsbereichszustandes auf der Basis anderer Betriebsnotwendigkeiten, die mit Schaltstabilisierung und Antriebsstrangsteuerung in Beziehung stehen, begrenzt sein kann. Dieser Betrieb wird bevorzugt in jedem 100 ms Schleifenzyklus ausgeführt.
  • Die Kostenstrukturinformation, die in das strategische Managementeinrichtungssegment 220 eingegeben und in dem Optimierungssegment 260 verwendet wird, umfasst vorzugsweise Betriebskosten, die allgemein auf der Basis von Faktoren bestimmt werden, die mit den Fahrzeugfahreigenschaften, der Kraftstoffwirtschaftlichkeit, Emissionen und Batterielebensdauer für den bestimmten Drehmomentbereich in Beziehung stehen. Darüber hinaus werden Kosten einem Kraftstoff- und elektrischen Energieverbrauch, die zu dem spezifischen Betriebspunkt des Antriebsstrang systems für das Fahrzeug gehören, zugewiesen und zugeordnet. Niedrigere Betriebskosten gehören allgemein zu einem niedrigeren Kraftstoffverbrauch bei hohen Umwandlungswirkungsgraden, niedrigerer Batterieleistungsnutzung und niedrigeren Emissionen für einen Betriebspunkt und berücksichtigen einen gegenwärtigen Betriebsbereichszustand des Antriebsstrangsystems. Die optimalen Betriebskosten (PCOST) können bestimmt werden, indem ein Gesamtantriebsstrangsystemverlust berechnet wird, der einen Gesamtsystemleistungsverlust und eine Kostenstrafe umfasst, wie sie dem Steuern eines Batterieladezustandes zugeordnet sein kann. Der Gesamtsystemleistungsverlust umfasst einen Ausdruck auf der Basis des Maschinenleistungsverlustes, der durch Kraftstoffwirtschaftlichkeit und Abgasemissionen angetrieben ist, plus Verlusten in dem mechanischen System (z.B. Zahnräder, Pumpen, Riemen, Riemenscheiben, Ventile, Ketten), Verlusten in dem elektrischen System (z.B. Drahtimpedanzen und Schalt- und Solenoidverlusten) und Wärmeverlusten. Andere Verluste umfassen Elektromotorleistungsverluste und interne Batterieleistungsverluste. Es können auch andere Faktoren berücksichtigt werden, die mit der Batterielebensdauer in Beziehung stehende Faktoren aufgrund einer Tiefentladung der ESD 74, gegenwärtigen Umgebungstemperaturen und deren Auswirkung auf den Ladezustand der Batterie einschließen. Betriebskosten werden bevorzugt in Bezug auf spezifische Antriebsstrang-/Fahrzeuganwendungen während der Vorproduktionskalibrierung eines Fahrzeugs entwickelt. Ein beispielhaftes Verfahren zum Bestimmen von Maschinenleistungsverlusten ist beschrieben in der gemeinschaftlich übertragenen U.S.-Patentanmeldung, Veröffentlichungsnummer 2005/0256633 A2 , mit dem Titel COST STRUCTURE METHOD INCLUDING FUEL ECONOMY AND ENGINE EMISSION CONSIDERATIONS (Kostenstrukturverfahren, das Kraftstoffwirtschaftlichkeits- und Maschinenemissionserwägungen einschließt), deren Offenbarungsgehalt hierin durch Bezugnahme vollständig mit eingeschlossen ist.
  • Es ist zu verstehen, dass Abwandlungen innerhalb des Umfangs der Erfindung zulässig sind. Die Erfindung ist mit besonderer Bezugnahme auf die Ausführungsformen und Abwandlungen daran beschrieben worden. Weitere Abwandlungen und Abänderungen können andern beim Lesen und Verstehen der Beschreibung in den Sinn kommen. Alle derartigen Abwandlungen und Abänderungen, insofern sie in den Schutzumfang der Erfindung gelangen, sollen mit eingeschlossen sein.

Claims (20)

  1. Verfahren zum Steuern eines Antriebsstrangs, das umfasst, dass: ein Ausgang eines elektromechanischen Getriebes, eine Bedienerdrehmomentforderung und verfügbare Batterieleistung überwacht werden; zumindest ein zulässiger Betriebsbereichszustand identifiziert wird; ein Drehmomentbereich für jeden zulässigen Betriebsbereichszustand bestimmt wird; bevorzugte Betriebsbedingungen und bevorzugte Kosten für jeden zulässigen Betriebsbereichszustand bestimmt werden; und ein bevorzugter Betriebsbereichszustand auf der Basis der bevorzugten Kosten für die zulässigen Betriebsbereichszustände ausgewählt wird.
  2. Verfahren nach Anspruch 1, das ferner umfasst, dass auf der Basis des bevorzugten Betriebsbereichszustandes selektiv mehrere Drehmomentübertragungskupplungen betätigt werden.
  3. Verfahren nach Anspruch 2, das ferner umfasst, dass ein erster und zweiter Elektromotor auf der Basis des bevorzugten Betriebsbereichszustandes selektiv als Elektromotor oder als elektrischer Generator betrieben werden.
  4. Verfahren nach Anspruch 3, das ferner umfasst, dass eine Brennkraftmaschine auf der Basis des bevorzugten Betriebsbereichszustandes selektiv betrieben wird.
  5. Verfahren nach Anspruch 4, das ferner umfasst, dass die Brennkraftmaschine, der erste und zweite Elektromotor, das elektromechanische Getriebe und die mehreren Drehmomentübertragungseinrichtungen auf der Basis des bevorzugten Betriebsbereichszustandes selektiv betrieben werden.
  6. Verfahren nach Anspruch 1, das ferner umfasst, dass zumindest ein zulässiger Betriebsbereichszustand auf der Basis von Randbedingungen einer Abtriebsdrehzahl des elektromechanischen Getriebes identifiziert wird.
  7. Verfahren nach Anspruch 6, wobei die Betriebsbereichszustände zwei stufenlos verstellbare Modi und vier Modi mit fester Übersetzung umfassen.
  8. Verfahren nach Anspruch 7, wobei die mehreren Betriebsbereichszustand ferner umfassen, dass die Brennkraftmaschine während des Betriebs des Antriebsstrangs in jedem der zwei stufenlos verstellbaren Modi ein oder aus ist.
  9. Verfahren nach Anspruch 8, wobei die ausgeschaltete Brennkraftmaschine umfasst, dass eine Rotation einer Kurbelwelle der Maschine im Wesentlichen gestoppt ist.
  10. Verfahren nach Anspruch 8, wobei das Identifizieren der zulässigen Betriebsbereichszustände umfasst, dass identifiziert wird, welche der zwei stufenlos verstellbaren Modi und der vier Modi mit fester Übersetzung bei ein- und ausgeschalteter Brennkraftmaschine betreibbar sind, um die Bedienerdrehmomentforderung zu erreichen.
  11. Verfahren nach Anspruch 1, wobei das Bestimmen eines Drehmomentbereichs für jeden zulässigen Betriebsbereichszustand umfasst, dass minimale und maximale Antriebsdrehmomente und minimale und maximale Abtriebsdrehmomente für das elektromechanische Getriebe über einen Bereich von Antriebsdrehzahlen bestimmt werden, wenn der Betriebsbereichszustand aus einem stufenlos verstellbaren Modus besteht.
  12. Verfahren nach Anspruch 1, wobei das Bestimmen eines Drehmomentbereichs für jeden zulässigen Betriebsbereichszustand umfasst, dass minimale und maximale Antriebsdrehmomente und minimale und maximale Abtriebsdrehmomente bestimmt werden, wenn der Betriebsbereichszustand aus einem Modus mit fester Übersetzung besteht.
  13. Verfahren nach Anspruch 1, wobei das Bestimmen der bevorzugten Kosten für jeden zulässigen Drehmomentbereich umfasst, dass auf der Basis der Kraftstoffwirtschaftlichkeit, der Emissionen und der Batterielebensdauer optimale Betriebskosten bestimmt werden.
  14. Verfahren nach Anspruch 1, wobei das Auswählen eines bevorzugten Betriebsbereichszustandes auf der Basis der bevorzugten Kosten für jeden Betriebsbereichszustand ferner umfasst, dass auf der Basis minimaler Kosten einer der zulässigen Betriebsbereichszustände ausgewählt wird.
  15. Steuersystem für einen Hybridantriebsstrang, umfassend: eine verteilte Steuermodularchitektur, die mehrere signaltechnisch verbundene Steuermodule umfasst, die funktional mit einer Brennkraftmaschine und einem elektromechanischen Getriebe und einem jeden von dem ersten und zweiten Elektromotor verbunden sind, wobei der Antriebsstrang selektiv in einem von mehreren Betriebsbereichszuständen betreibbar ist; wobei das Steuersystem eingerichtet ist, mehrere darin enthaltene Algorithmen auszuführen, um die folgenden Schritte in der angegebenen Reihenfolge zu bewirken, wobei die Algorithmen umfassen: Code zum Überwachen eines Ausgangs des Getriebes, einer Bedienerdrehmomentforderung und verfügbarer Batterieleistung; Code zum Identifizieren zumindest eines zulässigen Betriebsbereichszustandes; Code zum Bestimmen eines Drehmomentbereichs für jeden zulässigen Betriebsbereichszustand; Code zum Bestimmen bevorzugter Betriebsbedingungen und bevorzugter Kosten für jeden zulässigen Betriebsbereichszustand; und Code zum Auswählen eines bevorzugten Betriebsbereichszustandes auf der Basis der bevorzugten Kosten für die zulässigen Betriebsbereichszustände.
  16. Steuersystem nach Anspruch 17, wobei der Code zum Auswählen des bevorzugten Betriebsbereichszustands Code umfasst, um auf der Basis des Ausgangs des Getriebes und der Bedienerdrehmomentforderung einen von zwei stufenlos verstellbaren Modi und vier Modi mit fester Übersetzung auszuwählen.
  17. Steuersystem nach Anspruch 16, wobei auf der Basis des bevorzugten Betriebsbereichszustandes und einer Soll-Antriebsdrehzahl von der Maschine ausgewählte der Drehmomentübertragungskupplungen aktiviert werden und ausgewählte der Drehmomentübertragungskupplungen deaktiviert werden.
  18. Verfahren zum Betreiben eines Antriebsstrangs, der eine Brennkraftmaschine und einen ersten und zweiten Elektromotor und ein elektromechanisches Getriebe aufweist, das selektiv betreibbar ist, um Drehmoment dazwischen zu übertragen, wobei das Verfahren umfasst, dass: eine Abtriebsdrehzahl des Getriebes, eine Bedienerdrehmomentforderung und verfügbare Batterieleistung überwacht werden; zumindest ein zulässiger Betriebsbereichszustand identifiziert wird; ein Drehmomentbereich für jeden zulässigen Betriebsbereichszustand bestimmt wird; bevorzugte Betriebsbedingungen und bevorzugte Kosten für jeden zulässigen Betriebsbereichszustand bestimmt werden; ein bevorzugter Betriebsbereichszustand auf der Basis der bevorzugten Kosten für die zulässigen Betriebsbereichszustände ausgewählt wird; und selektiv mehrere Drehmomentübertragungskupplungen des elektromechanischen Getriebes betätigt werden und die Brennkraftmaschine und der erste und zweite Elektromotor gesteuert werden, um den bevorzugten Betriebsbereichszustand zu erreichen.
  19. Verfahren nach Anspruch 18, wobei die Betriebsbereichszustände zwei stufenlos verstellbare Modi und vier Modi mit fester Übersetzung umfassen.
  20. Verfahren nach Anspruch 19, wobei die Betriebsbereichszustände ferner umfassen, dass die Brennkraftmaschine während des Betriebs des Antriebsstrangs in jedem der zwei stufenlos verstellbaren Modi ein oder aus ist.
DE102007054368A 2006-11-17 2007-11-14 Steuerarchitektur zur Auswahl eines optimalen Modus oder einer optimalen Übersetzung und Antriebsdrehzahl für ein Hybridantriebsstrangsystem Withdrawn DE102007054368A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/561,156 US7568994B2 (en) 2006-11-17 2006-11-17 Control architecture for selection of optimal mode or gear and input speed for a hybrid powertrain system
US11/561,156 2006-11-17

Publications (1)

Publication Number Publication Date
DE102007054368A1 true DE102007054368A1 (de) 2008-06-05

Family

ID=39339107

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102007054368A Withdrawn DE102007054368A1 (de) 2006-11-17 2007-11-14 Steuerarchitektur zur Auswahl eines optimalen Modus oder einer optimalen Übersetzung und Antriebsdrehzahl für ein Hybridantriebsstrangsystem

Country Status (3)

Country Link
US (1) US7568994B2 (de)
CN (1) CN101220860B (de)
DE (1) DE102007054368A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015222692A1 (de) 2015-11-17 2017-05-18 Volkswagen Aktiengesellschaft Betreiben einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102015222694A1 (de) 2015-11-17 2017-05-18 Volkswagen Aktiengesellschaft Betreiben einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102015222691A1 (de) 2015-11-17 2017-05-18 Volkswagen Aktiengesellschaft Verfahren zum Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102015222690A1 (de) 2015-11-17 2017-05-18 Volkswagen Aktiengesellschaft Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102017208656A1 (de) * 2017-05-22 2018-11-22 Volkswagen Aktiengesellschaft Verfahren zum Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102019132073A1 (de) * 2019-11-27 2021-05-27 Bayerische Motoren Werke Aktiengesellschaft Hybridantriebsstrang, Hybridgetriebe und Verfahren zu dessen Betrieb

Families Citing this family (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8010263B2 (en) * 2006-03-22 2011-08-30 GM Global Technology Operations LLC Method and apparatus for multivariate active driveline damping
US8091667B2 (en) 2006-06-07 2012-01-10 GM Global Technology Operations LLC Method for operating a hybrid electric powertrain based on predictive effects upon an electrical energy storage device
US7987934B2 (en) 2007-03-29 2011-08-02 GM Global Technology Operations LLC Method for controlling engine speed in a hybrid electric vehicle
US7999496B2 (en) * 2007-05-03 2011-08-16 GM Global Technology Operations LLC Method and apparatus to determine rotational position of an electrical machine
US7996145B2 (en) 2007-05-03 2011-08-09 GM Global Technology Operations LLC Method and apparatus to control engine restart for a hybrid powertrain system
US7991519B2 (en) * 2007-05-14 2011-08-02 GM Global Technology Operations LLC Control architecture and method to evaluate engine off operation of a hybrid powertrain system operating in a continuously variable mode
US8390240B2 (en) * 2007-08-06 2013-03-05 GM Global Technology Operations LLC Absolute position sensor for field-oriented control of an induction motor
US7983823B2 (en) 2007-09-11 2011-07-19 GM Global Technology Operations LLC Method and control architecture for selection of optimal engine input torque for a powertrain system
US7988591B2 (en) 2007-09-11 2011-08-02 GM Global Technology Operations LLC Control architecture and method for one-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system
US8265813B2 (en) * 2007-09-11 2012-09-11 GM Global Technology Operations LLC Method and control architecture for optimization of engine fuel-cutoff selection and engine input torque for a hybrid powertrain system
US8027771B2 (en) * 2007-09-13 2011-09-27 GM Global Technology Operations LLC Method and apparatus to monitor an output speed sensor during operation of an electro-mechanical transmission
US7867135B2 (en) 2007-09-26 2011-01-11 GM Global Technology Operations LLC Electro-mechanical transmission control system
US8062170B2 (en) * 2007-09-28 2011-11-22 GM Global Technology Operations LLC Thermal protection of an electric drive system
US8234048B2 (en) 2007-10-19 2012-07-31 GM Global Technology Operations LLC Method and system for inhibiting operation in a commanded operating range state for a transmission of a powertrain system
US8060267B2 (en) * 2007-10-23 2011-11-15 GM Global Technology Operations LLC Method for controlling power flow within a powertrain system
US9140337B2 (en) * 2007-10-23 2015-09-22 GM Global Technology Operations LLC Method for model based clutch control and torque estimation
DE102007050773A1 (de) * 2007-10-24 2009-04-30 Zf Friedrichshafen Ag Kraftfahrzeugsteuerungssystem
DE102007050771A1 (de) * 2007-10-24 2009-05-07 Zf Friedrichshafen Ag Kraftfahrzeugsteuerungssystem
DE102007050775A1 (de) * 2007-10-24 2009-04-30 Zf Friedrichshafen Ag Kraftfahrzeugsteuerungssystem
US8187145B2 (en) 2007-10-25 2012-05-29 GM Global Technology Operations LLC Method and apparatus for clutch torque control in mode and fixed gear for a hybrid powertrain system
US8335623B2 (en) * 2007-10-25 2012-12-18 GM Global Technology Operations LLC Method and apparatus for remediation of and recovery from a clutch slip event in a hybrid powertrain system
US8118122B2 (en) * 2007-10-25 2012-02-21 GM Global Technology Operations LLC Method and system for monitoring signal integrity in a distributed controls system
US8296027B2 (en) 2007-10-25 2012-10-23 GM Global Technology Operations LLC Method and apparatus to control off-going clutch torque during torque phase for a hybrid powertrain system
US8265821B2 (en) * 2007-10-25 2012-09-11 GM Global Technology Operations LLC Method for determining a voltage level across an electric circuit of a powertrain
US8167773B2 (en) 2007-10-26 2012-05-01 GM Global Technology Operations LLC Method and apparatus to control motor cooling in an electro-mechanical transmission
US7985154B2 (en) 2007-10-26 2011-07-26 GM Global Technology Operations LLC Method and apparatus to control hydraulic pressure for component lubrication in an electro-mechanical transmission
US8548703B2 (en) 2007-10-26 2013-10-01 GM Global Technology Operations LLC Method and apparatus to determine clutch slippage in an electro-mechanical transmission
US8560191B2 (en) 2007-10-26 2013-10-15 GM Global Technology Operations LLC Method and apparatus to control clutch pressures in an electro-mechanical transmission
US8406945B2 (en) * 2007-10-26 2013-03-26 GM Global Technology Operations LLC Method and apparatus to control logic valves for hydraulic flow control in an electro-mechanical transmission
US9097337B2 (en) 2007-10-26 2015-08-04 GM Global Technology Operations LLC Method and apparatus to control hydraulic line pressure in an electro-mechanical transmission
US8204702B2 (en) * 2007-10-26 2012-06-19 GM Global Technology Operations LLC Method for estimating battery life in a hybrid powertrain
US8303463B2 (en) * 2007-10-26 2012-11-06 GM Global Technology Operations LLC Method and apparatus to control clutch fill pressure in an electro-mechanical transmission
US8428816B2 (en) * 2007-10-27 2013-04-23 GM Global Technology Operations LLC Method and apparatus for monitoring software and signal integrity in a distributed control module system for a powertrain system
US8099219B2 (en) 2007-10-27 2012-01-17 GM Global Technology Operations LLC Method and apparatus for securing an operating range state mechanical transmission
US8062174B2 (en) * 2007-10-27 2011-11-22 GM Global Technology Operations LLC Method and apparatus to control clutch stroke volume in an electro-mechanical transmission
US8244426B2 (en) * 2007-10-27 2012-08-14 GM Global Technology Operations LLC Method and apparatus for monitoring processor integrity in a distributed control module system for a powertrain system
US8290681B2 (en) * 2007-10-29 2012-10-16 GM Global Technology Operations LLC Method and apparatus to produce a smooth input speed profile in mode for a hybrid powertrain system
US8095254B2 (en) * 2007-10-29 2012-01-10 GM Global Technology Operations LLC Method for determining a power constraint for controlling a powertrain system
US8489293B2 (en) * 2007-10-29 2013-07-16 GM Global Technology Operations LLC Method and apparatus to control input speed profile during inertia speed phase for a hybrid powertrain system
US8170762B2 (en) 2007-10-29 2012-05-01 GM Global Technology Operations LLC Method and apparatus to control operation of a hydraulic pump for an electro-mechanical transmission
US8209098B2 (en) * 2007-10-29 2012-06-26 GM Global Technology Operations LLC Method and apparatus for monitoring a transmission range selector in a hybrid powertrain transmission
US8282526B2 (en) * 2007-10-29 2012-10-09 GM Global Technology Operations LLC Method and apparatus to create a pseudo torque phase during oncoming clutch engagement to prevent clutch slip for a hybrid powertrain system
US8112194B2 (en) * 2007-10-29 2012-02-07 GM Global Technology Operations LLC Method and apparatus for monitoring regenerative operation in a hybrid powertrain system
US8078371B2 (en) 2007-10-31 2011-12-13 GM Global Technology Operations LLC Method and apparatus to monitor output of an electro-mechanical transmission
US8556011B2 (en) * 2007-11-01 2013-10-15 GM Global Technology Operations LLC Prediction strategy for thermal management and protection of power electronic hardware
US7977896B2 (en) 2007-11-01 2011-07-12 GM Global Technology Operations LLC Method of determining torque limit with motor torque and battery power constraints
JP5092694B2 (ja) * 2007-11-01 2012-12-05 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
US8035324B2 (en) 2007-11-01 2011-10-11 GM Global Technology Operations LLC Method for determining an achievable torque operating region for a transmission
US8073602B2 (en) * 2007-11-01 2011-12-06 GM Global Technology Operations LLC System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint range
US8145375B2 (en) * 2007-11-01 2012-03-27 GM Global Technology Operations LLC System constraints method of determining minimum and maximum torque limits for an electro-mechanical powertrain system
US8200403B2 (en) 2007-11-02 2012-06-12 GM Global Technology Operations LLC Method for controlling input torque provided to a transmission
US8847426B2 (en) 2007-11-02 2014-09-30 GM Global Technology Operations LLC Method for managing electric power in a powertrain system
US8121767B2 (en) * 2007-11-02 2012-02-21 GM Global Technology Operations LLC Predicted and immediate output torque control architecture for a hybrid powertrain system
US8585540B2 (en) 2007-11-02 2013-11-19 GM Global Technology Operations LLC Control system for engine torque management for a hybrid powertrain system
US8224539B2 (en) 2007-11-02 2012-07-17 GM Global Technology Operations LLC Method for altitude-compensated transmission shift scheduling
US8131437B2 (en) * 2007-11-02 2012-03-06 GM Global Technology Operations LLC Method for operating a powertrain system to transition between engine states
US8121765B2 (en) * 2007-11-02 2012-02-21 GM Global Technology Operations LLC System constraints method of controlling operation of an electro-mechanical transmission with two external input torque ranges
US8287426B2 (en) * 2007-11-02 2012-10-16 GM Global Technology Operations LLC Method for controlling voltage within a powertrain system
US8133151B2 (en) * 2007-11-02 2012-03-13 GM Global Technology Operations LLC System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint
US8825320B2 (en) * 2007-11-02 2014-09-02 GM Global Technology Operations LLC Method and apparatus for developing a deceleration-based synchronous shift schedule
US8285431B2 (en) 2007-11-03 2012-10-09 GM Global Technology Operations LLC Optimal selection of hybrid range state and/or input speed with a blended braking system in a hybrid electric vehicle
US8296021B2 (en) 2007-11-03 2012-10-23 GM Global Technology Operations LLC Method for determining constraints on input torque in a hybrid transmission
US8224514B2 (en) * 2007-11-03 2012-07-17 GM Global Technology Operations LLC Creation and depletion of short term power capability in a hybrid electric vehicle
US8068966B2 (en) 2007-11-03 2011-11-29 GM Global Technology Operations LLC Method for monitoring an auxiliary pump for a hybrid powertrain
US8155814B2 (en) 2007-11-03 2012-04-10 GM Global Technology Operations LLC Method of operating a vehicle utilizing regenerative braking
US8406970B2 (en) 2007-11-03 2013-03-26 GM Global Technology Operations LLC Method for stabilization of optimal input speed in mode for a hybrid powertrain system
US8010247B2 (en) 2007-11-03 2011-08-30 GM Global Technology Operations LLC Method for operating an engine in a hybrid powertrain system
US8204664B2 (en) 2007-11-03 2012-06-19 GM Global Technology Operations LLC Method for controlling regenerative braking in a vehicle
US8002667B2 (en) * 2007-11-03 2011-08-23 GM Global Technology Operations LLC Method for determining input speed acceleration limits in a hybrid transmission
US8135526B2 (en) * 2007-11-03 2012-03-13 GM Global Technology Operations LLC Method for controlling regenerative braking and friction braking
US8260511B2 (en) * 2007-11-03 2012-09-04 GM Global Technology Operations LLC Method for stabilization of mode and fixed gear for a hybrid powertrain system
US8868252B2 (en) * 2007-11-03 2014-10-21 GM Global Technology Operations LLC Control architecture and method for two-dimensional optimization of input speed and input power including search windowing
US8630776B2 (en) * 2007-11-04 2014-01-14 GM Global Technology Operations LLC Method for controlling an engine of a hybrid powertrain in a fuel enrichment mode
US8098041B2 (en) 2007-11-04 2012-01-17 GM Global Technology Operations LLC Method of charging a powertrain
US8002665B2 (en) * 2007-11-04 2011-08-23 GM Global Technology Operations LLC Method for controlling power actuators in a hybrid powertrain system
US8000866B2 (en) 2007-11-04 2011-08-16 GM Global Technology Operations LLC Engine control system for torque management in a hybrid powertrain system
US8145397B2 (en) * 2007-11-04 2012-03-27 GM Global Technology Operations LLC Optimal selection of blended braking capacity for a hybrid electric vehicle
US8414449B2 (en) * 2007-11-04 2013-04-09 GM Global Technology Operations LLC Method and apparatus to perform asynchronous shifts with oncoming slipping clutch torque for a hybrid powertrain system
US9008926B2 (en) 2007-11-04 2015-04-14 GM Global Technology Operations LLC Control of engine torque during upshift and downshift torque phase for a hybrid powertrain system
US8079933B2 (en) 2007-11-04 2011-12-20 GM Global Technology Operations LLC Method and apparatus to control engine torque to peak main pressure for a hybrid powertrain system
US8095282B2 (en) 2007-11-04 2012-01-10 GM Global Technology Operations LLC Method and apparatus for soft costing input speed and output speed in mode and fixed gear as function of system temperatures for cold and hot operation for a hybrid powertrain system
US8214093B2 (en) * 2007-11-04 2012-07-03 GM Global Technology Operations LLC Method and apparatus to prioritize transmission output torque and input acceleration for a hybrid powertrain system
US8594867B2 (en) * 2007-11-04 2013-11-26 GM Global Technology Operations LLC System architecture for a blended braking system in a hybrid powertrain system
US8118903B2 (en) 2007-11-04 2012-02-21 GM Global Technology Operations LLC Method for preferential selection of modes and gear with inertia effects for a hybrid powertrain system
US8818660B2 (en) * 2007-11-04 2014-08-26 GM Global Technology Operations LLC Method for managing lash in a driveline
US8121766B2 (en) * 2007-11-04 2012-02-21 GM Global Technology Operations LLC Method for operating an internal combustion engine to transmit power to a driveline
US8112206B2 (en) 2007-11-04 2012-02-07 GM Global Technology Operations LLC Method for controlling a powertrain system based upon energy storage device temperature
US8067908B2 (en) * 2007-11-04 2011-11-29 GM Global Technology Operations LLC Method for electric power boosting in a powertrain system
US8204656B2 (en) 2007-11-04 2012-06-19 GM Global Technology Operations LLC Control architecture for output torque shaping and motor torque determination for a hybrid powertrain system
US8214120B2 (en) * 2007-11-04 2012-07-03 GM Global Technology Operations LLC Method to manage a high voltage system in a hybrid powertrain system
US8248023B2 (en) * 2007-11-04 2012-08-21 GM Global Technology Operations LLC Method of externally charging a powertrain
US7988594B2 (en) 2007-11-04 2011-08-02 GM Global Technology Operations LLC Method for load-based stabilization of mode and fixed gear operation of a hybrid powertrain system
US8138703B2 (en) * 2007-11-04 2012-03-20 GM Global Technology Operations LLC Method and apparatus for constraining output torque in a hybrid powertrain system
US8126624B2 (en) 2007-11-04 2012-02-28 GM Global Technology Operations LLC Method for selection of optimal mode and gear and input speed for preselect or tap up/down operation
US8135532B2 (en) * 2007-11-04 2012-03-13 GM Global Technology Operations LLC Method for controlling output power of an energy storage device in a powertrain system
US8200383B2 (en) 2007-11-04 2012-06-12 GM Global Technology Operations LLC Method for controlling a powertrain system based upon torque machine temperature
US8897975B2 (en) * 2007-11-04 2014-11-25 GM Global Technology Operations LLC Method for controlling a powertrain system based on penalty costs
US8374758B2 (en) 2007-11-04 2013-02-12 GM Global Technology Operations LLC Method for developing a trip cost structure to understand input speed trip for a hybrid powertrain system
US8396634B2 (en) 2007-11-04 2013-03-12 GM Global Technology Operations LLC Method and apparatus for maximum and minimum output torque performance by selection of hybrid range state and input speed for a hybrid powertrain system
US8504259B2 (en) 2007-11-04 2013-08-06 GM Global Technology Operations LLC Method for determining inertia effects for a hybrid powertrain system
US8092339B2 (en) * 2007-11-04 2012-01-10 GM Global Technology Operations LLC Method and apparatus to prioritize input acceleration and clutch synchronization performance in neutral for a hybrid powertrain system
US8494732B2 (en) * 2007-11-04 2013-07-23 GM Global Technology Operations LLC Method for determining a preferred engine operation in a hybrid powertrain system during blended braking
US8112192B2 (en) * 2007-11-04 2012-02-07 GM Global Technology Operations LLC Method for managing electric power within a powertrain system
US8346449B2 (en) * 2007-11-04 2013-01-01 GM Global Technology Operations LLC Method and apparatus to provide necessary output torque reserve by selection of hybrid range state and input speed for a hybrid powertrain system
US8221285B2 (en) * 2007-11-04 2012-07-17 GM Global Technology Operations LLC Method and apparatus to offload offgoing clutch torque with asynchronous oncoming clutch torque, engine and motor torque for a hybrid powertrain system
US8214114B2 (en) 2007-11-04 2012-07-03 GM Global Technology Operations LLC Control of engine torque for traction and stability control events for a hybrid powertrain system
US8229633B2 (en) 2007-11-05 2012-07-24 GM Global Technology Operations LLC Method for operating a powertrain system to control engine stabilization
US8285432B2 (en) * 2007-11-05 2012-10-09 GM Global Technology Operations LLC Method and apparatus for developing a control architecture for coordinating shift execution and engine torque control
US8070647B2 (en) 2007-11-05 2011-12-06 GM Global Technology Operations LLC Method and apparatus for adapting engine operation in a hybrid powertrain system for active driveline damping
US8160761B2 (en) * 2007-11-05 2012-04-17 GM Global Technology Operations LLC Method for predicting an operator torque request of a hybrid powertrain system
US8121768B2 (en) * 2007-11-05 2012-02-21 GM Global Technology Operations LLC Method for controlling a hybrid powertrain system based upon hydraulic pressure and clutch reactive torque capacity
US8249766B2 (en) * 2007-11-05 2012-08-21 GM Global Technology Operations LLC Method of determining output torque limits of a hybrid transmission operating in a fixed gear operating range state
US8165777B2 (en) 2007-11-05 2012-04-24 GM Global Technology Operations LLC Method to compensate for transmission spin loss for a hybrid powertrain system
US8135519B2 (en) * 2007-11-05 2012-03-13 GM Global Technology Operations LLC Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a fixed gear operating range state
US8073601B2 (en) * 2007-11-05 2011-12-06 GM Global Technology Operations LLC Method for preferential selection of mode and gear and input speed based on multiple engine state fueling costs for a hybrid powertrain system
US8321100B2 (en) * 2007-11-05 2012-11-27 GM Global Technology Operations LLC Method and apparatus for dynamic output torque limiting for a hybrid powertrain system
US8448731B2 (en) 2007-11-05 2013-05-28 GM Global Technology Operations LLC Method and apparatus for determination of fast actuating engine torque for a hybrid powertrain system
US8112207B2 (en) 2007-11-05 2012-02-07 GM Global Technology Operations LLC Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a continuously variable mode
US8285462B2 (en) 2007-11-05 2012-10-09 GM Global Technology Operations LLC Method and apparatus to determine a preferred output torque in mode and fixed gear operation with clutch torque constraints for a hybrid powertrain system
US8099204B2 (en) 2007-11-05 2012-01-17 GM Global Technology Operatons LLC Method for controlling electric boost in a hybrid powertrain
US8155815B2 (en) * 2007-11-05 2012-04-10 Gm Global Technology Operation Llc Method and apparatus for securing output torque in a distributed control module system for a powertrain system
US8219303B2 (en) 2007-11-05 2012-07-10 GM Global Technology Operations LLC Method for operating an internal combustion engine for a hybrid powertrain system
US8179127B2 (en) * 2007-11-06 2012-05-15 GM Global Technology Operations LLC Method and apparatus to monitor position of a rotatable shaft
US8281885B2 (en) 2007-11-06 2012-10-09 GM Global Technology Operations LLC Method and apparatus to monitor rotational speeds in an electro-mechanical transmission
US8433486B2 (en) * 2007-11-07 2013-04-30 GM Global Technology Operations LLC Method and apparatus to determine a preferred operating point for an engine of a powertrain system using an iterative search
US8277363B2 (en) 2007-11-07 2012-10-02 GM Global Technology Operations LLC Method and apparatus to control temperature of an exhaust aftertreatment system for a hybrid powertrain
US8073610B2 (en) 2007-11-07 2011-12-06 GM Global Technology Operations LLC Method and apparatus to control warm-up of an exhaust aftertreatment system for a hybrid powertrain
US8271173B2 (en) * 2007-11-07 2012-09-18 GM Global Technology Operations LLC Method and apparatus for controlling a hybrid powertrain system
US8267837B2 (en) 2007-11-07 2012-09-18 GM Global Technology Operations LLC Method and apparatus to control engine temperature for a hybrid powertrain
US8209097B2 (en) * 2007-11-07 2012-06-26 GM Global Technology Operations LLC Method and control architecture to determine motor torque split in fixed gear operation for a hybrid powertrain system
US8195349B2 (en) * 2007-11-07 2012-06-05 GM Global Technology Operations LLC Method for predicting a speed output of a hybrid powertrain system
US8224544B2 (en) * 2007-11-07 2012-07-17 GM Global Technology Operations LLC Method and apparatus to control launch of a vehicle having an electro-mechanical transmission
US8005632B2 (en) * 2007-11-07 2011-08-23 GM Global Technology Operations LLC Method and apparatus for detecting faults in a current sensing device
HUP0800048A2 (en) * 2008-01-25 2009-08-28 Istvan Dr Janosi Frying device for making fried cake specially for household
JP4600549B2 (ja) * 2008-08-29 2010-12-15 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP5229385B2 (ja) * 2009-05-19 2013-07-03 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
DE102009035780A1 (de) 2009-08-01 2011-02-03 Daimler Ag Verfahren zum Betreiben eines Getriebes
US8827865B2 (en) 2011-08-31 2014-09-09 GM Global Technology Operations LLC Control system for a hybrid powertrain system
US8801567B2 (en) 2012-02-17 2014-08-12 GM Global Technology Operations LLC Method and apparatus for executing an asynchronous clutch-to-clutch shift in a hybrid transmission
US8924108B2 (en) * 2013-04-26 2014-12-30 GM Global Technology Operations LLC Method of managing available operating states in an electric vehicle powertrain
GB2517469A (en) * 2013-08-21 2015-02-25 Jaguar Land Rover Ltd Hybrid electric vehicle controller and method
US9333964B2 (en) * 2014-07-11 2016-05-10 GM Global Technology Operations LLC Hybrid powertrain and method for controlling the same
JP6897512B2 (ja) 2017-11-13 2021-06-30 トヨタ自動車株式会社 ハイブリッド車両の駆動力制御装置
JP6891794B2 (ja) 2017-12-20 2021-06-18 トヨタ自動車株式会社 車両の駆動力制御装置
US11679752B2 (en) * 2020-12-21 2023-06-20 Fca Us Llc Method of supervisory control for power management of a parallel two motor hybrid powertrain
CN112660102B (zh) * 2020-12-31 2022-05-17 吉林大学 一种基于能耗分析理论的行星多挡混合动力系统控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6554088B2 (en) * 1998-09-14 2003-04-29 Paice Corporation Hybrid vehicles
JP3536704B2 (ja) * 1999-02-17 2004-06-14 日産自動車株式会社 車両の駆動力制御装置
US6953409B2 (en) * 2003-12-19 2005-10-11 General Motors Corporation Two-mode, compound-split, hybrid electro-mechanical transmission having four fixed ratios
US7076356B2 (en) * 2004-02-14 2006-07-11 General Motors Corporation Optimal selection of input torque with stability of power flow for a hybrid electric vehicle
CN100406289C (zh) * 2006-06-08 2008-07-30 上海交通大学 串并联混联式混合动力系统
US7641582B2 (en) * 2006-11-17 2010-01-05 Gm Global Technology Operations, Inc. Control architecture and method for two-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system
US7853386B2 (en) * 2006-11-17 2010-12-14 Gm Global Technology Operations, Inc. Control architecture and method for two-dimensional optimization of input speed and input torque in mode for a hybrid powertrain system
US7988591B2 (en) * 2007-09-11 2011-08-02 GM Global Technology Operations LLC Control architecture and method for one-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system
US7983823B2 (en) * 2007-09-11 2011-07-19 GM Global Technology Operations LLC Method and control architecture for selection of optimal engine input torque for a powertrain system
US8265813B2 (en) * 2007-09-11 2012-09-11 GM Global Technology Operations LLC Method and control architecture for optimization of engine fuel-cutoff selection and engine input torque for a hybrid powertrain system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015222692A1 (de) 2015-11-17 2017-05-18 Volkswagen Aktiengesellschaft Betreiben einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102015222694A1 (de) 2015-11-17 2017-05-18 Volkswagen Aktiengesellschaft Betreiben einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102015222691A1 (de) 2015-11-17 2017-05-18 Volkswagen Aktiengesellschaft Verfahren zum Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102015222690A1 (de) 2015-11-17 2017-05-18 Volkswagen Aktiengesellschaft Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
WO2017084888A1 (de) 2015-11-17 2017-05-26 Volkswagen Aktiengesellschaft Betreiben einer antriebseinrichtung eines hybridfahrzeuges und hybridfahrzeug
WO2017084887A1 (de) 2015-11-17 2017-05-26 Volkswagen Aktiengesellschaft Verfahren zum steuern einer antriebseinrichtung eines hybridfahrzeuges und hybridfahrzeug
WO2017084889A1 (de) 2015-11-17 2017-05-26 Volkswagen Aktiengesellschaft Betreiben einer antriebseinrichtung eines hybridfahrzeuges und hybridfahrzeug
US10525968B2 (en) 2015-11-17 2020-01-07 Volkswagen Aktiengesellschaft Method for controlling a drive device of a hybrid vehicle and hybrid vehicle
DE102017208656A1 (de) * 2017-05-22 2018-11-22 Volkswagen Aktiengesellschaft Verfahren zum Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102019132073A1 (de) * 2019-11-27 2021-05-27 Bayerische Motoren Werke Aktiengesellschaft Hybridantriebsstrang, Hybridgetriebe und Verfahren zu dessen Betrieb

Also Published As

Publication number Publication date
CN101220860B (zh) 2010-12-22
CN101220860A (zh) 2008-07-16
US20080120001A1 (en) 2008-05-22
US7568994B2 (en) 2009-08-04

Similar Documents

Publication Publication Date Title
DE102007054368A1 (de) Steuerarchitektur zur Auswahl eines optimalen Modus oder einer optimalen Übersetzung und Antriebsdrehzahl für ein Hybridantriebsstrangsystem
DE102006060401B4 (de) Fahrzeugantriebssystem
DE102007053781B4 (de) Verfahren und ein Steuersystem zur Optimierung und Steuerung eines Hybridantriebsstrangsystems
DE102007023634B4 (de) Verfahren zum Steuern eines elektromechanischen Getriebes während eines Schaltereignisses
DE102007054361A1 (de) Steuerarchitektur und Verfahren für eine zweidimensionale Optimierung von Antriebsdrehmoment und Motordrehmoment in einer festen Übersetzung für ein Hybridantriebsstrangsystem
DE102007054367A1 (de) Steuerarchitektur und Verfahren zur zweidimensionalen Optimierung von Antriebsdrehzahl und Antriebsdrehmoment in einem Modus für ein Hybridantriebsstrangsystem
DE102007036026B4 (de) Steuersystem für ein elektromechanisches Getriebe mit Hydraulikkreis, zugehöriges Getriebe und entsprechendes Steuerverfahren
DE102007053784B4 (de) Verfahren und Vorrichtung zum Steuern eines elektromechanischen Getriebes während eines Ausführens eines Schaltvorgangs
DE102007020353B4 (de) Verfahren zum Ausführen eines Schaltens von einem anfänglichen Gang in einen abschließenden Gang in einem Getriebe eines Antriebsstrangsystems sowie entsprechend hergerichteter Fertigungsgegenstand
DE102008014616B4 (de) Kupplungssteuerung für Hybridgetriebe
DE102008046281B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Verfahren zum Betreiben eines Antriebsstrangs sowie Steuersystem für einen Hybridantriebsstrang
DE102008048528B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Verfahren zum Betreiben eines Hybridantriebsstranges und Speichermedium
DE102007050599A1 (de) Verfahren und Vorrichtung zum Steuern des Betriebes eines Hydrauliksteuerkreises für ein elektromechanisches Getriebe
DE102008046280B4 (de) Verfahren unter eindimensionaler Optimierung des Antriebsdrehmoments und des Motordrehmoments in einem festen Gang für ein Hybridantriebsstrangsystem
DE102007043176B4 (de) Verfahren und Vorrichtung zum Überwachen des Betriebs einer Zusatzhydraulikpumpe in einem Getriebe
DE102008005367B4 (de) Verfahren und Vorrichtung zum Überwachen von Einrichtungen eines Hydraulikkreises eines elektromechanischen Getriebes
DE102008053422B4 (de) Verfahren und Vorrichtung zum Steuern eines Antriebsstrangs mit elektromechanischem Getriebe
DE102007006864B4 (de) Vorrichtung und Verfahren zur Bestimmung eines bevorzugten Arbeitsbereichs für zwei Drehmomenterzeugende Einrichtungen sowie Steuerungssystem für einen Hybridantriebsstrang
DE102007036024A1 (de) Verfahren und Vorrichtung zum Steuern eines elektrohydraulischen Getriebes während eines Schaltereignisses
DE102008055730B4 (de) Verfahren und Vorrichtung zum Steuern des Anfahrens eines Fahrzeugs mit einem elektromechanischen Getriebe
DE102007029875A1 (de) Vorrichtung und Verfahren zum Steuern der Getriebedrehmomentabgabe während des Schaltens von einem Gang in einen anderen
DE102008022984A1 (de) Steuerarchitektur und -verfahren zum Bewerten des Maschine-Aus-Betriebs eines Hybridantriebsstrangsystems, das in einem stufenlosen Modus arbeitet
DE102007013334B4 (de) Verfahren und Vorrichtung für eine multivariate aktive Endantriebsdämpfung
DE102007042077B4 (de) Steuersystemarchitektur für einen Hybridantriebsstrang und Steuerverfahren
DE102008005368A1 (de) Verfahren und Vorrichtung zum Steuern des Betriebs eines elektromechanischen Getriebes

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8180 Miscellaneous part 1

Free format text: PFANDRECHT

8180 Miscellaneous part 1

Free format text: PFANDRECHT AUFGEHOBEN

8180 Miscellaneous part 1

Free format text: PFANDRECHT

8127 New person/name/address of the applicant

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC , ( N. D. , US

R081 Change of applicant/patentee

Owner name: GM GLOBAL TECHNOLOGY OPERATIONS LLC (N. D. GES, US

Free format text: FORMER OWNER: GM GLOBAL TECHNOLOGY OPERATIONS, INC., DETROIT, MICH., US

Effective date: 20110323

R016 Response to examination communication
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee