DE102004052135A1 - Coated metal substrate especially a hard metal with a wear protection layer consisting of high purity Al2O3 nanocrystals and containing residual pressure stresses useful in tool production - Google Patents

Coated metal substrate especially a hard metal with a wear protection layer consisting of high purity Al2O3 nanocrystals and containing residual pressure stresses useful in tool production Download PDF

Info

Publication number
DE102004052135A1
DE102004052135A1 DE102004052135A DE102004052135A DE102004052135A1 DE 102004052135 A1 DE102004052135 A1 DE 102004052135A1 DE 102004052135 A DE102004052135 A DE 102004052135A DE 102004052135 A DE102004052135 A DE 102004052135A DE 102004052135 A1 DE102004052135 A1 DE 102004052135A1
Authority
DE
Germany
Prior art keywords
layer
metal substrate
coated metal
wear protection
substrate according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102004052135A
Other languages
German (de)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fachhochschule Schmalkalden
Original Assignee
Fachhochschule Schmalkalden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fachhochschule Schmalkalden filed Critical Fachhochschule Schmalkalden
Priority to DE102004052135A priority Critical patent/DE102004052135A1/en
Publication of DE102004052135A1 publication Critical patent/DE102004052135A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Coated metal substrate (1) especially a hard metal with a wear protection layer (2) with residual pressure stresses, where the wear resistant layer contains gradient-like element (3) from which the substrate or an intermediate layer (4) is obtained, with which the residual pressure stresses during layer deposition can be regulated (sic) by a wet chemical process directly in the wear protection layer. An independent claim is included for a method of producing the substrate involving wet chemical, combustion and sol-gel processes.

Description

Die Erfindung betrifft ein beschichtetes Metallsubstrat, insbesondere aus Hartmetall, mit einer Verschleißschutzschicht, welche Druckeigenspannungen aufweist und ein Verfahren zu seiner Herstellung.The The invention relates to a coated metal substrate, in particular made of carbide, with a wear protection layer, which compressive stresses and a method for its preparation.

Hartstoffschichten werden zur Verminderung des Verschleißes, insbesondere bei Werkzeugen zur Erhöhung der Standzeiten aufgebracht.Hard coatings are used to reduce wear, especially in tools to increase the service life applied.

Bei beschichteten Hartmetallsubstraten stehen durch unterschiedliche thermische Ausdehnungskoeffizienten von Verschleißschutzschicht- und Substratwerkstoff die Funktionsschichten häufig unter Zugeigenspannungen. Mit Zunahme der Zugspannungen vermindert sich die beabsichtigte Erhöhung der Verschleißbeständigkeit. Häufig führen zu hohe Zugeigenspannungen sogar zum Ablösen der Schichten vom Substrat. Dies trifft auch auf die Werkstoffpaarung Hartmetallsubstrat/oxidkeramische Schicht, insbesondere Al2O3-Schicht zu.In the case of coated cemented carbide substrates, the functional layers are often subject to tensile stresses due to different coefficients of thermal expansion of the wear protection layer material and the substrate material. As the tensile stresses increase, the intended increase in wear resistance decreases. Often too high tensile stresses even lead to the detachment of the layers from the substrate. This also applies to the material combination carbide substrate / oxide ceramic layer, in particular Al 2 O 3 layer.

Die Hartstoffschichten werden mit klassischen Verfahren des PVD (physical vapour deposition) bzw. des CVD (chemical vapour deposition) auf das Substrat aufgebracht. Dabei ist nachteilig, dass insbesondere bei der Kombination Hartmetallsubstrat/Al2O3-Schicht Zugeigenspannungen auftreten.The hard material layers are applied to the substrate by classical methods of PVD (physical vapor deposition) or CVD (chemical vapor deposition). It is disadvantageous that tensile stresses occur in particular in the combination of cemented carbide substrate / Al 2 O 3 layer.

Mit verschiedenen im Stand der Technik bekannten Verfahren wurde versucht, den Auswirkungen dieser Spannungen entgegenzuwirken.With various methods known in the art have been attempted to counteract the effects of these tensions.

Nach DE 101 15 390 A1 ist ein beschichtetes Schneidwerkzeug mit hoher Abriebfestigkeit für das hochtourige Schneiden von Stahl bekannt, das ein hartes gesintertes Substrat und eine harte Beschichtung aufweist, die auf der Oberfläche des Substrates aufgetragen wird. Dabei weist die harte Beschichtung eine Schicht aus hartem Material als innere Schicht mit einer mittleren Dicke zwischen 0,1 μm und 10 μm und eine durch physikalische Verdampfung aufgetragene remanente Druckspannung auf, sowie eine Aluminiumoxidschicht als äußere Schicht mit einer Dicke zwischen 0,1 μm und 5 μm enthält, welche durch chemische Verdampfung bei mittleren Temperaturen aufgetragen wird.To DE 101 15 390 A1 For example, a high abrasion resistant coated cutting tool is known for high speed cutting of steel having a hard sintered substrate and a hard coating applied to the surface of the substrate. In this case, the hard coating has a layer of hard material as inner layer with an average thickness between 0.1 .mu.m and 10 .mu.m and a remanent compressive stress applied by physical evaporation, and an aluminum oxide layer as outer layer with a thickness between 0.1 .mu.m and 5 microns, which is applied by chemical vaporization at medium temperatures.

Ferner ist in DE 34 43 329 A1 ein Verfahren zur Herstellung korrosionsbeständiger Verschleißschutzschichten mit Chrom-Endschicht angegeben, die aus einer 5 bis 30 μm dicken Nickelzwischenschicht und einer 10 bis 40 μm dicken Chrom-Endschicht bestehen, wobei auf den Trägerwerkstoff die Nickelzwischenschicht so aufgebracht wird, dass sie unter einer Druckeigenspannung von 20 bis 60 MPa steht und anschließend die Chrom-Endschicht in bekannter Weise aufgebracht wird.Furthermore, in DE 34 43 329 A1 a method for producing corrosion-resistant wear protective layers with chromium end layer specified consisting of a 5 to 30 .mu.m thick nickel intermediate layer and a 10 to 40 .mu.m thick final chromium layer, wherein on the carrier material, the nickel intermediate layer is applied so that they under a compressive residual stress of 20 to 60 MPa and then the final chromium layer is applied in a known manner.

Die Druckspannungen werden bei diesen beiden Verfahren allerdings in einer Zwischenschicht und nicht in der eigentlichen Funktionsschicht, nämlich der Verschleißschutzschicht erzeugt.The Compressive stresses in these two methods, however, in an intermediate layer and not in the actual functional layer, namely the wear protection layer generated.

In DE 101 23 554 A1 ist die Erzeugung der Druckspannungen durch nachträgliche Strahlbehandlung beschrieben. Dieses Verfahren dient zur Erhöhung der Druckeigenspannung oder zur Erniedrigung der Zugeigenspannung einer äußeren oder einer äußersten, mittels CVD, PCVD oder PVD auf einem Hartmetall-, Cermet-, oder Keramiksubstratkörper aufgetragenen Hartstoffschicht, bei dem der beschichtete Substratkörper nach der Beschichtung einer Trockenstrahlbehandlung unter Verwendung eines körnigen Strahlmittels unterzogen wird. Das Strahlmittel weist hierbei einen maximalen Durchmesser von 150 μm, vorzugsweise von maximal 100 μm, auf.In DE 101 23 554 A1 is the generation of compressive stresses described by subsequent blasting. This method is used to increase the compressive residual stress or to lower the inherent tensile stress of an outer or an outermost, by CVD, PCVD or PVD on a hard metal, cermet, or Keramiksubstratkörper applied hard material layer in which the coated substrate body after the coating of a dry jet treatment using a granular blasting medium is subjected. The blasting agent in this case has a maximum diameter of 150 .mu.m, preferably of at most 100 .mu.m.

Die Hartstoffschichten zur Verminderung des Verschleißes, damit zur Erhöhung der Standzeiten insbesondere von Werkzeugen, werden mit klassischen Verfahren des PVD (physical vapour deposition) bzw. des CVD (chemical vapour deposition) auf das Substrat aufgebracht.The Hard material layers to reduce wear, so that to increase the life of tools, in particular, are classic Process of PVD (physical vapor deposition) or CVD (chemical vapor deposition) applied to the substrate.

Der Erfindung liegt die Aufgabe zugrunde, ein beschichtetes Metallsubstrat und ein Verfahren zu seiner Herstellung anzugeben, wobei die Schicht nach der Herstellung Druckspannungen und eine hohe Haftfestigkeit aufweist.Of the Invention is based on the object, a coated metal substrate and to provide a method for its production, wherein the layer according to the production has compressive stresses and a high adhesive strength.

Erfindungsgemäß wird die Aufgabe mit einem Substrat, welches die in Anspruch 1 angegebenen Merkmale und mit einem Verfahren, welches die in Anspruch 13 angegebenen Merkmale aufweist, gelöst.According to the invention Task with a substrate, which specified in claim 1 Features and with a method, which specified in claim 13 Has features solved.

Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.advantageous Embodiments are specified in the subclaims.

Das erfindungsgemäße Verfahren verwendet zur Herstellung von oxidkeramischen Hartstoffschichten, vorzugsweise Al2O3, nasschemische Verfahrensschritte, beispielsweise die Sol-Gel-Technologie. Hier wird eine Vorstufe des Oxides (als Sol bzw. Gel) auf das Substrat durch Tauchen, Sprühen, oder andere geeignete Methoden aufgebracht. Anschließend wird das Gel durch einen zweistufigen Brennprozess in die gewünschte Hartstoffmodifikation umgewandelt.The process according to the invention uses wet-chemical process steps, for example the sol-gel technology, for the production of oxide-ceramic hard material layers, preferably Al 2 O 3 . Here, a precursor of the oxide (as sol or gel) is applied to the substrate by dipping, spraying, or other suitable methods. Subsequently, the gel is converted by a two-stage firing process into the desired hard material modification.

Es hat sich herausgestellt, dass die Schicht dann über eine gute Haftfestigkeit verfügt, wenn entweder das Substrat oder eine zusätzlich aufgebrachte Zwischenschicht über geeignete Elemente verfügt, die in die Verschleißschicht eindiffundieren. Gleichzeitig bewirken diese Elemente die Erzeugung von Druckeigenspannungen in der Funktionsschicht.It has been found that the layer then has a good adhesive strength when ent neither the substrate nor an additionally applied intermediate layer has suitable elements which diffuse into the wear layer. At the same time, these elements cause the generation of residual compressive stresses in the functional layer.

Über die Zeitdauer des Brennprozesses ist die absolute Höhe der Spannungen bis in einen bestimmten Bereich wählbar. Eine nachträgliche Behandlung der Schicht ist nicht notwendig. Auch ist nicht das Aufbringen einer Zwischenschicht mit Druckeigenspannungen notwendig.About the Duration of the burning process is the absolute height of the voltages up to one selectable range. An afterthought Treatment of the layer is not necessary. Also is not the application an intermediate layer with residual compressive stresses necessary.

Die Erfindung zeichnet sich durch eine Reihe von Vorteilen aus. Hierzu zählen insbesondere:

  • 1. Wegen der Reinheit der Ausgangssubstanzen, die für das Verfahren eingesetzt werden, ist die Schicht chemisch an allen Stellen des Substrates hochrein an Al2O3, so dass eine hochqualitative Oxidkeramik entsteht.
  • 2. Die Zusammensetzung der Schicht ist in Bereichen über den thermischen Prozess steuerbar (Verhältnis von α/γ-Al2O3), während dies beim CVD-Verfahren nur über chemische Beimengungen möglich ist.
  • 3. Verfahren ist einfach und bedarf außer einem Schutzgas- bzw. Vakuumofen keiner teuren Anlagen. Es kann daher auch von kleineren Unternehmen zur Beschichtung verwendet werden.
  • 4. Im Gegensatz zu CVD- und PVD-Verfahren können auch große Oberflächen beschichtet werden.
  • 5. Während die Beschichtung von inneren Oberflächen für die klassischen Verfahren an das Verhältnis von Durchmesser zu Tiefe gebunden ist, sind infolge des nasschemischen Verfahrens auch kleinste Bohrungen mit großer Länger beschichtbar.
  • 6. Die Schicht ist nicht texturiert und besitzt keine säulenartige Kristallstruktur
  • 7. Mit dem Beschichtungszyklus können gleichzeitig Werkzeugstähle gehärtet werden. Ist das Sol auf bereits gehärteten und/oder angelassenen Stählen aufgebracht, wird eine partielle Wärmebehandlung der Schicht beispielsweise mit einem Laserstrahl notwendig.
The invention is characterized by a number of advantages. These include in particular:
  • 1. Due to the purity of the starting materials used for the process, the layer is chemically highly pure Al 2 O 3 at all points of the substrate, so that a high-quality oxide ceramic is formed.
  • 2. The composition of the layer is controllable in areas by the thermal process (ratio of α / γ-Al 2 O 3 ), while in the CVD process this is only possible via chemical admixtures.
  • 3. The process is simple and requires no protective gas or vacuum furnace no expensive equipment. It can therefore also be used by smaller companies for coating.
  • 4. In contrast to CVD and PVD processes, even large surfaces can be coated.
  • 5. While the coating of inner surfaces for the classical methods is bound to the ratio of diameter to depth, even the smallest bores can be coated for a long time due to the wet-chemical process.
  • 6. The layer is not textured and does not have a columnar crystal structure
  • 7. The coating cycle can simultaneously harden tool steels. If the sol is applied to already hardened and / or tempered steels, a partial heat treatment of the layer, for example with a laser beam, becomes necessary.

Die Erfindung wird im Folgenden anhand eines Ausführungsbeispieles näher erläutert.The Invention will be explained in more detail below with reference to an embodiment.

In der zugehörigen Zeichnung zeigen:In the associated Show drawing:

1 einen Schnitt durch eine beschichtete Anordnung mit einer zusätzlichen Zwischenschicht und 1 a section through a coated arrangement with an additional intermediate layer and

2 einen Schnitt durch eine beschichtete Anordnung ohne Zwischenschicht, 2 a section through a coated arrangement without intermediate layer,

Als Schichtwerkstoff wurde hier Al2O3 gewählt. Diese Substanz zeichnet sich durch hohe Härte und durch eine gegenüber Schichtwerkstoffen mit hohem metallischen Bindungsanteil relativ geringe Wärmeleitfähigkeit aus. Diese Eigenschaften sind sehr vorteilhaft für Beschichtungen, welche für die Hochgeschwindigkeitsbearbeitung bestimmt sind.As a coating material here Al 2 O 3 was chosen. This substance is characterized by high hardness and by a relatively low thermal conductivity compared to coating materials with a high metallic bond content. These properties are very beneficial for coatings designed for high speed machining.

Die Abscheidung der Substanz mit konventionellen Beschichtungsverfahren, CVD bzw. PVD, gestalten sich nicht einfach.The Deposition of the substance with conventional coating methods, CVD or PVD, are not easy.

Als Substrat wurde Hartmetall verwendet. Die Schichtdicke sollte im Bereich von 0,5 bis 6 μm liegen. Über den direkten Sol-Gel-Prozess sind diese Dicken nur über eine Mehrfachbeschichtung erreichbar.When Substrate was used carbide. The layer thickness should be in Range of 0.5 to 6 microns are. On the direct sol-gel process, these thicknesses are only a multiple coating reachable.

Bei der Sol-Gel-Technik wird aus Precursorlösungen das flüssige Sol, die Ausgangssubstanz, hergestellt. Über den Prozess der Hydrolyse entsteht ein Gel, das durch eine anschließende mehrstufige Wärmebehandlung in eine Oxidkeramik umgewandelt wird.at the sol-gel technique turns precursor solutions into the liquid sol, the starting substance, prepared. About the process of hydrolysis A gel is created by a subsequent multi-stage heat treatment is converted into an oxide ceramic.

Als Ausgangsstoff zur Schichtherstellung kann auch durch ein über den Sol-Gel-Prozess hergestelltes Produkt redispergiert werden.When Starting material for the layer production can also by a over the Sol-gel be prepared product redispersed.

Zur Herstellung einer oxidkeramischen Schicht ist es notwendig, das Substrat mit dem flüssigen Sol zu benetzen. Dieser Vorgang kann mit allen bekannten Verfahren zum Beschichten aus dem flüssigen Zustand erfolgen.to Production of an oxide ceramic layer, it is necessary that Substrate with the liquid Sol to moisten. This process can be done with all known methods for coating from the liquid Condition done.

Da das Hartmetallsubstrat nicht über die entsprechenden Elemente verfügt, mit denen sich die Druckspannungen einstellen lassen, müssen die Hartmetalloberflächen vor dem eigentlichen Beschichten mit einer zusätzlichen Schicht überzogen werden. Diese kann über den PVD-Prozess oder durch die Sol-Gel-Technik selbst aufgebracht werden.There the carbide substrate not over has the appropriate elements, with which the compressive stresses can be set, the carbide surfaces must be present the actual coating to be coated with an additional layer. This can over applied to the PVD process or by the sol-gel technique itself become.

Diese Elemente verteilen sich gradientenartig von der Grenzfläche Substrat/Schicht oder Zwischenschicht/Schicht in die Verschleißschutzschicht hinein (Elementegradient).These Elements are distributed in gradient form from the substrate / layer interface or intermediate layer / layer into the wear protection layer (elemental gradient).

Bevorzugt werden das Tauch (dip-coating) und das Sprüh-(spray-coating) Verfahren angewendet.Prefers are the dip-coating and the spray-coating process applied.

Mittels dip-coating können sehr homogene und reproduzierbare Dicken auch über große Flächen hinweg erzeugt werden. Beim spray-coating liegen die Vorteile im Beschichten von komplexen Teilegeometrien.through dip-coating can very homogeneous and reproducible thicknesses can be generated even over large areas. In spray-coating, the advantages are in the coating of complex Part geometries.

Nach dem Aufbringen der Ausgangssubstanz ist eine thermische Behandlung (Trockgnen, Kalzinieren, Brennen) notwendig. Diese dient zur Umwandlung der Ausgangssubstanz in die nanokristalline keramische Schicht sowie zur Anbindung an das Substrat.After applying the Ausgangsubs dance is a thermal treatment (dry, calcination, burning) necessary. This serves to convert the starting substance into the nanocrystalline ceramic layer and to connect to the substrate.

Über die Randbedingungen des Gesamtprozesses kann maßgeblich Einfluss auf die Eigenschaften der Schicht und des Schicht/Substrat-Verbundes genommen werden:
Bei der Beschichtung von Hartmetallen wird über die Wahl der Elemente der Zwischenschicht und über die thermische Behandlung bereits während der Schichtherstellung der Druckspannungszustand in der Schicht eingestellt. Eine nachträgliche Behandlung, beispielsweise das Strahlen der Oberfläche, ist nicht erforderlich.
The boundary conditions of the overall process can significantly influence the properties of the layer and of the layer / substrate composite:
In the coating of hard metals, the choice of the elements of the intermediate layer and the thermal treatment already during the production of the layer set the compressive stress state in the layer. Subsequent treatment, such as blasting the surface, is not required.

Die Korundschicht (α-Al2O3) ist die Modifikation des Al2O3 mit der höchsten Härte. Jedoch besitzt Korund auch eine enorme Sprödigkeit. Durch Absenkung der eigentlichen Brenntemperatur kann vorteilhaft ein Gradient von α-/γ-Al2O3-in der Schicht eingestellt werden. Die Standzeit dieser Schichten erhöht sich wesentlich gegenüber Schichten mit einer reinen Korundphase. Dieser Phasengradient ist auch beeinflussbar durch die Schichtdicke bzw. über die Anzahl von Einzelbeschichtungen bei Mehrfachschichten.The corundum layer (α-Al 2 O 3 ) is the modification of the highest hardness Al 2 O 3 . However, corundum also has a tremendous brittleness. By lowering the actual firing temperature, it is advantageously possible to set a gradient of α- / γ-Al 2 O 3 in the layer. The service life of these layers increases significantly over layers with a pure corundum phase. This phase gradient can also be influenced by the layer thickness or by the number of individual coatings in the case of multiple layers.

Die keramischen Schichten sind meist nanokristallin und weisen keine Fasertexturen auf.The Ceramic layers are mostly nanocrystalline and have none Fiber textures.

Die Haftfestigkeit dieser Schichten ist hoch. Die Schichten sind reproduzierbar sicher herstellbar mit gleichen Eigenschaften an allen Schichtbereichen und im Vergleich an allen Teilen, die mit diesem Verfahren beschichtet werden.The Adhesive strength of these layers is high. The layers are reproducible safe to produce with the same properties on all layer areas and compared to all parts coated with this method become.

11
Metallsubstratmetal substrate
22
VerschleißschutzschichtWear protection layer
33
ElementegradientElementegradient
44
Zwischenschichtinterlayer

Claims (17)

Beschichtetes Metallsubstrat (1), insbesondere aus Hartmetall, mit einer Verschleißschutzschicht (2), welche Druckeigenspannungen aufweist, dadurch gekennzeichnet, dass die Verschleißschutzschicht (2) gradientenartig Elemente (3) aus dem Substrat (1) oder aus einer Zwischenschicht (4) enthält, mit denen die Druckeigenspannungen während der Schichtherstellung mit einem nasschemischen Verfahren direkt in der Verschleißschutzschicht einstellbar sind.Coated metal substrate ( 1 ), in particular of hard metal, with a wear protection layer ( 2 ), which has residual compressive stresses, characterized in that the wear protection layer ( 2 ) gradient-like elements ( 3 ) from the substrate ( 1 ) or from an intermediate layer ( 4 ), with which the residual compressive stresses during the production of the layer can be set with a wet-chemical process directly in the wear-resistant coating. Beschichtetes Metallsubstrat nach Anspruch 1, dadurch gekennzeichnet, dass die Verschleißschutzschicht (2) aus einem oxidkeramischen Material besteht.Coated metal substrate according to claim 1, characterized in that the wear protection layer ( 2 ) consists of an oxide ceramic material. Beschichtetes Metallsubstrat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Verschleißschutzschicht (2) aus hochreinem nanokristallinem Al2O3 besteht und mit einem Sol-Gel-Verfahren hergestellt wurde.Coated metal substrate according to claim 1 or 2, characterized in that the wear protection layer ( 2 ) consists of highly pure nanocrystalline Al 2 O 3 and was prepared by a sol-gel process. Beschichtetes Metallsubstrat nach Anspruch 3, dadurch gekennzeichnet, dass die Verschleißschutzschicht (2) aus α-Al2O3 besteht.Coated metal substrate according to claim 3, characterized in that the wear protection layer ( 2 ) consists of α-Al 2 O 3 . Beschichtetes Metallsubstrat nach Anspruch 3, dadurch gekennzeichnet, dass die Verschleißschutzschicht (2) aus γ-Al2O3 besteht.Coated metal substrate according to claim 3, characterized in that the wear protection layer ( 2 ) consists of γ-Al 2 O 3 . Beschichtetes Metallsubstrat nach Anspruch 3, dadurch gekennzeichnet, dass die Verschleißschutzschicht (2) aus einem Gradient von α-γ-Al2O3 besteht.Coated metal substrate according to claim 3, characterized in that the wear protection layer ( 2 ) consists of a gradient of α-γ-Al 2 O 3 . Beschichtetes Metallsubstrat nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Verschleißschutzschicht (2) auf einer dünnen Zwischenschicht (4) aufgebracht ist.Coated metal substrate according to one of claims 1 to 6, characterized in that the wear protection layer ( 2 ) on a thin intermediate layer ( 4 ) is applied. Beschichtetes Metallsubstrat nach Anspruch 7, dadurch gekennzeichnet, dass die Zwischenschicht (4) eine Metallschicht ist.Coated metal substrate according to claim 7, characterized in that the intermediate layer ( 4 ) is a metal layer. Beschichtetes Metallsubstrat nach Anspruch 8, dadurch gekennzeichnet, dass die Metallschicht aus Titan besteht.Coated metal substrate according to claim 8, characterized characterized in that the metal layer consists of titanium. Beschichtetes Metallsubstrat nach Anspruch 7, dadurch gekennzeichnet, dass die Zwischenschicht (4) eine Sol-Gel-Schicht ist.Coated metal substrate according to claim 7, characterized in that the intermediate layer ( 4 ) is a sol-gel layer. Beschichtetes Metallsubstrat nach Anspruch 10, dadurch gekennzeichnet, dass die Zwischenschicht (4) eine Sol-Gel-Schicht ist, die Metallteilchen enthält.Coated metal substrate according to claim 10, characterized in that the intermediate layer ( 4 ) is a sol-gel layer containing metal particles. Beschichtetes Metallsubstrat nach Anspruch einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Substrat (1) aus gehärtetem Stahl, vorzugsweise Werkzeugstahl besteht.Coated metal substrate according to one of Claims 1 to 11, characterized in that the substrate ( 1 ) made of hardened steel, preferably tool steel. Verfahren zur Herstellung eines beschichteten Metallsubstrates nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die gradientenartig angeordneten Elemente (3) während der Schichtherstellung mit einem nasschemischen Verfahren und einem Brennprozess einstellbar eingebracht werden.Process for producing a coated metal substrate according to one of Claims 1 to 12, characterized in that the elements ( 3 ) are introduced adjustably during the layer production with a wet-chemical process and a firing process. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass zur Herstellung von oxidkeramischen Hartstoffschichten ein Sol oder Gel auf das Metallsubstrat (1) aufgebracht und anschließend durch einen zweistufigen Brennprozess in eine Hartstoffmodifikation umgewandelt wird, wobei ein Eindiffundieren von Elementen des Metallsubstrat (1) oder einer Zwischenschicht (4) in die Verschleißschicht (2) erfolgt.A method according to claim 13, characterized in that for the production of oxide-ceramic hard coatings, a sol or gel on the Metal substrate ( 1 ) and then converted by a two-stage firing process in a hard material modification, wherein an in-diffusion of elements of the metal substrate ( 1 ) or an intermediate layer ( 4 ) in the wear layer ( 2 ) he follows. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass durch den Brennprozess in der Verschleißschicht (2) Druckspannungen erzeugt werden, deren Höhe von der Zeitdauer des Brennprozesses und der Brenntemperatur gewählt wird.A method according to claim 14, characterized in that by the burning process in the wear layer ( 2 ) Compressive stresses are generated whose height is selected by the duration of the firing process and the firing temperature. Verfahren nach den Ansprüchen 10 und 13 bis 15, dadurch gekennzeichnet, dass innere Oberflächen beschichtet werden.Process according to claims 10 and 13 to 15, characterized characterized in that inner surfaces are coated. Verfahren nach den Ansprüchen 10 und 13 bis 16, dadurch gekennzeichnet, dass die innere Oberfläche die Fläche einer Bohrung ist, deren Durchmesser zwischen 0,1 und 6 mm, vorzugsweise zwischen 0,25 und 2 mm, liegt.Process according to claims 10 and 13 to 16, characterized characterized in that the inner surface is the area of a bore whose diameter between 0.1 and 6 mm, preferably between 0.25 and 2 mm.
DE102004052135A 2004-06-07 2004-10-27 Coated metal substrate especially a hard metal with a wear protection layer consisting of high purity Al2O3 nanocrystals and containing residual pressure stresses useful in tool production Ceased DE102004052135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102004052135A DE102004052135A1 (en) 2004-06-07 2004-10-27 Coated metal substrate especially a hard metal with a wear protection layer consisting of high purity Al2O3 nanocrystals and containing residual pressure stresses useful in tool production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004027718 2004-06-07
DE102004027718.4 2004-06-07
DE102004052135A DE102004052135A1 (en) 2004-06-07 2004-10-27 Coated metal substrate especially a hard metal with a wear protection layer consisting of high purity Al2O3 nanocrystals and containing residual pressure stresses useful in tool production

Publications (1)

Publication Number Publication Date
DE102004052135A1 true DE102004052135A1 (en) 2005-12-29

Family

ID=35455135

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004052135A Ceased DE102004052135A1 (en) 2004-06-07 2004-10-27 Coated metal substrate especially a hard metal with a wear protection layer consisting of high purity Al2O3 nanocrystals and containing residual pressure stresses useful in tool production

Country Status (1)

Country Link
DE (1) DE102004052135A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1849554A1 (en) 2006-04-29 2007-10-31 DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. Hard metal wear protection layers for soft and non-annealable metals
WO2008119600A1 (en) * 2007-03-31 2008-10-09 Schaeffler Kg Coating of a component made of tempered steel and method for the application of said coating

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4614673A (en) * 1985-06-21 1986-09-30 The Boeing Company Method for forming a ceramic coating
DE2857147C2 (en) * 1977-11-01 1987-03-26 Atomic Energy Authority Uk Process for coating a substrate with a refractory material
JPH02166284A (en) * 1988-12-21 1990-06-26 Mitsui Toatsu Chem Inc Manufacture of thin film containing alumina by sol-gel processing
DE4116522C2 (en) * 1990-05-23 1994-08-18 Fraunhofer Ges Forschung Process for the production of substrates provided with a porous alpha-Al¶2¶O¶3¶ layer, substrates obtained by the process and coating compositions for carrying out the process
DE19835283A1 (en) * 1998-08-05 2000-02-10 Jack Schwarz Wear resistant layer for tools and parts of machinery is a structure formed by small scale-like layer plates located side by side and on top of one another
EP0815285B1 (en) * 1995-03-22 2001-08-22 Queen's University At Kingston Method for producing thick ceramic films by a sol gel coating process
DE10036262A1 (en) * 2000-07-26 2002-02-21 Daimler Chrysler Ag Surface layer and method for producing a surface layer
DE19634616C2 (en) * 1995-08-30 2002-06-20 Aisin Seiki TiAl alloy part and process for its production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2857147C2 (en) * 1977-11-01 1987-03-26 Atomic Energy Authority Uk Process for coating a substrate with a refractory material
US4614673A (en) * 1985-06-21 1986-09-30 The Boeing Company Method for forming a ceramic coating
JPH02166284A (en) * 1988-12-21 1990-06-26 Mitsui Toatsu Chem Inc Manufacture of thin film containing alumina by sol-gel processing
DE4116522C2 (en) * 1990-05-23 1994-08-18 Fraunhofer Ges Forschung Process for the production of substrates provided with a porous alpha-Al¶2¶O¶3¶ layer, substrates obtained by the process and coating compositions for carrying out the process
EP0815285B1 (en) * 1995-03-22 2001-08-22 Queen's University At Kingston Method for producing thick ceramic films by a sol gel coating process
DE19634616C2 (en) * 1995-08-30 2002-06-20 Aisin Seiki TiAl alloy part and process for its production
DE19835283A1 (en) * 1998-08-05 2000-02-10 Jack Schwarz Wear resistant layer for tools and parts of machinery is a structure formed by small scale-like layer plates located side by side and on top of one another
DE10036262A1 (en) * 2000-07-26 2002-02-21 Daimler Chrysler Ag Surface layer and method for producing a surface layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1849554A1 (en) 2006-04-29 2007-10-31 DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. Hard metal wear protection layers for soft and non-annealable metals
WO2008119600A1 (en) * 2007-03-31 2008-10-09 Schaeffler Kg Coating of a component made of tempered steel and method for the application of said coating
EP2134885B1 (en) 2007-03-31 2018-01-17 Schaeffler Technologies AG & Co. KG Coating of a component made of tempered steel and method for the application of said coating

Similar Documents

Publication Publication Date Title
EP2746613B1 (en) Brake disc for a vehicle
EP3091100B1 (en) Sliding element, in particular a piston ring, having a coating and method for producing a sliding element
DE2431448B2 (en) PROCESS FOR COATING A SUBSTRATE WITH A NITRIDE OR CARBIDE OF TITANIUM OR ZIRCONIUM BY REACTIVE EVAPORATION
EP2118332B1 (en) Method for the production of a coating
EP0915184B1 (en) Process for producing a ceramic layer on a metallic substrate
EP1637622A1 (en) Process for application of a protective coating
DE3916412A1 (en) COVERED FIBERS FOR USE IN A METAL MATRIX AND A COMPOSITE BODY
DE102012108057B4 (en) Method of manufacturing a last stage steam turbine blade
WO2008019721A1 (en) Laser oxidizing of magnesium, titanium or aluminium materials
DE102015115859A1 (en) Multilayer structured coatings for cutting tools
DE2736982A1 (en) Hard metal cutting tools - with wear resistant coating of alumina and zirconia contg. microcracks which provide toughness
DE102012211746B4 (en) LOW-FRICTION COATING LAYER FOR A VEHICLE PART AND METHOD FOR PRODUCING THE SAME
EP1370712B1 (en) Structural component coated with a hard material and comprising an intermediate layer for improving the adhesive strength of the coating
WO2019219551A1 (en) Brake body and method for producing same
EP0918586A1 (en) Tool, especially for machining
DE102004002303B4 (en) A method of making a coated carbon / carbon composite and coated carbon / carbon composite produced thereafter
DE19815677C2 (en) Composite body and method for its production
DE102004052135A1 (en) Coated metal substrate especially a hard metal with a wear protection layer consisting of high purity Al2O3 nanocrystals and containing residual pressure stresses useful in tool production
EP0793735B1 (en) Packing element, in particular for shutting-off and regulating means, and process for producing the same
EP0359002B1 (en) Process for coating metal articles, and articles so coated
WO2007082498A1 (en) Method of coating a cemented carbide or cermet substrate body and coated cemented carbide or cermet body
EP1612295A1 (en) Coated metal substrate and process for its preparing
EP2607515A2 (en) Diffusion coating method and chromium layer produced according to the method
DE19536312C1 (en) Prodn. of multilayered coating with defect-free bore holes used for turbine blades
DE19521007A1 (en) Deposition of diamond coatings on hard substrates

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection