DE102005006734A1 - Fabrication of split-gate transistor involves forming control gate structure conforming to side surface and including projecting portion that extends over portion of floating gate structure - Google Patents
Fabrication of split-gate transistor involves forming control gate structure conforming to side surface and including projecting portion that extends over portion of floating gate structure Download PDFInfo
- Publication number
- DE102005006734A1 DE102005006734A1 DE200510006734 DE102005006734A DE102005006734A1 DE 102005006734 A1 DE102005006734 A1 DE 102005006734A1 DE 200510006734 DE200510006734 DE 200510006734 DE 102005006734 A DE102005006734 A DE 102005006734A DE 102005006734 A1 DE102005006734 A1 DE 102005006734A1
- Authority
- DE
- Germany
- Prior art keywords
- layer
- semiconductor
- insulating layer
- floating gate
- gate structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000007667 floating Methods 0.000 title claims abstract description 83
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 239000004065 semiconductor Substances 0.000 claims abstract description 101
- 238000000034 method Methods 0.000 claims abstract description 73
- 238000005530 etching Methods 0.000 claims abstract description 43
- 125000006850 spacer group Chemical group 0.000 claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 37
- 239000004020 conductor Substances 0.000 claims abstract description 18
- 239000002019 doping agent Substances 0.000 claims abstract description 15
- 238000000151 deposition Methods 0.000 claims abstract description 10
- 230000001590 oxidative effect Effects 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims abstract 6
- 238000000059 patterning Methods 0.000 claims abstract 3
- 238000009413 insulation Methods 0.000 claims description 50
- 230000008569 process Effects 0.000 claims description 38
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 34
- 229920005591 polysilicon Polymers 0.000 claims description 34
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 19
- 238000002955 isolation Methods 0.000 claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 11
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 239000010410 layer Substances 0.000 claims 166
- 150000004767 nitrides Chemical class 0.000 claims 10
- 239000011229 interlayer Substances 0.000 claims 6
- 239000000377 silicon dioxide Substances 0.000 claims 4
- 239000007943 implant Substances 0.000 claims 2
- 230000003716 rejuvenation Effects 0.000 claims 1
- 239000012212 insulator Substances 0.000 abstract description 6
- 238000002513 implantation Methods 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000012774 insulation material Substances 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 230000005641 tunneling Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 241000293849 Cordylanthus Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010893 electron trap Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000002784 hot electron Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42324—Gate electrodes for transistors with a floating gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/788—Field effect transistors with field effect produced by an insulated gate with floating gate
- H01L29/7881—Programmable transistors with only two possible levels of programmation
- H01L29/7884—Programmable transistors with only two possible levels of programmation charging by hot carrier injection
- H01L29/7885—Hot carrier injection from the channel
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B69/00—Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer Transistorgatestruktur, insbesondere einer Splitgate-Transistorstruktur, nach dem Oberbegriff des Anspruchs 1 und auf eine entsprechende Transistorgatestruktur, insbesondere für eine Halbleiterspeicherzelle.The The invention relates to a method for producing a transistor gate structure, in particular a split-gate transistor structure, according to the preamble of claim 1 and to a corresponding transistor gate structure, especially for a semiconductor memory cell.
Halbleiterspeicherzellen, die floatende Gateelektroden, welche zur Änderung des Verhaltens von damit verknüpften Kanalbereichen geladen werden können, und Steuergateelektroden benutzen, werden in einer Vielzahl von Konfigurationen hergestellt. Derartige Speicherzellen werden zur Bildung von nichtflüchtigen Speicherzellenfeldern und entsprechenden Speicherbauelementen benutzt, in denen gespeicherte Daten für eine relativ lange Zeitspanne gespeichert werden können, ohne Leistung zu verbrauchen bzw. eine häufige Wiederauffrischung zu benötigen. Derartige Bauelemente sind insbesondere für Anwendungen nutzbringend, in denen Leistung nicht für längere Zeiträume verfügbar ist oder öfters unterbrochen ist, oder in batterieabhängigen Anwendungen, in denen ein niedriger Leistungsverbrauch erwünscht ist.Semiconductor memory cells the floating gate electrodes which change the behavior of it linked Channel areas can be loaded, and control gate electrodes are used in a variety of ways Configurations made. Such memory cells are used for Formation of non-volatile Memory cell arrays and corresponding memory devices used, in which stored data for a relatively long period of time can be saved without To consume power or to require frequent refresher. such Components are especially for Beneficial for applications where performance is not available for extended periods of time or interrupted more often is, or in battery-dependent Applications where low power consumption is desired.
Dementsprechend finden sich Bauelemente dieses Typs häufig in Anwendungen wie Mobilkommunikationsausrüstungen, Speicherblöcken, die in Mikroprozessor- oder Mikrocomputerchips eingebaut sind, und in Speichern, die zum Speichern von Musik- und/oder Bilddaten verwendet werden. Die Speicherzellen mit floatendem Gate können in Splitgate- oder Stapelgate-Konfigurationen realisiert sein, wobei auch eine Kombination der beiden Konfigurationen in einem einzigen Bauelement enthalten sein kann.Accordingly devices of this type are often found in applications such as mobile communication equipment, Memory blocks, which are built in microprocessor or microcomputer chips, and in stores used to store music and / or image data become. The floating gate memory cells may be in split gate or stacked gate configurations being realized, being also a combination of the two configurations can be contained in a single component.
Speicherzellentransistoren mit Splitgate, d. h. geteiltem Gate, bieten einige Vorteile gegenüber herkömmlichen Flash-Speichern, wie Bytebetrieb, d. h. Schreiben und Löschen mit acht Bit, relativ niedrige Programmierströme von etwa 1 μA, gute Wiederstandsfähigkeit gegen Interferenz mit dem Steuergate in Verwendung als Auswahltransistor und höhere Betriebsgeschwindigkeiten durch die Verwendung einer Injektion heißer Ladungsträger. Splitgate-Speicherzellentransistoren haben jedoch auch einige Problempunkte, wie größere Abmessung im Vergleich zu einer entsprechenden Flash-Speicherzelle und geringere Beständigkeit als ein entsprechender elektrisch lösch- und programmierbarer Festwertspeicher (EEPROM), der eine Ladungsträgerinjektion durch Fowler-Nordheim(F-N)-Tunneln benutzt.Memory cell transistors with Splitgate, d. H. Split gate, offer some advantages over conventional ones Flash memory, such as byte mode, d. H. Write and delete with eight bits, relatively low programming currents of about 1 μA, good resistance against interference with the control gate in use as a selection transistor and higher Operating speeds through the use of an injection of hot carriers. Split gate memory cell transistors However, they also have some issues, such as larger size in comparison to a corresponding flash memory cell and lower resistance as a corresponding electrically erasable and programmable read-only memory (EEPROM), which is a charge carrier injection through Fowler-Nordheim (F-N) tunnels used.
Eine mit der Herstellung von Speicherzellenfeldern mit floatenden Gateelektroden verknüpfte Schwierigkeit ist die Ausrichtung der verschiedenen funktionellen Elemente einschließlich der Source-, Drain-, Steuergate- und floatenden Gate-Bereiche. Da die Entwurfsregeln für höhere Integrationsdichten die Abmessung und den Abstand dieser verschiedenen Elemente immer weiter verringern, steigt der Bedarf an einer präzisen und steuerbaren Justierung. Eine geeignete relative Justierung und Orientierung der verschiedenen Speicherzellenelemente resultiert in einer erhöhten Herstellungsausbeute, einer reduzierten Streuung des Leistungsvermögens und einer erhöhten Zuverlässigkeit der endgültigen Halbleiterprodukte.A with the production of memory cell arrays with floating gate electrodes linked difficulty is the alignment of the different functional elements including the Source, drain, control gate and floating gate regions. Because the Design rules for higher Integration densities the dimension and spacing of these different ones As items continue to decrease, the need for accurate and increased demand increases controllable adjustment. A suitable relative adjustment and orientation of different memory cell elements results in an increased production yield, a reduced dispersion of performance and increased reliability the final Semiconductor products.
Selbstjustierung ist eine allgemein bekannte Technik bei der Halbleiterherstellung und beinhaltet bestimmte Prozessschritte zum Anordnen und Konfigurieren der resultierenden Strukturen derart, dass bestimmte Elemente, wie CMOS-Gateelektroden und benachbarte Source-/Draingebiete, automatisch als ein Ergebnis der speziellen Prozesssequenz zueinander ausgerichtet werden, so dass nicht auf die Justierung mehrerer Photolithografiemuster vertraut werden muss.self-adjustment is a well known technique in semiconductor manufacturing and includes certain process steps for arranging and configuring the resulting structures such that certain elements, such as CMOS gate electrodes and adjacent source / drain regions, automatically as a result of the special process sequence aligned with each other so do not rely on the adjustment of multiple photolithography patterns must be trusted.
In der Splitgate-Speicherzellenkonfiguration spielt der Feldeffekttransistor (FET) mit Steuergate eine Hauptrolle bei der Bestimmung der Programmierinjektionseffizienz für Speicherzellen mit sourceseitiger Injektion. Eine gute Prozesssteuerung der Steuergatelänge Lcg, die auch als Wortleitungs(WL)-Poly-Länge bezeichnet wird, d. h. der Länge des über dem Kanalgebiet angeordneten Steuer- oder Auswahlgates, kann ein vollständiges Abschalten des Steuergate-Bauelements bereitstellen und die Gefahr von Interferenzen oder Störungen während des Programmierens von spiegelbildlichen Zellen reduzieren.In the split-gate memory cell configuration, the control gate field effect transistor (FET) plays a major role in determining the programming injection efficiency for memory cells with source side injection. Good control of the control gate length L cg , also referred to as word line (WL) poly length, ie, the length of the control or select gate located above the channel region, can provide complete shutdown of the control gate device and the risk of interference Reduce interference during programming of mirror-image cells.
Eine
mit der Herstellung von Splitgate-Speicherzellen verbundene Schwierigkeit
ist auch eine etwaige Fehlanpassung der Längen und Positionen der gepaarten
Steuergateelektroden. Wie in
Daten
können
in einer solchen Splitgate-Speicherzelle durch Nutzung der Änderungen
des über
die jeweiligen Transistoren fließenden Stroms als Funktion
des Zustands der floatenden Gateelektroden
Umgekehrt
können
während
eines Entlade-/Löschvorgangs
Elektronen aus dem floatenden Gate
Sobald
die Splitgate-Speicherzelle von
Wie
aus
Ein
Isolationsmaterial
Jeder
der isolierenden Bereiche
Dementsprechend ist der Wert Cc/Ctot ein Faktor, der bei der Auslegung des Splitgate-Transistors berücksichtigt werden muss. Höhere Werte Cc/Ctot erlauben das Induzieren höherer Spannungen im floatenden Gate, um die Elektroneninjektionseffizienz, d. h. die Programmiereffizienz, des Transistors zu steigern.Accordingly, the value C c / C tot is a factor that must be considered in the design of the split-gate transistor. Higher values C c / C tot allow inducing higher voltages in the floating gate to increase the electron injection efficiency, ie the programming efficiency, of the transistor.
Während eines
Entlade-/Löschvorgangs
bewegen sich Elektronen vom floatenden Gate mittels F-N-Tunneln
durch die Tunnelisolationsschicht
Für eine verbesserte Leistungsfähigkeit ist es daher wünschenswert, die Kapazität CIPO zu erhöhen und dadurch die effektive Spannung am floatenden Gate Vfg zu verringern. Eine Verringerung der Spannung Vfg während Entladevorgängen beeinflusst die Lebensdauereigenschaften der Speicherzelle und die Elektronenentladungs- bzw. Löscheffizienz. Bei Verwendung des F-N-Tunnelmechanismus kann zudem der Tunnelstrom durch Elektroneneinfangstellen innerhalb der Isolationsschichten reduziert werden, wodurch das Leistungsvermögen des Bauelements herabgesetzt wird. Diese Degradation kann durch Erhöhen der effektiven Spannung der floatenden Gateelektrode etwas unterdrückt werden.Therefore, for improved performance, it is desirable to increase the capacitance C IPO and thereby reduce the effective voltage at the floating gate V fg . A decrease in the voltage V fg during discharges affects the life characteristics of the memory cell and the electron discharge efficiency. In addition, using the FN tunneling mechanism, the tunneling current can be reduced by electron trapping sites within the insulating layers, thereby lowering the performance of the device. This degradation can be somewhat suppressed by increasing the effective voltage of the floating gate electrode.
Die
Beziehung zwischen den Kapazitätsbeiträgen Ctun, CIPO des Tunnelisolators
Spezielle
entsprechende Herstellungsprozesse und die resultierenden Strukturen
der floatenden Gateelektrode sind beispielsweise in den Patentschriften
Der Erfindung liegt als technisches Problem die Bereitstellung eines Verfahrens zur Herstellung einer Transistorgatestruktur der eingangs genannten Art und die Bereitstellung einer entsprechenden Transistorgatestruktur zugrunde, mit denen sich die oben erwähnten Schwierigkeiten des Standes der Technik wenigstens teilweise vermeiden lassen und die insbesondere eine hohe Programmier-/Löscheffizienz, gute Lebensdauereigenschaften und hohe Gleichmäßigkeit von Bauelement zu Bauelement ermöglichen.Of the Invention is the technical problem of providing a Method for producing a transistor gate structure of the beginning mentioned type and the provision of a corresponding transistor gate structure underlying with which the above-mentioned difficulties of the state let the technology at least partially avoid and in particular high programming / erasing efficiency, good lifetime properties and high uniformity from component to component enable.
Die Erfindung löst dieses Problem durch die Bereitstellung eines Verfahrens mit den Merkmalen des Anspruchs 1 und einer Transistorgatestruktur mit den Merkmalen des Anspruchs 29 oder 32The Invention solves this problem by providing a method with the Features of claim 1 and a transistor gate structure with the Features of claim 29 or 32
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben, deren Wortlaut hiermit ausdrücklich durch Verweis zum Bestandteil der Beschreibung gemacht wird.advantageous Further developments of the invention are specified in the subclaims, the text of which is hereby expressly is incorporated by reference into the description.
Erfindungsgemäß ist eine Selbstjustierung der Steuergateelektroden und floatenden Gateelektroden vorgesehen, wobei ein hohes Maß an Steuerbarkeit der Tunnel- und Zwischenpoly-Isolationen erreichbar ist. Die Verbesserungen im Herstellungsverfahren und in der hergestellten Struktur haben eine gegenüber dem eingangs erwähnten Stand der Technik verbesserte Programmier-/Löscheffizienz sowie gute Lebensdauereigenschaften und Bauelementreproduzierbarkeit zur Folge.According to the invention is a Self-adjustment of the control gate electrodes and floating gate electrodes provided with a high level of Controllability of tunnel and Zwischenpoly isolations achievable is. The improvements in the manufacturing process and in the manufactured Structure have one opposite the aforementioned State of the art improved programming / erasing efficiency and good fatigue life and device reproducibility.
Die Erfindung umfasst insbesondere auch ein Verfahren zur Herstellung komplementärer floatender Gate- und Steuergatestrukturen mit folgenden Schritten: Bilden einer Isolationsstruktur mit einer Seitenwandfläche, die einen konkaven Teil und einen unter diesem positionierten vorstehenden Teil umfasst; Verwenden des vorstehenden Teils der Isolationsstruktur als Ätzmaske; Ätzen einer Halbleiterschicht zur Bildung einer floatenden Gatestruktur; Bilden einer Isolationsschicht auf der floatenden Gatestruktur zur Erzeugung einer Zwischenisolationsstruktur mit einer Seitenfläche, die einen konkaven Bereich aufweist; und Bilden einer Steuergatestruktur benachbart zur Zwischenisolationsstruktur, wobei die Steuergatestruktur konform zu der Seitenfläche ist und einen vorste henden Teil aufweist, der sich über einen Teil der floatenden Gatestruktur erstreckt.The In particular, the invention also encompasses a process for the production complementary floating gate and control gate structures with the following steps: Forming an insulation structure with a side wall surface, the a concave part and a protruding part positioned below it Part includes; Use the protruding part of the isolation structure as an etching mask; Etching one Semiconductor layer for forming a floating gate structure; Form an isolation layer on the floating gate structure for generation an intermediate insulation structure having a side surface, the has a concave area; and forming a control gate structure adjacent to the intermediate isolation structure, wherein the control gate structure conform to the side surface and having a protruding part extending over part of the floating one Gate structure extends.
Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben. Hierbei zeigen:advantageous embodiments The invention is illustrated in the drawings and will be described below described. Hereby show:
Nachfolgend
wird die Herstellung der Splitgate-Transistorstruktur von
Zunächst wird
im anfänglichen
Verfahrensstadium von
Anschließend wird
auf der zweiten Isolationsschicht
Im
Verfahrensstadium von
Im
Verfahrensstadium von
Im
Verfahrensstadium von
Im
Verfahrensstadium von
Wie
in
Im
Verfahrensstadium von
Im
Verfahrensstadium von
Im
Verfahrensstadium von
Im
Verfahrensstadium von
Im
Verfahrensstadium von
Nach
der Bildung der LDD-Bereiche
Im
Verfahrensstadium von
Nach
dem Füllen
der Kontaktöffnungen
mit leitfähigem
Material wird auf der resultierenden Struktur eine weitere Metallschicht,
z. B. aus Aluminium oder einer Aluminiumlegierung, gebildet. Diese Metallschicht
wird strukturiert und geätzt,
um eine Schicht für
Metallzwischenverbindungen
Wie
aus der obigen Erläuterung
deutlich wird, stellt die Erfindung im Fall des gezeigten Ausführungsbeispiels
durch Steuerung der Bildung der ersten Polysilizium-Abstandshalter
Claims (37)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2004-0007230 | 2004-02-04 | ||
KR10-2004-0007230A KR100539247B1 (en) | 2004-02-04 | 2004-02-04 | Split gate type non-volatile semiconductor memory device and method of fabricating the same |
US10/834,082 US7078295B2 (en) | 2004-02-04 | 2004-04-29 | Self-aligned split-gate nonvolatile memory structure and a method of making the same |
US10/834082 | 2004-04-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102005006734A1 true DE102005006734A1 (en) | 2005-08-25 |
Family
ID=34806106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE200510006734 Withdrawn DE102005006734A1 (en) | 2004-02-04 | 2005-02-02 | Fabrication of split-gate transistor involves forming control gate structure conforming to side surface and including projecting portion that extends over portion of floating gate structure |
Country Status (5)
Country | Link |
---|---|
US (2) | US7078295B2 (en) |
JP (1) | JP5220983B2 (en) |
KR (1) | KR100539247B1 (en) |
CN (1) | CN100481351C (en) |
DE (1) | DE102005006734A1 (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100539247B1 (en) * | 2004-02-04 | 2005-12-27 | 삼성전자주식회사 | Split gate type non-volatile semiconductor memory device and method of fabricating the same |
KR100674958B1 (en) * | 2005-02-23 | 2007-01-26 | 삼성전자주식회사 | Split type flash memory device having self aligned control gate and method for manufacturing the same |
CN100365819C (en) * | 2005-12-06 | 2008-01-30 | 北京大学 | Flash memory structure and its preparation method |
KR100732629B1 (en) * | 2006-01-17 | 2007-06-27 | 삼성전자주식회사 | Nonvolatile memory device and method for forming the same |
KR100806339B1 (en) * | 2006-10-11 | 2008-02-27 | 삼성전자주식회사 | Nand flash memory devices having 3-dimensionally arranged memory cells and methods of fabricating the same |
KR100822803B1 (en) | 2006-10-20 | 2008-04-18 | 삼성전자주식회사 | Non-volatile memory device and method of fabricating the same |
TWI349339B (en) * | 2007-09-03 | 2011-09-21 | Nanya Technology Corp | Non-volatile memory and fabricating method thereof |
JP2010147414A (en) * | 2008-12-22 | 2010-07-01 | Toshiba Corp | Semiconductor device and method of manufacturing the same |
KR20100080243A (en) * | 2008-12-31 | 2010-07-08 | 주식회사 동부하이텍 | Semiconductor device and fabricating method thereof |
US8269204B2 (en) | 2009-07-02 | 2012-09-18 | Actel Corporation | Back to back resistive random access memory cells |
CN102456745B (en) * | 2010-10-22 | 2013-09-04 | 北京大学 | Flash memory as well as preparation method and operation method thereof |
US8835265B1 (en) * | 2012-06-18 | 2014-09-16 | Altera Corporation | High-k dielectric device and process |
CN103531456B (en) * | 2012-07-05 | 2016-08-10 | 上海华虹宏力半导体制造有限公司 | The method forming stable residual oxide on floating boom |
US9287278B2 (en) * | 2013-03-01 | 2016-03-15 | Microsemi SoC Corporation | Non-volatile push-pull non-volatile memory cell having reduced operation disturb and process for manufacturing same |
US9660053B2 (en) * | 2013-07-12 | 2017-05-23 | Power Integrations, Inc. | High-voltage field-effect transistor having multiple implanted layers |
US9793280B2 (en) * | 2015-03-04 | 2017-10-17 | Silicon Storage Technology, Inc. | Integration of split gate flash memory array and logic devices |
US9343468B1 (en) * | 2015-03-26 | 2016-05-17 | Texas Instruments Incorporated | Feed-forward bidirectional implanted split-gate flash memory cell |
US9805806B2 (en) * | 2015-10-16 | 2017-10-31 | Ememory Technology Inc. | Non-volatile memory cell and method of operating the same |
KR102326090B1 (en) * | 2015-10-16 | 2021-11-12 | 삼성전자주식회사 | Semiconductor devices and methods of manufacturing the same |
US10270451B2 (en) | 2015-12-17 | 2019-04-23 | Microsemi SoC Corporation | Low leakage ReRAM FPGA configuration cell |
US10147485B2 (en) | 2016-09-29 | 2018-12-04 | Microsemi Soc Corp. | Circuits and methods for preventing over-programming of ReRAM-based memory cells |
DE112017006212T5 (en) | 2016-12-09 | 2019-08-29 | Microsemi Soc Corp. | Resistive memory cell with random access |
CN108257964B (en) * | 2016-12-29 | 2020-11-10 | 无锡华润上华科技有限公司 | Flash memory device and manufacturing method thereof |
US10522224B2 (en) | 2017-08-11 | 2019-12-31 | Microsemi Soc Corp. | Circuitry and methods for programming resistive random access memory devices |
US10748630B2 (en) * | 2017-11-29 | 2020-08-18 | Silicon Storage Technology, Inc. | High precision and highly efficient tuning mechanisms and algorithms for analog neuromorphic memory in artificial neural networks |
JP2022055951A (en) * | 2020-09-29 | 2022-04-08 | ラピスセミコンダクタ株式会社 | Method for manufacturing semiconductor device |
CN113517179B (en) * | 2021-07-08 | 2023-07-14 | 长鑫存储技术有限公司 | Self-aligned pattern processing method |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3081543B2 (en) * | 1996-03-29 | 2000-08-28 | 三洋電機株式会社 | Split gate transistor, method of manufacturing split gate transistor, and nonvolatile semiconductor memory |
JP3397972B2 (en) * | 1996-04-26 | 2003-04-21 | 三洋電機株式会社 | Nonvolatile semiconductor memory device and method of manufacturing the same |
JP3408095B2 (en) * | 1997-02-13 | 2003-05-19 | 三洋電機株式会社 | Manufacturing method of nonvolatile semiconductor memory device |
US6031263A (en) * | 1997-07-29 | 2000-02-29 | Micron Technology, Inc. | DEAPROM and transistor with gallium nitride or gallium aluminum nitride gate |
US6136653A (en) * | 1998-05-11 | 2000-10-24 | Mosel Vitelic, Inc. | Method and device for producing undercut gate for flash memory |
US6133097A (en) * | 1998-08-14 | 2000-10-17 | Taiwan Semiconductor Manufacturing Company | Method for forming mirror image split gate flash memory devices by forming a central source line slot |
KR100294022B1 (en) * | 1999-05-12 | 2001-06-15 | 윤종용 | nonvolatile semiconductor memory device and method for manufacturing the same |
US6525371B2 (en) * | 1999-09-22 | 2003-02-25 | International Business Machines Corporation | Self-aligned non-volatile random access memory cell and process to make the same |
US6329685B1 (en) * | 1999-09-22 | 2001-12-11 | Silicon Storage Technology, Inc. | Self aligned method of forming a semiconductor memory array of floating gate memory cells and a memory array made thereby |
US6312989B1 (en) * | 2000-01-21 | 2001-11-06 | Taiwan Semiconductor Manufacturing Company | Structure with protruding source in split-gate flash |
KR100360495B1 (en) * | 2000-03-16 | 2002-11-13 | 삼성전자 주식회사 | Split gate type flash memory |
US6868015B2 (en) * | 2000-09-20 | 2005-03-15 | Silicon Storage Technology, Inc. | Semiconductor memory array of floating gate memory cells with control gate spacer portions |
TW455933B (en) * | 2000-11-02 | 2001-09-21 | Winbond Electronics Corp | Manufacture method of floating gate in flash memory |
US6482700B2 (en) * | 2000-11-29 | 2002-11-19 | Taiwan Semiconductor Manufacturing Co., Ltd | Split gate field effect transistor (FET) device with enhanced electrode registration and method for fabrication thereof |
TW494542B (en) * | 2000-12-05 | 2002-07-11 | Winbond Electronics Corp | Fabrication method of split-gate flash memory |
KR100368594B1 (en) * | 2001-02-23 | 2003-01-24 | 삼성전자 주식회사 | Split Gate Flash Memory Device |
TW480676B (en) * | 2001-03-28 | 2002-03-21 | Nanya Technology Corp | Manufacturing method of flash memory cell |
KR100455379B1 (en) * | 2002-02-21 | 2004-11-06 | 삼성전자주식회사 | Method for fabricating flash memory |
US6525369B1 (en) * | 2002-05-13 | 2003-02-25 | Ching-Yuan Wu | Self-aligned split-gate flash memory cell and its contactless flash memory arrays |
TW544943B (en) * | 2002-07-26 | 2003-08-01 | Nanya Technology Corp | Floating gate and the forming method thereof |
US6767792B1 (en) * | 2003-03-18 | 2004-07-27 | Megawin Technology Co., Ltd. | Fabrication method for forming flash memory device provided with adjustable sharp end structure of the L-shaped floating gate |
KR100585107B1 (en) * | 2003-11-13 | 2006-05-30 | 삼성전자주식회사 | Method for manufacturing local SONOS device using self aligning |
US7153744B2 (en) * | 2003-12-03 | 2006-12-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming self-aligned poly for embedded flash |
KR100539247B1 (en) * | 2004-02-04 | 2005-12-27 | 삼성전자주식회사 | Split gate type non-volatile semiconductor memory device and method of fabricating the same |
-
2004
- 2004-02-04 KR KR10-2004-0007230A patent/KR100539247B1/en not_active IP Right Cessation
- 2004-04-29 US US10/834,082 patent/US7078295B2/en not_active Expired - Fee Related
-
2005
- 2005-02-02 DE DE200510006734 patent/DE102005006734A1/en not_active Withdrawn
- 2005-02-04 JP JP2005029597A patent/JP5220983B2/en not_active Expired - Fee Related
- 2005-02-04 CN CNB2005100656346A patent/CN100481351C/en not_active Expired - Fee Related
-
2006
- 2006-06-01 US US11/444,369 patent/US7492000B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US7078295B2 (en) | 2006-07-18 |
KR100539247B1 (en) | 2005-12-27 |
JP5220983B2 (en) | 2013-06-26 |
US7492000B2 (en) | 2009-02-17 |
US20060220105A1 (en) | 2006-10-05 |
JP2005223340A (en) | 2005-08-18 |
CN1661784A (en) | 2005-08-31 |
KR20050079233A (en) | 2005-08-09 |
US20050167729A1 (en) | 2005-08-04 |
CN100481351C (en) | 2009-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102005006734A1 (en) | Fabrication of split-gate transistor involves forming control gate structure conforming to side surface and including projecting portion that extends over portion of floating gate structure | |
DE10350751B4 (en) | Method for producing a vertical field effect transistor and field effect memory transistor, in particular FLASH memory transistor | |
DE102005018347B4 (en) | Flash memory cell, flash memory device and manufacturing method thereof | |
DE102004017164B4 (en) | Method for producing a SONOS memory | |
DE102005014507B4 (en) | Semiconductor memory with charge trapping memory cells and its manufacturing method | |
DE69527388T2 (en) | EEPROM cell with isolation transistor and operating and manufacturing process | |
US6818508B2 (en) | Non-volatile semiconductor memory device and manufacturing method thereof | |
DE4114344C2 (en) | Manufacturing method and structure of a non-volatile semiconductor memory device with a memory cell arrangement and a peripheral circuit | |
DE102006021070B4 (en) | Semiconductor devices with deep trench isolation structures and methods of making same | |
DE102005026944B4 (en) | A method of making a flash memory device and flash memory device made by the method | |
DE60023247T2 (en) | METHOD AND APPARATUS FOR PRODUCING EMBEDDED INTEGRATED FLAT MEMORIES | |
DE102004043517B4 (en) | Semiconductor memory device with memory cells with floating gate electrode and manufacturing method | |
DE102006058185B4 (en) | EEPROM and manufacturing process | |
DE112006000208T5 (en) | Memory device with trapezoidal bit lines and method for producing the same | |
DE102005036561B3 (en) | Process for producing a connection structure | |
DE102004038874B4 (en) | 1-bit SONOS memory cell and manufacturing process | |
DE10324550B4 (en) | A manufacturing method of an NROM semiconductor memory device | |
DE10238784A1 (en) | Non-volatile semiconductor memory element and associated manufacturing and control method | |
DE10333549B3 (en) | Charge trapping memory cell used as transistor comprises semiconductor body or substrate having upper side with curve in channel region | |
EP1518277B1 (en) | Method for the production of an nrom memory cell field | |
EP1504472A1 (en) | Flash memory cell and production method | |
DE10226964A1 (en) | Method for manufacturing an NROM memory cell arrangement | |
DE102004045773B4 (en) | Semiconductor device with dielectric layer sequence and manufacturing method | |
DE69330401T2 (en) | EEPROM cell with double polysilicon layer and its manufacturing process | |
DE102006023682B4 (en) | Method for manufacturing a transistor in a nonvolatile memory and nonvolatile memory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OP8 | Request for examination as to paragraph 44 patent law | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |
Effective date: 20110901 |