DE102004064295B3 - Strukturen aus Nanoclustern mit mindestens einer lebenden Zelle und Vorrichtung und Verfahren zum Herstellen derselben - Google Patents

Strukturen aus Nanoclustern mit mindestens einer lebenden Zelle und Vorrichtung und Verfahren zum Herstellen derselben Download PDF

Info

Publication number
DE102004064295B3
DE102004064295B3 DE102004064295.8A DE102004064295A DE102004064295B3 DE 102004064295 B3 DE102004064295 B3 DE 102004064295B3 DE 102004064295 A DE102004064295 A DE 102004064295A DE 102004064295 B3 DE102004064295 B3 DE 102004064295B3
Authority
DE
Germany
Prior art keywords
nanoclusters
nanocluster
cluster
substrate
placement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102004064295.8A
Other languages
English (en)
Inventor
Dr. Rangelow Ivo
Dr. Burchard Bernd
Dr. Meijer Jan
Dr. Wiggers Hartmut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102004064295.8A priority Critical patent/DE102004064295B3/de
Application granted granted Critical
Publication of DE102004064295B3 publication Critical patent/DE102004064295B3/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q80/00Applications, other than SPM, of scanning-probe techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31752Lithography using particular beams or near-field effects, e.g. STM-like techniques

Abstract

Vorrichtung zur ortsaufgelösten Platzierung von Nanoclustern auf einem Substrat (6), wobei die Nanocluster elektrostatisch aufladbar und zur Platzierung längs ballistischer Bahnen (2) bewegbar sind, die wesentlich durch elektrostatische und/oder magnetische Felder vorgebbar sind, – wobei die Bewegungsbahnen (2) der Nanocluster durch Bauelemente der Ionen- und/oder Elektronenoptik und/oder magnetische und/oder elektrostatische Linsen (17, 18, 24), Blenden (1, 9, 20, 25, 28), Ablenkplatten (15, 16, 26, 23, 31), Filter (21, 40) vorgebbar oder veränderbar sind, dadurch gekennzeichnet, dass mindestens einer der Nanocluster eine lebende Zelle ist und – dass ein elektrostatisches Linsensystem (9, 7) zur Abbremsung der mindestens einen lebenden Zelle vor ihrer Platzierung auf dem Substrat (6) vorgesehen ist und – dass mindestens ein Element unter anderem die ionenoptische Funktion einer Blende (1, 9, 25) aufweist und – dass eine AFM-Spitze (1) zumindest die Funktion einer Blende hat und zumindest den Bereich der erlaubten Endpunkte (5) der Nanoclusterbahnen (2) auf dem Substrat (6) bestimmt.

Description

  • Einleitung
  • Nanocluster sind Zusammenballungen von 10 bis typischerweise mehreren 100000 Atomen oder Molekülen typischerweise einer Sorte. Insofern stehen Nanocluster zwischen dem Festkörper bzw. der Flüssigkeit und dem einzelnen Molekül bzw. Atom. Für die Herstellung komplexer Strukturen bestehend aus solchen Nanoclustern ist eine Vorrichtung zu deren clusterweisen Handhabung notwendig. Diese Vorrichtung muss in der Lage sein, die freien Nanocluster auf einem Substrat bzw. einer Werkstückoberfläche zu platzieren und ggf. zu größeren geordneten insbesondere gemischten Strukturen anzuordnen. Des Weiteren muss diese Vorrichtung über eine Komponente verfügen, die entweder die Erzeugung einzelner Nanocluster oder alternativ die Vereinzelung von vorgefertigten Nanoclustern ermöglicht.
  • Stand der Technik
  • Eine solche Technologie der Einzelplatzierung einzelner Cluster in vordefinierter Weise ist zurzeit nicht verfügbar.
  • In der Schrift EP 0 141 417 B1 wird die homogene, nicht strukturierte Abscheidung von Filmen auf einem Substrat offenbart. In 3 der EP 0 141 417 B1 wird insbesondere die Abscheidung unterschiedlicher Stoffe durch Verwendung zweier Quellen in einer Vorrichtung offenbart. Die strukturierte und insbesondere reproduzierbare Platzierung einzelner Nanocluster und insbesondere von Zellen ist nicht gelöst und ist nicht Teil der Aufgabe der EP 0 141 417 B1 .
  • Aus N. Uchida, L. Bolotov, T. Kanayama, „Quadrupole Ion Trap as Low Energy Ion Beam Source“, Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 707–712 wird die Abscheidung von Clustern auf einem Substrat beschrieben. Dabei werden die Cluster entsprechend ihrer Masse selektiert und platziert. Eine Strukturierung in der Fläche auf dem Substrat durch den dort offenbarten Platzierungsprozess wird hierbei nicht beschrieben. Die Platzierung der Cluster ist dementsprechend mehr oder weniger homogen und stochastisch über das Substrat, auf dem die Platzierung erfolgt, verteilt. Die strukturierte und insbesondere reproduzierbare Platzierung einzelner Nanocluster und insbesondere von Zellen ist nicht gelöst und ist nicht Teil der in dem Artikel dargestellten Aufgabe.
  • Aus der US 6 331 227 B1 ist eine Vorrichtung zur oberflächlichen Ätzung von Substraten mit Hilfe einer Vorrichtung bekannt, bei der ein Clusterstrahl mit Hilfe einer elektronenoptischen Vorrichtung über die Oberfläche eines Substrats gewedelt wird. Hierbei ist es nicht der Zweck dieser Vorrichtung, eine möglichst hohe Auflösung zu erreichen, sondern eine möglichst hohe Homogenität des durch die Bombardierung mit den verwendeten Clustern zur Glättung einer Oberfläche hervorgerufenen Ätzvorgangs der Substratoberfläche zu erreichen. In Spalte 3 ab Zeile 25 der US 6 331 227 B1 wird daher eingehend darauf hingewiesen, dass die homogene Bearbeitung großer Flächen das Ziel dieser Offenbarung, der US 6 331 227 B1 , ist.
  • Die strukturierte und insbesondere reproduzierbare Platzierung einzelner Nanocluster und insbesondere von Zellen ist nicht gelöst und ist nicht Teil der Aufgabe der US 6 331 227 B1 .
  • Aus dem Stand der Technik ist bekannt, dass mit Hilfe von modifizierten AFMs Nanocluster auf einer Oberfläche nach erfolgter, stochastisch verteilter Platzierung verschoben werden können.
  • Eine strukturierte Platzierung ist zurzeit des Weiteren noch stochastisch mit Hilfe von Masken möglich, die zuvor auf dem Substrat bzw. Werkstück abgeschieden wurden.
  • So zeigt beispielsweise die Druckschrift US 5 814 194 A1 in deren 2 eine Vorrichtung zu einem solchen Zweck mit einer Nanopartikelquelle und einem Substrat (Bezugszeichen 2 der US 5 814 194 A1 ) und einer solchen Maske (Bezugszeichen 2 der US 5 814 194 A1 ). Die Anlage erzeugt einen Teilchenstrahl (Bezugszeichen 1 der US 5 814 194 A1 ) aus Nanoclustern und/oder Molekülen zur Behandlung der Oberfläche des besagten Substrats (Bezugszeichen 2 der US 5 814 194 A1 ). Zwei Steerer-Paare (Bezugszeichen 19 der US 5 814 194 A1 ) lenken dabei diesen Strahl durch die von diesen erzeugten elektrostatischen Felder so ab, dass das Fenster der Maske (Bezugszeichen 24 der US 5 814 194 A1 ) überdeckt wird, Das Ziel der Vorrichtung ist jedoch nicht die Deposition und die Platzierung einzelner Nanocluster sondern auch hier die Ätzung von Strukturen in die Oberfläche einer CVD Diamantschicht. In 4 dieser Druckschrift US 5 814 194 A1 wird dabei das eigentliche Problem dieser Art von Vorrichtungen und Verfahren deutlich: Der Querschnitt des Strahls der eingestrahlten Cluster-Teilchen ist eben nicht auf einen oder wenige Cluster-Durchmesser begrenzt, sondern um Größenordnungen breiter. Der Strahl (Bezugszeichen 1 der US 5 814 194 A1 ) bearbeitet daher eher wie ein Sandstrahlgebläse mehr oder weniger zufällig die durch die Öffnungen in der Maske (Bezugszeichen 24 der US 5 814 194 A1 ) dem Strahl ausgesetzte Oberfläche des Substrats (Bezugszeichen 2 der US 5 814 194 A1 ). Wenn bei dieser Technologie zwei Cluster-Teilchen in einem Abstand von weniger als zwei Clusterdurchmessern auf die Substratoberfläche treffen, so ist dies dem statistischen Zufall und der großen Anzahl an eingestrahlten Clusterteilchen zuschulden und eben nicht einer vorbestimmten Positionierung vordefinierte Clusterteilchen. Eine gezielte Positionierung einzelner weniger Cluster zueinander in reproduzierbarer Weise ist daher eben nicht möglich. Die strukturierte und insbesondere reproduzierbare Platzierung einzelner Nanocluster und insbesondere von Zellen ist somit auch hier nicht gelöst. Dies gilt insbesondere auch im Hinblick auf eine gewünschte Dreidimensionalität.
  • Dieses Problem wird in der US 2003 / 0 218 127 A1 schon wesentlich verbessert, aber nicht gelöst. Ein Cluster-Teilchenstrahl wird gemäß der US 2003 / 0 218 127 A1 zur Abscheidung dreidimensionaler makromolekularer Strukturen benutzt. Aufgrund des breiten Durchmessers des Strahls stellen die Autoren in Abschnitt 23 dieser Schrift ganz richtig fest: „After passing into a main chamber of the vacuum chamber, most of the molecules of solvent have been separated which leaves an ionized beam of the molecules of the macro-molecular species that can be used to deposit a film of these macro molecules on the substrate“ In deutscher Übersetzung bedeutet dies: “Nach dem Eintritt in die Hauptkammer der Vakuumkammer haben sich die meisten Moleküle des Lösungsmittels abgetrennt und lassen einen ionisierten Molekülstrahl der makromolekularen Substanz zurück, der für die Abscheidung eines Films auf einem Substrat genutzt werden kann.“ Es geht in der hier zitierten Offenbarung US 2003 / 0 218 127 A1 also um die Abscheidung von Filmen, die sich zwar naturgemäß aus einzelnen Molekülen aufbauen, jedoch als Film im bedeckten Bereich, von stochastischen Schwankungen abgesehen, eine statistisch homogene Zusammensetzung aufweisen. Die Offenbarung geht über die vorausgehende aber dahingehend wesentlich hinaus, dass die Abscheidungsfläche nicht durch eine Maske begrenzt und bestimmt wird, sondern durch den Cluster-Strahl direkt auf das Substrat geschrieben wird. Dabei wird der Cluster-Strahl durch ionenoptische Elemente gelenkt. Es handelt sich also um eine lokal begrenzte Filmabscheidung und nicht um eine definierte Platzierung individueller Cluster. Die Anordnung der einzelnen Cluster einer Filmschicht untereinander ist somit weiterhin stochastisch. Die gezielte, insbesondere die dreidimensionale und insbesondere reproduzierbare Platzierung zweier Cluster in einem Abstand kleiner als dem doppelten der Clusterdurchmesser ist auch hier nicht möglich. Ein weiterer wesentlicher neuer Gedanke dieser Offenbarung ist jedoch die Herstellung von räumlich begrenzten, ggf. übereinander liegenden Schichten aus verschiedenen Clustern aus Polymeren, Nanokristallen, Carbon-Nanotubes, organischen Molekülen, biologischen Molekülen und deren Kombinationen. (Ansprüche 14 und 17 der US 2003 / 0 218 127 A1 und Abschnitt 25). Eine Platzierung von Zellen zur Herstellung biologischer Systeme und biologischer Strukturen wird hier nicht als möglich erkannt. Somit wird auch die Möglichkeit gemischter Strukturen aus Zellen und anderen Strukturelementen nicht erkannt.
  • Wenn in dieser Offenbarung US 2003 / 0 218 127 A1 also von dreidimensionalen Strukturen die Rede ist, so erscheint in der vertikalen (Z-Achse) eine Auflösung in der Größenordnung von weniger als 2 Cluster-Durchmessern in Form der abzuscheidenden Filmdicke zwar möglich, nicht jedoch in den flächigen Dimensionen (X-Achse und Y-Achse) In diesen beiden Dimensionen bleibt die Auflösung auf den Strahldurchmesser nach unten begrenzt, was zur Folge hat, dass wiederum nur lokal begrenzte Filmschichten abgeschieden werden können. Die strukturierte und insbesondere reproduzierbare Platzierung einzelner Nanocluster und insbesondere von Zellen wird jedoch nicht offenbart.
  • Die Deposition unterschiedlicher Filmschichten ist im Übrigen auch in I. Yamada „Novel materials processing and applications by gas cluster ion beams“, Eur. Phys. J. D 9, Seiten 55–61 aus dem Jahr 1999 erwähnt. In dem Übersichtsartikel wird unter anderem die Deposition von Clustern unterschiedlicher Masse erwähnt. Die strukturierte und insbesondere reproduzierbare Platzierung einzelner Nanocluster und insbesondere von Zellen wird jedoch nicht offenbart.
  • In der US 6 750 460 B2 wird eine Vorrichtung offenbart, bei der der Scan-Bereich (Bezugszeichen 404 in 6 der US 6 750 460 B2 ) eines ballistischen Cluster-Strahls (Bezugszeichen 154 in 6 der US 6 750 460 B2 ) durch eine Appretur-Blende (Bezugszeichen 410 in 6 der US 6 750 460 B2 ) in seiner Ausdehnung begrenzt wird.
  • Die US 6 750 460 B2 beschreibt dabei in Spalte 8 Zeile 15 bis 63 und in Spalte 9 Zeile 5 bis 27 wie durch das Scannen, also das zeilenweise Überstreichen eines Bereiches, mit dem Clusterstrahl die Öffnung in der Appretur-Blende (Bezugszeichen 412 in 6 der US 6 750 460 B2 ) auf das Substrat projiziert wird. Die Öffnung ist somit größer als der Durchmesser des Clusterstrahls (Bezugszeichen 154 in 6 der US 6 750 460 B2 ).
  • Die Positionierung des Substrates (Bezugszeichen 202 in 6 der US 6 750 460 B2 ) gegenüber dem durch die Öffnung in der Appretur-Blende durchtretenden Rest-Scan-Bereich (Bezugszeichen 520 in 6 der US 6 750 460 B2 ) wird dabei durch eine X-Y-Positioniereinheit (Bezugszeichen 502 in 6 der US 6 750 460 B2 ) vorgenommen.
  • Somit ist durch diesen Stand der Technik wiederum nur ein Verfahren und eine Vorrichtung offenbart, mit der lokal begrenzte Filme abgeschieden werden können. Die Platzierung von Zellen und komplizierteren Molekülen und zwar insbesondere die dreidimensional reproduzierbare Platzierung derselben wird in der US 6 750 460 B2 nicht offenbart. Die strukturierte und insbesondere reproduzierbare Platzierung einzelner Nanocluster und insbesondere von Zellen wird somit auch durch diese Schrift nicht offenbart.
  • In dem Artikel von S. Ohkouchi, Y. Nakamura, H. Nakamura, K. Asakawa, „Selective Formation of InAs Quantum Dot Arrays by Direct Deposition of Indium Nano-Dots using a Nano-Jet Probe“, 2004 International Conference on Indium Phosphide and Related Materials, Conference Proceedings, 16th IPRM, 31, May–4. June Kagoshima, Japan wird die Positionierung von einzelnen Indium Clustern mittels einer AFM Spitze beschrieben. Dabei wird eine AFM Spitze mit einem kleinen Loch in der Spitze benutzt. Die AFM-Spitze ist dabei als hohler Kegel gearbeitet, der mit der Spitze zum Substrat gerichtet ist. Im Kegel befindet sich das bei Raumtemperatur geschmolzene Material, in der Schrift das flüssige Metall Indium, das zu platzieren ist. Die Spitze wird in die Nähe der Oberfläche des Substrats gebracht. Durch das Anlegen eines elektrischen Feldes kommt es zu einer Deposition von Nanoclustern aus geschmolzenem Indium. (Referenz: Zusammenfassung des Artikels) Diese Vorrichtung hat den Nachteil, dass sie zwar die notwendige Auflösung erzielt, jedoch nur bei Raumtemperatur flüssige Metalle, eben Indium oder ggf. Gallium, platzieren kann. Das Prinzip der Vorrichtung ist eben nicht in der Lage, die reproduzierbare Platzierung mehr oder weniger beliebiger Nanocluster und insbesondere verschiedener Nanocluster oder von Zellen zu ermöglichen. Es handelt sich genaugenommen um eine sehr kleine Flüssigmetall-Ionenquelle mit einem Taylor-Kegel, die in die Nähe eines Substrats gebracht wird. Die Vorrichtung löst vor allem bereits ein weiteres wesentliches Problem, nämlich die korrekte Positionierung eines Nanoclusters gegenüber Referenzpunkten auf einem Substrat. Diese Referenzpunkte sind in dem Fall dieser Veröffentlichung beispielsweise andere bereits platzierte Nano-Tröpfchen. Die Vorrichtung und das Verfahren sind aufgrund der notwendigen Eigenschaft einer Flüssigkeit, hier Indium, nicht zur Bildung dreidimensionaler Strukturen geeignet. Nanocluster unterschiedlicher Eigenschaften können nicht platziert werden. Die Menge der möglichen Nanocluster ist auf Indium und Gallium-Nano-Tröpfchen begrenzt. Zellen können nicht platziert werden.
  • Eine weitere alternative Technologie, die zur lokal begrenzten Deposition von Strukturen gleicher Größenordnung geeignet ist die Dip-Pen-Nanolithographie. (Wang, X. et al., Langmuir (2003) Vol.19, No.21, p.8951; Seunghun Hong, Chad A. Mirkin, "A Nanoplotter with Both Parallel and Serial Writing Capabilities" (2000) Science 288, 5472, 1808–1811.) Bei dieser wird mit Hilfe einer AFM-Nadel aus einer Flüssigkeit eine lokal polymerisierte Linie abgeschieden.
  • In einer anderen Veröffentlichung (X. Wang, K. Ryu, and C. Liu, " Scanning Probe with Elastomeric (PDMS) Tip for Tip-Based Microcontact Printing ", The 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Boston, MA, 8–12 June 2003) wird ein kleiner Tintentropfen, der an der Spitze einer AFM-Spitze durch Benetzung hängt platziert. Insbesondere ist die Platzierung von metallischen Nanoclustern oder die Mischung verschiedener insbesondere nicht polymerisierender Nanocluster nicht möglich. Auch werden die Nanocluster als solche selbst nicht funktionalisiert, sondern lediglich als Bausteine für größere Strukturen aus einer Materialsorte eingesetzt. Als Reservoir dient die Oberfläche der Spitze selbst. Die als Tinte benutzte Flüssigkeit haftet an dieser durch Adhäsion, was die Schreibdauer wesentlich begrenzt und die Brauchbarkeit der Technologie wesentlich herabsetzt.
  • Aus der DE 103 47 969 A1 ist eine Vorrichtung und eine Verfahren zur Platzierung einzelner Teilchen auf einem Substrat bekannt, das viele der zuvor erwähnten Nachteile bereits umgeht und die damit verbundenen technischen Probleme löst. Durch eine Appretur-Blende in Form einer AFM Spitze mit einem Loch im nm Maßstab kann ein Teilchenstrahl so eingegrenzt werden, dass bei hinreichend kleiner Strahlstromstärke einzelne Teilchen platziert werden können. Durch die beim Einschlag auf dem Substrat freigesetzte Energie wird ein Detektor betätigt, der den Strahl unterbricht und so eine Doppeltplatzierung verhindert. Für kleine Teilchen ist das Verfahren bereits ausreichend. Das Verfahren eignet sich jedoch nur bedingt zur Erzielung des erfindungsgemäßen Zweckes, da die dort offenbarte AFM-Spitze nicht vor Verkleben geschützt ist. Dreidimensionale Strukturen aus Nanoclustern und Strukturen aus platzierten Zellen und Viren sind ebenfalls nicht Teil der Offenbarung DE 10 347 969 A1 . Die strukturierte und insbesondere reproduzierbare zuverlässige Platzierung einzelner Nanocluster und insbesondere von Zellen wird daher nicht offenbart.
  • Aus der US 2004 / 0 033 679 A1 und der DE 199 52 018 C1 sind Verfahren und Vorrichtungen zur Herstellung dreidimensionaler Strukturen unter Zuhilfenahme elektrostatischer Felder bekannt. Die Aufgabe einer nm-genauen Positionierung einzelner Nanocluster zu dreidimensionalen komplexeren Strukturen wird nicht gelöst bzw. ist mit diesen Techniken nicht lösbar.
  • Aus E.A. Roth „Inkjet printing for high throughput cell patterninig“ Biomaterials 25, pp. 3707–3715 und David J Odde „Laser-guided direct writing of living cells“, Biotechnology and bioengineering 67, pp. 312–318 (2000) sind dreidimensionale Druckverfahren und dreidimensionale Strukturen auf Basis von lebenden Zellen bekannt.
  • Aufgabe der Erfindung
  • Die Erfindung stellt sich daher die Aufgabe, eine Vorrichtung und ein Verfahren zu deren Herstellung anzugeben, mit dem Zellen und elektrische Funktionskomponenten miteinander flexibel kombiniert werden können. Diese Aufgabe wird durch eine Vorrichtung gemäß dem Anspruch 1 und durch das in der Beschreibung angegebene Verfahren gelöst.
  • Einsatzgebiete
  • Ein sinnvolles Einsatzgebiet der im Folgenden beschriebenen erfindungsgemäßen Vorrichtung und des erfindungsgemäßen Verfahrens ist die Herstellung funktionaler Strukturen basierend auf Nanoclustern. Diese wiederum können vielfältige Anwendungen wie beispielsweise von Materialwissenschaften, Oberflächenchemie über Optik bis Medizintechnik finden. Insbesondere ist hier die Herstellung von elektronischen und quantenmechanischen Bauelementen zu nennen. Beispielsweise können mit einer solchen Anlage nanoskopische clusterbasierende PN-Dioden und andere kompliziertere elektronische Bauelemente wie beispielsweise NPN-Transistoren erzeugt werden. Auch ist die Platzierung von Metallclustern zur Herstellung einer Verdrahtung denkbar. Die 4 und 5 zeigen schematisch eine beispielhafte Ausformung einer solchen elektronischen Struktur auf Basis von einzelnen Nanoclustern.
  • Von besonderer Wichtigkeit ist die Anwendung zur Erzeugung dreidimensionaler photonischer und phononischer Kristalle, beispielsweise zur Herstellung kompakter dreidimensionaler Antennen bzw. Ultraschallmikrofone.
  • Des Weiteren ist bekannt, dass es möglich ist, kleine quantenmechanische Systeme beispielsweise Quanten-Bits und Quanten-Register in kleinen Nanokristalliten zu platzieren. Insbesondere ist es möglich, ein, zwei oder mehr optische Zentren beispielsweise NV-Zentren in Diamantkristalliten mittels Ionenimplantation mit Hilfe eines gängigen geeigneten Beschleunigers zu erzeugen und diese Kristallite dann mit Hilfe einer erfindungsgemäßen Vorrichtung zu platzieren. Hierbei unterscheidet sich jedoch die unten als zweites beschriebene Nanopartikelquelle für vorgefertigte Kristallite und andere Nanoobjekte von einer generativen Nanopartikelquelle, die zuerst beschrieben wird.
  • Aufbau der erfindungsgemäßen Vorrichtung
  • Die Vorrichtung wird beispielhaft schematisch anhand der 3 und der Detail1 und 2 erläutert.
  • Die Vorrichtung gliedert sich in die drei Hauptkomponenten Clusterquelle (42), Nanoclusterstrahlformung und -aufbereitung (43) und Positioniereinrichtung (44). Die Positioniereinrichtung (44) wird in 1 beispielhaft schematisch dargestellt. Es sind typischerweise zwei Arten von Clusterquellen (42) möglich:
    • 1. eine generative Quelle, die die Nanopartikel unmittelbar online erzeugt und
    • 2. eine Quelle, die vorgefertigte Nanopartikel verwendet.
  • Die generative Clusterquelle (42) (siehe 3) unterteilt sich in Clustersyntheseeinrichtung (39), Clustermassenspektrometer (40) und Clusterextraktionsoptik (41). Kern der erfindungsgemäßen Vorrichtung ist die Kombination aus Positioniereinrichtung (44) auf Basis einer durchbohrten AFM-Spitze (1), wie sie bereits Stand der Technik ist, und der Clusterquelle (42). Im Gegensatz zu der zum Stand der Technik gehörenden Vorrichtung, die zur Platzierung atomarer Teilchen dient und zum anderen einen Detektor für die Detektion der einzelnen atomaren Teilchen aufweist, werden hier Nanocluster, die aus 10 bis mehreren 100000 Atomen oder Molekülen bestehen platziert. Insbesondere wird auf einen Detektor explizit verzichtet. Bei der Platzierung von Nanoclustern treten spezielle Probleme auf, die zu einem Verkleben der AFM-Spitze (1) führen können und die durch die erfindungsgemäße Vorrichtung umgangen werden. Die AFM-Spitze (1) arbeitet damit quasi als Nanocluster-Strahl-Drucker zur Erzeugung von Nanocluster-Strukturen auf der Oberfläche (8) eines Substrates (6). Clusterstromdichte und Vorschub werden hierbei der Anwendung entsprechend aufeinander abgestimmt. Diese AFM-Spitze (1) bildet in erster Linie eine Blende zur Kollimation des Clusterstrahls (2). Selbstverständlich muss der Durchmesser des Lochs in der AFM Spitze (1) auf die zu platzierenden Nanocluster oder -partikel abgestimmt sein. Die AFM-Spitze (1) wird beispielsweise in Form einer holen Pyramide (3) ausgeführt, die sich beispielsweise an einem schwenkbaren AFM-Cantilever (12) befindet, der beispielsweise durch ein piezo- und/oder thermoelektrisches Positioniersystem (10) bewegt werden kann. Dies hat den Vorteil, dass die optische Achse des Systems für den Clusterstrahl (2) frei bleibt und nicht für ein optisches System zur Vermessung des Zustands der AFM-Spitze (1) verwendet werden muss. Zweckmäßigerweise wird die AFM-Spitze (1) so an eine Aufhängung (11) montiert, dass ihre Spitze zum Substrat (6) weist und der Abstand (4) zwischen AFM-Spitze (1) und Zielkreis (5) auf der Oberfläche des Substrats (8) minimal ist. Darüber hinaus sollte die Blende oder AFM-Spitze (1) zweckmäßigerweise durch Mikrointegration mit zusätzlichen elektrostatisch ladbaren Elektroden (7) versehen werden. Hierdurch wird typischerweise verhindert, dass die elektrostatisch geladenen, einfliegenden Nanocluster die AFM-Spitze (1) statt des Substrates (6) treffen und die AFM-Spitze (1) verkleben und hierbei insbesondere die Öffnung oberhalb des Zielkreises (5) auf der Oberfläche des Substrates (8) verkleben. Dies unterscheidet den Stand der Technik wesentlich von der erfindungsgemäßen Vorrichtung. Die abstoßenden Elektroden (7) sind also von essentieller Bedeutung für die Funktionstüchtigkeit des Aufbaus und stellen neben der Kombination Clusterquelle (42) – AFM-Spitze (1) einen wesentlichen erfinderischen Schritt dar.
  • Darüber hinaus kann die AFM-Spitze (1) verwendet werden, um das Platzierungsergebnis zu überprüfen. Parallel ist es sinnvoll mit einem Laser an einer Stelle typischerweise in der Nähe der AFM-Spitze (1), die Passage eines einzelnen Nanoclusters beispielsweise durch Fluoreszenz zu detektieren und daraufhin die Passage weiterer Nanocluster durch elektrostatische Sperrfelder zu verhindern. Hierbei bietet sich beispielsweise die geeignete Aufladung einiger im Strahlengang befindlicher Blenden an.
  • Auch Tintenstrahldrucker verarbeiten Nanocluster, die in der zu druckenden Tinte dispergiert sind. Im Gegensatz zu diesen, ist die vorgeschlagene Vorrichtung jedoch auch in der Lage, nanokristallinen Staub zu erzeugen oder zu verarbeiten und diesen zu platzieren und das mit erheblich höherer Platzierungsgenauigkeit. Darüber hinaus wird die ballistische Bahn der Nanocluster durch ionen- bzw. elektronenoptische Elemente (43, 24, 26) während des Fluges der Teilchen innerhalb der vorgeschlagenen Vorrichtung modifiziert. Insbesondere kann eine vorgeschlagene Vorrichtung beispielsweise über eine massenspektroskopische Einrichtung, ein Clustermassenspektrometer (40), zur Einstellung bzw. Sortierung der Clustergröße verfügen. Im Gegensatz zu Tintenstrahldruckern wird die Flugbahn der Tröpfchen eines Tintenstrahldruckers im Moment der Tröpfchenbildung, also der Loslösung der Tröpfchen vom mikrofluidischen Druckkopf festgelegt.
  • Die ionen- oder elektronenoptischen Elemente der erfindungsgemäßen Vorrichtung können beispielsweise aus elektrostatischen Ablenkplatten, den Steerer-Paaren (23), bestehen, die den Clusterstrahl (2) nach dem Verlassen der Clusterquelle (42) für eine optimale Bahn durch die Ionen- bzw. Elektronenoptik, die Nanoclusterstrahlformung und -aufbereitung (43), repositionieren. Ein folgendes optionales Wien-Filter (21) kann zur Energie-Separation der Nanocluster benutzt werden. Die ausseparierten Nanocluster können beispielsweise in einer Blende (20) definiert abgefangen werden. Elektrostatische Linsensysteme, beispielsweise geeignet gestaltete Einzel-Linsen (18, 17) können beispielsweise zur Fokussierung und Abbremsung oder Nachbeschleunigung des Clusterstrahls (2) bzw. der Nanocluster verwendet werden, um das Arbeitsergebnis zu optimieren. Die optimale Ausrichtung auf die AFM-Spitze (1) kann durch Steerer-Paare (16) und Multipolelemente, elektrostatische Multipol-Steerer (15), erreicht werden. Eine austauschbare und justierbare Objektblende (9) stellt sicher, dass keine Nano-Cluster an der AFM-Spitze (1) vorbei das Substrat (6) außerhalb des Zielkreises (5) treffen können. Eine grobe Positioniereinrichtung (13) erlaubt den Verschub des Substrates (6) in x-, y- und z-Richtung sowie dessen Drehung und Neigung um typischerweise bis zu sechs Freiheitsgrade gegenüber AFM-Spitze (1) und Optik, der Nanoclusterstrahlformung und -aufbereitung (43), mit Quelle (42). Für Justierzwecke sollte die Aufhängung (11) der AFM-Spitze (1) so gestaltet werden, dass diese sich aus dem Strahlengang der Optik, der Nanoclusterstrahlformung und -aufbereitung (43), herausschwenken lässt. Auch sollte die AFM-Spitze (1) in allen drei Translationsrichtungen mit genügend hoher Reproduktionsgenauigkeit bewegt werden und um typischerweise zwei Winkel justiert werden können.
  • Die Clusterquelle (42) wird ebenso wie die Optik, die Nanoclusterstrahlformung und -aufbereitung (43), je nach Bedarf und Anwendung gestaltet. Wesentlich ist, dass sie geladene Nanocluster zu liefern im Stande sein muss. Eine beispielhafte Ausformung einer generativen Clusterquelle (42) umfasst unter anderem eine Clustersyntheseeinrichtung (39). Diese besteht aus der eigentlichen Synthesekammer, dem Mikrowellen-Resonator (36), in die beispielsweise ein Synthesegas über eine Synthesegaszufuhr (38) eingeleitet wird. Ein beispielhaftes Synthesegas besteht typischerweise aus einem Gemisch von einem inerten Trägergas z.B. Ar, möglicherweise weiteren, gasförmigen Reaktionspartnern oder anderen, gasförmigen Komponenten und einem gasförmigen Precursor (beispielsweise Zn(CH3)2). Die Konzentration der verschiedenen Gase kann zur Einstellung spezifischer Synthesebedingungen in einem großen Bereich variiert werden. Durch Energiezufuhr, beispielsweise über einen Mikrowellen- oder RF-Generator, eine Heizquelle in Form eines Rohrofens oder einer Flamme, einen Laser oder andere Energiequellen, die eine Energiedissipation im Reaktor, dem Mikrowellen-Resonator (36), erzeugen, wird mittels der Energiequelle eine chemische Reaktion in Gang gesetzt, die durch geeignete Wahl der zugeführten Energie, der Stoffkonzentrationen und der Strömungsgeschwindigkeit im Reaktor zur Bildung der gewünschten Nanocluster führt. Die Homogenität der gebildeten Cluster lässt jedoch in der Regel zu wünschen übrig, die Standardabweichung von der mittleren Partikelgröße beträgt typischerweise 10–50%.
  • Eine weitere beispielhafte Form der Nanocluster-Synthese besteht in der Zerstäubung einer als Lösung oder Dispersion vorliegenden Flüssigkeit, beispielsweise durch pneumatische Zerstäubung oder durch Zerstäubung in einem elektrostatischen Feld (Elektrospray-Verfahren). Durch Überführung der Flüssigkeit in eine Reaktionskammer mit vermindertem Druck kann das Lösungsmittel verdampft werden, so dass die in der Lösung vorliegenden Nanocluster freigesetzt werden oder aus in der Lösung vorliegenden Vorläufersubstanzen hergestellt werden. Durch Zufuhr von Energie können diese Substanzen zum gewünschten Produkt umgesetzt werden.
  • Für die weitere Verarbeitung der Nanocluster ist ein ballistischer Transport in zur Ionenoptik, der Nanoclusterstrahlformung und -aufbereitung (43), notwendig. Hierfür muss die mittlere freie Weglänge der Nanocluster erhöht und das Vakuum verbessert werden. Auch werden solche Nanocluster aussepariert, die bereits eine bevorzugte Bewegungsrichtung haben. Dies geschieht über eine mindestens einstufige Extraktion der Nanocluster-beladenen Gasphase aus dem Reaktor in eine Vakuumkammer über eine Düse. Besonders bevorzugt ist ein zweistufiger Aufbau aus einer ersten und einer zweiten Vakuumkammer, wobei der Druck in der zweiten Kammer niedriger ist als in der ersten Kammer.
  • Die so separierten Nanocluster werden durch einen elektrostatischen Massenseparator (oder Massenspektrometer) nach Teilchenmasse sortiert und über eine Ionenoptik (im einfachsten Fall ein einfaches Blendensystem), die Nanoclusterstrahlformung und -aufbereitung (43), der Platzierungsvorrichtung zugeführt. Dieses Clustermassenspektrometer (40) kann beispielsweise elektrostatisch aufgebaut werden. Hierbei erzwingt ein erstes Plattenpaar, das Steerer-Paar (31), eine Ablenkung des Clusterstrahls (2). Ungeladene Cluster werden nicht beeinflusst und werden in dem in gerader Richtung liegenden Sumpf (28) aufgenommen. Zur Definition der Energie der Nanocluster kann darüber hinaus beispielsweise zwischen zwei Beschleunigungsgittern (30, 29) eine rechteckförmige Wechselspannung definierter Pulsspannung, Pulsdauer und -periode angelegt werden. Hierdurch können bei geeigneter Einstellung der Parameter der Spannung nur solche Nanocluster die Öffnung im Sumpf (28) erreichen, die bestimmten Parametern insbesondere Masse und Geschwindigkeit genügen.
  • Kleinere Blenden (20) müssen hierbei ggf. wiederum über Elektroden und elektrostatische Aufladung vor dem Verkleben geschützt werden.
  • Die Vorrichtung verfügt typischerweise über weitere Komponenten, die im Einzelfall variieren können.
  • Nach dem Passieren des Sumpfes (28) ist es sinnvoll, den so erzeugten Clusterstrahl (2) in seiner Richtung zu korrigieren (Clusterextraktionsoptik 41). Dies kann beispielsweise durch Steerer-Paare (26) geschehen. Eine Blende (25) reduziert die durch diese Korrektur aufgetretenen Fehler. Eine Kondensor-Linse (24) beschleunigt und extrahiert die Nanocluster aus der Quelle. Durch geeignete Wahl der Extraktionsblende und der Teilchenparameter kann sichergestellt werden, dass die Teilchenstromdichte im weiteren Verlauf so niedrig ist, dass die Platzierung einzelner Cluster möglich ist. Dieses Element schließt die beispielhafte generative Clusterquelle (42) ab.
  • Eine beispielhafte Clusterquelle (42) für die Generation eines Nanoclusterstroms aus vorgefertigten Nanoclustern kann beispielsweise wie folgt skizziert werden:
    Aus den vorgefertigten Nanoclustern wird zunächst offline eine kollodiale Lösung in einem leicht flüchtigen, geeigneten Lösungsmittel hergestellt. Diese wird in einen Vorratsbehälter gegeben, wo durch geeignete Maßnahmen ein Absetzen der Teilchen verhindert wird. Solche Maßnahmen können beispielsweise Dispergiermittel, Rühren oder Ultraschall sein. Handelt es sich bei den Teilchen um Zellen, so muss sichergestellt sein, dass diese geeignete Lebensbedingungen vorfinden. Es ist also ggf. für eine ausreichende Sauerstoffzufuhr, Temperierung und Ernährung zu sorgen.
  • Die kolloidale Lösung wird beispielsweise über eine Pumpe angesaugt und mit Hilfe einer Düse so in eine erste Kammer gesprüht, dass geladene Nanotröpfchen entstehen. Durch einen verringerten Gasdruck verdampft typischerweise das Lösungsmittel, beispielsweise ein organisches Lösungsmittel, und als Teilchen bleiben die Nanopartikel zurück. Durch einen Massenseparator wie oben beschrieben wird nun sichergestellt, dass nur Teilchen der richtigen Größe und des richtigen Ladungszustands eine Blende passieren können. Hierdurch ist diese Quelle in der Lage, ohne große Umbauten oder Umstellungen nur durch Änderung der Selektionsparameter- beispielsweise der Selektionsspannungen- schnell zwischen verschiedenen Nanoclustertypen zu wechseln. Durch Verwendung einer kolloidalen Mischung verschiedener Nanoclustertypen, die sich in einem Nutzparameter – beispielsweise der elektrischen Leitfähigkeit – und einem Selektionsparameter – beispielsweise dem Clustergewicht – unterscheiden, ist so die instantane Umschaltung zwischen verschiedenen Nanosclustern unterschiedlichen Materialtyps möglich. Dies ist ein wesentlicher Vorteil. Auch hier schließt eine Kondensorlinse die Nanopartikelquelle ab.
  • Verschiedene beispielhafte Faraday-Cups (27, 22, 19), die im weiteren, auf besagte Clusterquellen (42) folgenden Strahlengang liegen, können das sukzessive Einstellen der korrekten Parameter für die gewählte Clustersorte ermöglichen. Darüber hinaus ist es sinnvoll, verschieden Schleusen für die Probenentnahme und Prozesskontrolle vorzusehen.
  • Bei der Herstellung von Nanostrukturen, beispielsweise bestehend aus zwei- oder dreidimensionalen Anordnungen von Nanoclustern, wird zweckmäßigerweise zunächst ein Test-Target, beispielsweise ein mit PPMA beschichtetes Silizium-Wafer-Stück, was sich gleichzeitig auf der Positioniereinrichtung (13) befindet, bearbeitet. Neben den hier beschriebenen Einrichtungen ist es sinnvoll, die Vorrichtung um eine Einrichtung zu ergänzen, die eine hinreichend genaue Beobachtung des Zielkreises (5) erlaubt. Ein Long-Distance-Auflicht-Mikroskop hat sich für solche Zwecke bewährt. Dessen Strahlengang wird beispielsweise über einen Spiegel mit einem ausreichenden Loch für den Nanoclusterstrahl an geeigneter Stelle (z.B. zwischen elektrostatischem Multiplo-Steerer 15 und Objektblende 9) eingekoppelt.
  • Beispielhafte Strukturen
  • Durch die ortsaufgelöste Platzierung von Nanoclustern wird es möglich, punkt förmige (= nulldimensionale), linienförmige (= eindimensionale), flächige (= zweidimensionale) und dreidimensionale Strukturen aus Nanoclustern aufzubauen. Hierfür ist es von besonderem Vorteil, wenn unterschiedliche Clustertypen platziert und in die entstehende Struktur integriert werden, die sich in ihren physikalischen, biologischen oder chemischen Eigenschaften definiert unterscheiden. Beispielsweise können elektrisch halbleitende Cluster abgeschieden werden, die n-leitende Nanocluster (54) oder p-leitende Nanocluster (55) sind. Auf diese Weise können nicht nur einfache elektronische Funktionselemente wie beispielsweise Leitungen und Kontakte sondern auch kompliziertere elektronische Bauelemente wie Widerstände (51), die auch als Sicherung dienen können, pn-Dioden (52) oder Transistoren abgeschieden werden. Diese können beispielsweise über besagte Leiterbahnen (50) aus überlagerten Metall-Nanoclustern (53) mit makro- oder mikroskopischen Leiterbahnen (49) verbunden werden. Werden elektrisch isolierende Cluster (57) abgeschieden, so können Leitungskreuzungen in dreidimensionalen Strukturen, Kreuzung (56), realisiert werden.
  • Aus diesen Elementen lassen sich noch kompliziertere Systeme ausbauen, die sowohl Elemente enthalten, die empfindlich gegen äußere Einflüsse sind, als auch Elemente enthalten, die beispielsweise durch elektrisch Erhitzung und Bimetall-Funktionalität als Aktor wirken können.
  • Die Möglichkeiten sind jedoch hierauf nicht beschränkt. Hierbei sind insbesondere auch die chemischen und biologischen Wirkungen zu nennen, die sich wesentlich von denen auf atomarer oder mikroskopischen Ebene unterscheiden.
  • Schließlich ist noch die Platzierung und Montage nanoskopischer Systeme auf mikro- und makroskopischen Trägersystemen zu nennen, also solcher Nanocluster, die selbst wieder eine innere Struktur, beispielsweise gekoppelte Quantenpunkte, aufweisen und beispielsweise durch die Platzierung geeignet assembliert und damit einer Nutzung zugänglich gemacht werden.
  • Figuren
  • 1: Prinzipschema einer beispielhaften erfindungsgemäßen AFM Spitze (1) mit Elektroden.
  • 2: Prinzipschema einer beispielhaften Clusterquelle (42).
  • 3: Prinzipschema einer beispielhaften Vorrichtung.
  • 4: Prinzipschema einer beispielhaften Nanostruktur (hier Leitung, Widerstand, PN-Diode).
  • 5: Prinzipschema einer beispielhaften Nanostruktur (hier Leitungskreuzung). Liste der Bezeichnungen
    Nr. Bezeichnung
    1 AFM Spitze
    2 Nanoclusterbahn / Clusterstrahl
    3 Pyramide / Kegel der AFM-Sitze beispielsweise aus Si2N3
    4 Abstand AFM-Spitze-Substratoberfläche (8)
    5 Zielkreis auf Substratoberfläche
    6 Substrat
    7 Elektroden für den Verklebeschutz der AFM Spitze (1)
    8 Oberfläche des Substrates
    9 Objektblende
    10 Thermo- und/oder piezoelektrisches Positioniersystem
    11 Aufhängung der AFM-Spitze (ggf. mit Positionierfähigkeiten)
    12 schwenkbarer AFM-Cantilever
    13 Positioniereinrichtung
    14 nicht verwendet
    15 Elektrostatischer Multipol-Steerer
    16 Elektostatische Steerer-Paare
    17 Erste Einzellinse (deceleration lens)
    18 Zweite Einzellinse
    19 Faraday-Cup
    20 Blende (ggf. mit Verklebeschutz)
    21 Wien-Filter
    22 Faraday-Cup
    23 Steerer-Paare
    24 Kondensor-Linse
    25 Blende
    26 Steerer-Paare
    27 Faraday-Cup
    28 Sumpf mit Loch
    29 Erstes Beschleunigungsgitter
    30 Zweites Beschleunigungsgitter
    31 Steerer-Paar
    32 Probing nozzle
    33 Probing nozzle
    34 Mikrowellen HF
    35 Quarz-Rohr
    36 Mikrowellen-Resonator
    37 Trägergaszufuhr
    38 Synthesegaszufuhr
    39 Clustersyntheseeinrichtung
    40 Clustermassen-Spektrometer
    41 Clusterextraktionsoptik
    42 Clusterquelle
    43 Nanoclusterstrahlformung und -aufbereitung
    44 Positioniereinrichtung
    45 Pumpenanschlüsse
    46 Ausgangskammer der Syntheseeinrichtung
    47 Kammer mit höherem Druck
    48 Kammer mit Synthesedruck
    49 Mikro- oder makroskopische Leiterbahn
    50 Leiterbahn aus Nanoclustern
    51 Halbleitender Widerstand aus Nanoclustern
    52 PN-Diode aus Nanoclustern
    53 Metallischer Nanocluster
    54 n-leitender Nanocluster
    55 p-leitender Nanocluster
    56 Kreuzung
    57 Isolierender Cluster

Claims (41)

  1. Vorrichtung zur ortsaufgelösten Platzierung von Nanoclustern auf einem Substrat (6), wobei die Nanocluster elektrostatisch aufladbar und zur Platzierung längs ballistischer Bahnen (2) bewegbar sind, die wesentlich durch elektrostatische und/oder magnetische Felder vorgebbar sind, – wobei die Bewegungsbahnen (2) der Nanocluster durch Bauelemente der Ionen- und/oder Elektronenoptik und/oder magnetische und/oder elektrostatische Linsen (17, 18, 24), Blenden (1, 9, 20, 25, 28), Ablenkplatten (15, 16, 26, 23, 31), Filter (21, 40) vorgebbar oder veränderbar sind, dadurch gekennzeichnet, dass mindestens einer der Nanocluster eine lebende Zelle ist und – dass ein elektrostatisches Linsensystem (9, 7) zur Abbremsung der mindestens einen lebenden Zelle vor ihrer Platzierung auf dem Substrat (6) vorgesehen ist und – dass mindestens ein Element unter anderem die ionenoptische Funktion einer Blende (1, 9, 25) aufweist und – dass eine AFM-Spitze (1) zumindest die Funktion einer Blende hat und zumindest den Bereich der erlaubten Endpunkte (5) der Nanoclusterbahnen (2) auf dem Substrat (6) bestimmt.
  2. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass sie über eine Nanoclusterquelle (39, 40) zur Erzeugung ballistischer Nanocluster verfügt.
  3. Vorrichtung gemäß Anspruch 2, dadurch gekennzeichnet, dass sie über eine Nanoclusterquelle (39, 40) verfügt, die vorgefertigte Nanocluster zu ballistischen Nanoclustern vereinzeln kann.
  4. Vorrichtung gemäß einem oder mehreren der Ansprüche 2 bis 3, dadurch gekennzeichnet, dass die Nanoclusterquelle (39, 40) verschiedenartige Nanocluster gleichzeitig liefern kann.
  5. Vorrichtung gemäß Anspruch 3 oder 4, dadurch gekennzeichnet, dass es sich bei den Nanoclustern um komplexe Partikel und/oder Zellen handeln kann.
  6. Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 5, gekennzeichnet durch eine Vorrichtung zur Feststellung einer erfolgreichen Platzierung eines einzelnen Nanoclusters und/oder mehrerer Nanocluster und/oder zur Vermessung eines einzelnen platzierten Nanoclusters und/oder mehrerer platzierter Nanocluster.
  7. Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 6, gekennzeichnet durch eine Einrichtung zur Detektion des Passierens eines vordefinierten Bahnbereiches der zugelassenen Nanoclusterbahnen durch ein einzelnes Nanocluster.
  8. Vorrichtung gemäß Anspruch 7, dadurch gekennzeichnet, dass die Einrichtung ein Lasermesssystem ist.
  9. Vorrichtung gemäß Anspruch 6 oder Anspruch 6 und Anspruch 7 und/oder Anspruch 8, dadurch gekennzeichnet, dass die Vorrichtung zur Feststellung und/oder Vermessung eine AFM-Spitze (1) oder STM-Vorrichtung oder ein REM oder ein Mikroskop oder eine FIB-Anlage ist.
  10. Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 9, gekennzeichnet durch eine Einrichtung (13) zur Justage des Substrats (6) gegenüber der Einrichtung.
  11. Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Bahn der Nanocluster zwischen Nanoclusterquelle (39, 40) und Werkstückoberfläche (8) im Wesentlichen durch einen Bereich niedrigen Gasdrucks und/oder einen Bereich mit Vakuum und/oder einen Bereich mit hoher freier Weglänge der Nanocluster führt.
  12. Vorrichtung gemäß Anspruch 11, dadurch gekennzeichnet, dass die Parameter des Bereiches so gewählt sind, dass die Nanocluster nicht geschädigt werden.
  13. Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Abstand zwischen Nanoclusterquelle (39, 40) und Werkstückoberfläche (8) so klein ist oder so kompensiert werden kann, dass Wechselwirkungen zwischen einem in der Bahn (2) eines Nanoclusters von der Nanoclusterquelle (39, 40) zur Werkstückoberfläche (8) befindlichen Gases oder Restgases, hinsichtlich der Auswirkungen auf die Positioniergenauigkeit vernachlässigt oder neutralisiert werden können.
  14. Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass nur solche Nanocluster platzierbar sind, deren physikalische Parameter vorbestimmten Vorgaben genügen.
  15. Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 13, gekennzeichnet durch eine Komponente (40, 21) zur Herausfilterung solcher Nanocluster, deren physikalische Parameter vorbestimmten Vorgaben nicht genügen.
  16. Vorrichtung gemäß Anspruch 14 oder 15, dadurch gekennzeichnet, dass es sich bei mindestens einem der Parameter um die Clustergröße, das Clustergewicht, die Clustergeschwindigkeit, die Clusterladung, die Clusterpolarisation und/oder das magnetische Moment eines Clusters und/oder den Endpunkt der Clusterbahn in der Vorrichtung handelt.
  17. Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass mindestens ein Element unter anderem die ionenoptische Funktion einer Blende (1, 9, 25) aufweist und dass das Element sich in unmittelbarer Nähe des Substrats (6) befindet, indem der Abstand zwischen Substrat (6) und Blende (1, 9) gering, typischerweise wenige µm oder weniger als 1µm ist.
  18. Vorrichtung nach einem der Ansprüche 1 bis 17 dadurch gekennzeichnet, dass mindestens ein ionenoptisches Element, eine Vorrichtung zur Verhinderung einer Beeinträchtigung seiner Funktionstüchtigkeit oder eines Verklebens bei Treffern von Nanoclustern aufweist.
  19. Vorrichtung gemäß Anspruch 18, dadurch gekennzeichnet, dass es sich bei der Vorrichtung um mindestens eine den Nanoclustern gleichpolig aufladbare Elektrode handelt.
  20. Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass mindestens ein ionen- oder elektronenoptisches Element der Vorrichtung durch Mikrointegration hergestellt ist.
  21. Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Position der AFM-Spitze (1) gegenüber den Nanoclusterbahnen (2) veränderbar ist.
  22. Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass das Substrat (6) mit einer Positionier- und/oder Ausrichtungseinrichtung (13) verbunden ist, die es erlaubt, das Werkstück gegenüber den erlaubten Nanoclusterbahnen zu verschieben und/oder auszurichten.
  23. Vorrichtung gemäß einem oder mehreren der Ansprüche 17 bis 22, dadurch gekennzeichnet, dass das Substrat (6) mit einer Positionier- und/oder Ausrichtungseinrichtung (13) verbunden ist, die es erlaubt, das Werkstück gegenüber einer Blende (1, 9) nach Anspruch 17 und/oder gegenüber der AFM-Spitze (1) zu verschieben und/oder auszurichten.
  24. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die erlaubten Nanoclusterbahnen mindestens ein ionenoptisches Element passieren, das als Multipollinse (15), verwendbar ist.
  25. Vorrichtung nach Anspruch 24, dadurch gekennzeichnet, dass mindestens eine der als Multipollinsen (15) verwendbaren passierten ionenoptischen Elemente eine elektrostatische Linse ist.
  26. Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 25, dadurch gekennzeichnet, dass Nanocluster mit unterschiedlichen physikalischen und/oder chemischen Eigenschaften platzierbar sind.
  27. Vorrichtung gemäß Anspruch 26, dadurch gekennzeichnet, dass Nanocluster mit unterschiedlichen elektrischen und/oder magnetischen Eigenschaften und/oder elektrisch leitenden und/oder elektrisch halbleitenden und/oder elektrisch isolierenden Eigenschaften platzierbar sind.
  28. Vorrichtung gemäß einem oder mehreren der Ansprüche 27 oder 26, dadurch gekennzeichnet, dass Nanocluster unterschiedlicher magnetischer Eigenschaften und/oder ferromagnetischer, paramagnetischer oder diamagnetischer Eigenschaften platzierbar sind.
  29. Vorrichtung gemäß einem oder mehreren der Ansprüche 26 bis 28, dadurch gekennzeichnet, dass Nanocluster mit unterschiedlichen Eigenschaften hinsichtlich des Verhaltens gegenüber elektromagnetischer Strahlung platzierbar sind.
  30. Vorrichtung gemäß Anspruch 29, dadurch charakterisiert, dass es sich hierbei um Strahlung im HF-, THz-, IR-, optischen, UV-, EUV-, Röntgen- oder γ-Strahlungs-Bereich handelt.
  31. Vorrichtung gemäß einem oder mehreren der Ansprüche 26 bis 30, dadurch gekennzeichnet, dass Nanocluster mit unterschiedlichen Eigenschaften hinsichtlich des Verhaltens gegenüber Temperatur und/oder Temperaturgradienten platzierbar sind.
  32. Vorrichtung gemäß Anspruch 31, dadurch gekennzeichnet, dass Nanocluster platzierbar sind, die eine unterschiedliche Temperaturleitfähigkeit aufweisen.
  33. Vorrichtung nach Anspruch 31 oder 32, dadurch gekennzeichnet, dass Nanocluster platzierbar sind, die sich in ihren chemischen und/oder physikalischen Eigenschaften unter Temperatureinfluss verändern.
  34. Verfahren zur Herstellung einer Struktur auf einer Werkstückoberfläche (8), dadurch gekennzeichnet, dass mindestens ein Nanocluster mit Hilfe einer Vorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 34 in der Nähe oder auf der Oberfläche (8) eines Substrats (6) platziert wird und dass dieses Nanocluster eine lebende Zelle ist.
  35. Verfahren nach Anspruch 34, bei dem die Platzierung der Nanocluster relativ zu mindestens einer auf der Werkstückoberfläche (8) oder einer im Werkstück befindlichen Justiermarke oder sonstigen messtechnisch oder optisch erkennbaren Struktur erfolgt.
  36. Verfahren gemäß Anspruch 34 oder 35, bei dem die Platzierung zweier Nanocluster in einem vordefinierten mittleren Abstand zueinander erfolgt, der kleiner als der doppelte mittlere Durchmesser oder kleiner als der mittlere Durchmesser der Nanocluster ist.
  37. Verfahren gemäß einem oder mehreren der Ansprüche 34 bis 36, dadurch gekennzeichnet, dass mindestens zwei Nanocluster unterschiedlicher physikalischer oder chemischer Beschaffenheit auf einem Werkstück in einem vordefinierten Abstand platziert werden.
  38. Verfahren nach Anspruch 37, dadurch gekennzeichnet, dass die unterschiedlichen Nanocluster aus einer Quelle (39, 40) stammen.
  39. Verfahren nach einem oder mehreren der Ansprüche 34 bis 38, dadurch gekennzeichnet, dass mindesten zwei platzierte Nanocluster eine funktionale Struktur bilden.
  40. Verfahren nach einem oder mehreren der Ansprüche 34 bis 39, dadurch gekennzeichnet, dass mindestens ein platziertes Nanocluster eine innere Struktur aufweist.
  41. Linienförmige (= eindimensionale) oder flächige (= zweidimensionale) oder dreidimensionale Struktur aus ballistisch platzierten Nanoclustern mit mehreren Nanoclustern, von denen jedes eine Vielzahl von Atomen oder Molekülen aufweist, wobei die Nanocluster einen mittleren Durchmesser aufweisen, wobei benachbart zueinander angeordnete Nanocluster einen mittleren Abstand voneinander aufweisen, der kleiner als der doppelte mittlere Durchmesser der Nanocluster oder kleiner als der mittlere Durchmesser der Nanocluster ist, wobei es sich bei mindestens einem der Nanocluster um eine lebende Zelle handelt und wobei die Struktur mittels einer Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 33 oder mittels eines Verfahrens nach einem oder mehreren der Ansprüche 34 bis 40 erhalten wird.
DE102004064295.8A 2004-07-05 2004-07-05 Strukturen aus Nanoclustern mit mindestens einer lebenden Zelle und Vorrichtung und Verfahren zum Herstellen derselben Expired - Fee Related DE102004064295B3 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102004064295.8A DE102004064295B3 (de) 2004-07-05 2004-07-05 Strukturen aus Nanoclustern mit mindestens einer lebenden Zelle und Vorrichtung und Verfahren zum Herstellen derselben

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004064295.8A DE102004064295B3 (de) 2004-07-05 2004-07-05 Strukturen aus Nanoclustern mit mindestens einer lebenden Zelle und Vorrichtung und Verfahren zum Herstellen derselben

Publications (1)

Publication Number Publication Date
DE102004064295B3 true DE102004064295B3 (de) 2017-09-28

Family

ID=59814219

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004064295.8A Expired - Fee Related DE102004064295B3 (de) 2004-07-05 2004-07-05 Strukturen aus Nanoclustern mit mindestens einer lebenden Zelle und Vorrichtung und Verfahren zum Herstellen derselben

Country Status (1)

Country Link
DE (1) DE102004064295B3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114318280A (zh) * 2021-12-02 2022-04-12 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 一种用于测量和控制纳米团簇生长的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048770A1 (en) * 1997-06-20 2002-04-25 New York University Electrospraying solutions of substances for mass fabrication of chips and libraries
US20030218127A1 (en) * 2002-04-12 2003-11-27 Rudiger Schlaf Method for producing a three-dimensional macro-molecular structure
US20040033679A1 (en) * 2002-05-24 2004-02-19 Massachusetts Institute Of Technology Patterning of nanostructures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048770A1 (en) * 1997-06-20 2002-04-25 New York University Electrospraying solutions of substances for mass fabrication of chips and libraries
US20030218127A1 (en) * 2002-04-12 2003-11-27 Rudiger Schlaf Method for producing a three-dimensional macro-molecular structure
US20040033679A1 (en) * 2002-05-24 2004-02-19 Massachusetts Institute Of Technology Patterning of nanostructures

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D.J. Odde, M.J. Renn: "Laser-guided direct writing of living cells", Biotechnology and Bioengineering 67, pp. 312-318 (2000) *
E.A. Roth et al.: "Inkjet printing for high-throughput cell patterning", Biomaterials 25, pp. 3707-3715 (Available online 16 December 2003) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114318280A (zh) * 2021-12-02 2022-04-12 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 一种用于测量和控制纳米团簇生长的方法
CN114318280B (zh) * 2021-12-02 2023-12-01 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 一种用于测量和控制纳米团簇生长的方法

Similar Documents

Publication Publication Date Title
DE102018133703B4 (de) Vorrichtung zur Erzeugung einer Vielzahl von Teilchenstrahlen und Vielstrahl-Teilchenstrahlsysteme
EP1200984B1 (de) Verfahren und vorrichtung zur clusterfragmentation
DE102008060270B4 (de) Gasfeldionisations-Ionenquelle, Rasterladungsteilchenmikroskop, Einstellverfahren für die optische Achse und Probenbetrachtungsverfahren
EP0625218B1 (de) Verfahren und vorrichtung zur oberflächenmodifikation durch physikalisch-chemische reaktionen von gasen oder dämpfen an oberflächen mit unterstützung von hochgeladenen ionen
DE102014118135B4 (de) Ladungsteilchenstrahl-Belichtungsgerät
CN100359626C (zh) 粒子束发生器
KR101519453B1 (ko) 나노입자 기능성 잉크의 잉크젯 프린팅
DE60122747T2 (de) Feldemissionsvorrichtung mit kohlenstoffhaltigen spitzen
DE102007054074A1 (de) System zum Bearbeiten eines Objekts
DE102020124306A1 (de) Vorrichtung zum Analysieren und/oder Bearbeiten einer Probe mit einem Teilchenstrahl und Verfahren
DE102004032451B4 (de) Vorrichtung und Verfahren zur ortsaufgelösten Platzierung von Nanoclustern
CH706837A1 (de) Verfahren zur Herstellung eines dielektrischen Elastomerstapelaktors.
DE102004064295B3 (de) Strukturen aus Nanoclustern mit mindestens einer lebenden Zelle und Vorrichtung und Verfahren zum Herstellen derselben
DE102016223664B4 (de) Strahlaustaster und Verfahren zum Austasten eines geladenen Teilchenstrahls
WO2020223734A1 (en) Atomic-to-nanoscale matter emission/flow regulation devices and methods
DE602004007573T2 (de) Verfahren zur Vermeidung von Ablagerungen von Verunreinigungsteilchen auf die Oberfläche eines Mikrobauteils, Aufbewahrungsvorrichtung für ein Mikrobauteil und Vorrichtung zur Abscheidung von dünnen Schichten
DE60127383T2 (de) Behandlungsmethode für eine diamantoberfläche und entsprechende oberfläche
EP1590825B1 (de) Verfahren und vorrichtung zur herstellung von korpuskularstrahlsystemen
WO2006042519A1 (de) Verfahren zur herstellung von submikronstrukturen
DE102021114934B4 (de) Verfahren zum analytischen Vermessen von Probenmaterial auf einem Probenträger
EP0269613B1 (de) Ionenprojektionslithographieeinrichtung
DE102020124307A1 (de) Vorrichtung zum Analysieren und/oder Bearbeiten einer Probe mit einem Teilchenstrahl und Verfahren
EP2926199B1 (de) Lithographieverfahren und lithographievorrichtung für bauteile und schaltungen mit strukturabmessungen im mikro- und nanobereich
DE102018124223A1 (de) Vielstrahl-Teilchenstrahlsystem
DE60309579T2 (de) Einrichtung zur messung der emission von röntgenstrahlen, die durch ein objekt erzeugt werden, das einem elektronenstrahl ausgesetzt ist

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R129 Divisional application from

Ref document number: 102004032451

Country of ref document: DE

Effective date: 20150409

R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee