WO2008019721A1 - Laser oxidizing of magnesium, titanium or aluminium materials - Google Patents

Laser oxidizing of magnesium, titanium or aluminium materials Download PDF

Info

Publication number
WO2008019721A1
WO2008019721A1 PCT/EP2007/004797 EP2007004797W WO2008019721A1 WO 2008019721 A1 WO2008019721 A1 WO 2008019721A1 EP 2007004797 W EP2007004797 W EP 2007004797W WO 2008019721 A1 WO2008019721 A1 WO 2008019721A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
layer
aluminum
wear protection
titanium
Prior art date
Application number
PCT/EP2007/004797
Other languages
German (de)
French (fr)
Inventor
Jochemus Johannes Smit
Original Assignee
Mg-Micro Galva Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mg-Micro Galva Gmbh filed Critical Mg-Micro Galva Gmbh
Publication of WO2008019721A1 publication Critical patent/WO2008019721A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising

Definitions

  • the invention relates to a method for producing an oxidic wear protection layer on metallic materials, for. As magnesium, titanium or aluminum.
  • the aluminum material z. B. is a very light material, but its strength and hardness are far inferior to those of iron-based materials.
  • the wear protection to be achieved by anodizing is insufficient, since the layer hardnesses amount to a maximum of approximately 500 HV. For cast or die-cast aluminum-based materials, this value is far from being achieved despite the use of hard anodising.
  • EP 1050606 A1 (Keronite) describes a plasma-chemical process in electrolytes with the aid of which very wear-resistant surfaces on aluminum alloys can be produced.
  • the process is extremely energy-intensive and works at very high voltages.
  • the deposition rate of the oxide layer is very low and is about 1 micron / min.
  • EP 1657326 a plasma-chemical process in electrolytes is described, in which an aluminum or magnesium piston in the annular groove is selectively coated with a wear protection layer.
  • Aluminum nitride is very hard (about 1230 HV), but has the disadvantage that it is very brittle and the ALN layer tends to flake off.
  • the ALN layers are very thin and require long process times to produce. When the ALN layer is exposed to a point load, the so-called “eggshell effect” occurs, ie the ALN layer is pressed in and the wear protection is no longer ensured, which is why the laser treatment process becomes ALN layers on aluminum materials in practice little used.
  • the reaction barrier comprises a reaction of aluminum and oxygen from disassociated water under high temperature and low oxygen concentration produced in a gaseous, water vapor-containing atmosphere ⁇ -Al2O3 layer.
  • titanium migrates through the ⁇ -Al 2 O 3 layer to a gas / reaction barrier interface where it oxidizes to form a Ti 2 O 3 layer.
  • a surface of the Ti 2 O 3 layer is subsequently oxidized to form a TiO 2 layer.
  • a three-layer reaction barrier is formed with a high bond strength, in which the non-connectable ⁇ -Al2O3 and TiO2 layers are separated by the Ti2O3 layer.
  • the three-layer reaction barrier is not suitable for improving the wear resistance of aluminum materials. In addition, it can only be formed on materials containing both titanium and aluminum.
  • US 6,933,053 B2 discloses a method of forming a barrier layer of certain reactive elements on an aluminum-containing substrate.
  • a dry atmosphere of nitrogen and oxygen and a water vapor concentration of less than 750 ppm (parts per million) at a temperature above about 550 ° C. near the surface on which the barrier layer is to be produced is produced.
  • the water vapor in the dry atmosphere reacts with certain reactive elements on the surface of the substrate.
  • the barrier layer comprises an aluminum oxide layer at the boundary between the barrier layer and the substrate. The barrier layer prevents the penetration of oxygen, which improves the oxidation resistance but not the wear resistance of the substrate.
  • No. 6,589,365 B2 discloses applying a hydrogen peroxide solution selectively to a part of the surface of the workpiece to be provided with an oxide layer and directing a light beam through the hydrogen peroxide solution onto the workpiece.
  • the desired oxide layer forms in the area illuminated by the light beam through the hydrogen peroxide solution.
  • a local, selected area of the surface of the workpiece can be specifically provided with an oxide layer.
  • the metallic workpiece consists of a material which is formed by a group comprising a chromium-cobalt alloy, a nickel-chromium alloy, stainless steel, pure titanium, a titanium alloy, a platinum-gold alloy, a gold alloy. Silver-palladium alloy, as well as a silver and a gold alloy includes. An improvement in the wear properties of aluminum materials is not achievable thereby.
  • the invention is therefore based on the object to provide a method by which a wear protection layer can be produced on an aluminum material, which has very good crack sensitivity, strength, hardness, wear and corrosion protection properties.
  • a melt layer forms, which reacts with the oxygen and forms a very hard corundum layer.
  • the strongly exothermic reaction in the reaction of metal with oxygen to the metal oxide positively influences the reaction rate, so that corundum or other oxides such as AL oxide or mixed oxides formed from alloying elements form as high-temperature form. It is possible to move the laser during the coating or vice versa the metallic workpiece.
  • the surface of the aluminum workpiece is scanned systematically with the laser beam. In this case, work is carried out in a pure oxygen atmosphere, which is realized by a reaction space with pure oxygen or by nozzles, which directly transport the oxygen in the vicinity of the incident laser beam on the material.
  • the pressure to be set is between atmospheric pressure 0.1 and 100 bar.
  • the method can also be operated selectively, i. H. only selected surface areas of the aluminum material are laser-oxidized.
  • Particularly suitable lasers include a Nd: YAG laser with 532 nm or 1064 nm wavelength.
  • the energy density of the laser is preferably adjusted depending on the corundum layer thickness of 0.2 to 50 J / cm 2 .
  • other lasers can also be used as an energy source. Pulsed variants can also be used here.
  • an ultraviolet, green or, inter alia, infrared laser radiation can be used for the laser oxidation.
  • this Upon exposure of the laser on the aluminum material, this is remelted to a very fine-grained aluminum layer, for example up to 0.1, up to 300 or up to 2000 microns and on this fine-grained aluminum layer then forms the wear protection layer of corundum to a thickness of 300 microns.
  • an aluminum plate made of AISiI 2 alloy is treated with an Nd-YAG laser with a wavelength of 1064 nm.
  • the energy density was set at 2 J / cm 2 .
  • the pressure is 2 bar.
  • the surface of the aluminum plate was scanned in a raster shape with the laser emitter. The result is a fine-grained aluminum melt layer on the surface of the aluminum plate, which is about a 8 microns thick Wear protection layer of corundum carries.
  • the hardness of the corundum layer was determined to be 2006 ⁇ 40 HV.

Abstract

The invention concerns a method for forming a wear-resisting layer on materials of aluminium, magnesium, titanium and their alloys or the like, wherein parts of the surface of the material have been hardened and the wear-resisting layer is formed on the hardened layer. The wear-resisting layer is created by means of laser oxidation in an oxygen-containing gas on the fine-grained layer of molten metal.

Description

Laseroxidieren von Magnesium-, Titan- oder Aluminiumwerkstoffen Laser oxidation of magnesium, titanium or aluminum materials
Die Erfindung betrifft ein Verfahren zur Erzeugung einer oxidischen Verschleißschutzschicht auf metallischen Werkstoffen, z. B. Magnesium, Titan oder Aluminium.The invention relates to a method for producing an oxidic wear protection layer on metallic materials, for. As magnesium, titanium or aluminum.
In vielen Bereichen der Industrie spielt der Verschleißschutz von Bauteilen eine bedeutende Rolle. Der Aluminiumwerkstoff z. B. ist ein sehr leichter Werkstoff, jedoch sind seine Festigkeit und Härte denen von Eisenbasiswerkstoffen weit unterlegen.Wear protection of components plays an important role in many areas of industry. The aluminum material z. B. is a very light material, but its strength and hardness are far inferior to those of iron-based materials.
Aus diesem Grunde hat es in der Vergangenheit nicht an Versuchen gefehlt, die Verschleißeigenschaften herkömmlicher Werkstoffe zu verbessern. So ist es schon lange bekannt, den Aluminiumwerkstoff in Elektrolyten wie Schwefelsäure, Oxalsäuren, Chromsäuren u. a. zu anodisieren und damit mit einer Verschleißschutzschicht zu überziehen (siehe dazu: Wernick, Pinner, Zurbrügg, Weiner: „Die Oberflächenbehandlung von Aluminium", Eugen Leuze Verlag, Saulgau /Württemberg, Germany.For this reason, attempts have been made in the past to improve the wear characteristics of conventional materials. It has long been known, for example, to anodise the aluminum material in electrolytes such as sulfuric acid, oxalic acids, chromic acids and thus to coat it with a wear protection layer (see: Wernick, Pinner, Zurbrügg, Weiner: "The surface treatment of aluminum", Eugen Leuze Verlag, Saulgau / Württemberg, Germany.
Für viele Zwecke ist aber der durch Anodisieren zu erreichende Verschleißschutz unzureichend, da die Schichthärten maximal ca. 500 HV betragen. Für Guss- oder Druckgusswerkstoffe auf Aluminiumbasis wird dieser Wert auch trotz Einsatz von Harteloxal bei weitem nicht erreicht. Außerdem ist bekannt, dass der Reibungskoeffizient der Anodisationsschicht und Rissempfindlichkeit gegen Stahl sehr hoch ist (μ = 0,8) und dadurch in tribologischen Systemen der Einsatz sehr eingeschränkt ist.For many purposes, however, the wear protection to be achieved by anodizing is insufficient, since the layer hardnesses amount to a maximum of approximately 500 HV. For cast or die-cast aluminum-based materials, this value is far from being achieved despite the use of hard anodising. In addition, it is known that the friction coefficient of the anodization layer and crack sensitivity to steel is very high (μ = 0.8) and thus the use is very limited in tribological systems.
So wird in EP 1050606 A1 (Keronite) ein plasmachemisches Verfahren in Elektrolyten beschrieben, mit dessen Hilfe sehr verschleißfeste Oberflächen auf Aluminiumlegierungen erzeugt werden können. Das Verfahren ist aber äußerst energieintensiv und arbeitet bei sehr hohen elektrischen Spannungen. Die Abscheidegeschwindigkeit der oxidischen Schicht ist sehr gering und liegt bei ca. 1 μm/min.Thus, EP 1050606 A1 (Keronite) describes a plasma-chemical process in electrolytes with the aid of which very wear-resistant surfaces on aluminum alloys can be produced. The process is extremely energy-intensive and works at very high voltages. The deposition rate of the oxide layer is very low and is about 1 micron / min.
In der EP 1657326 ist ein plasmachemisches Verfahren in Elektrolyten beschrieben, in dem ein Aluminium- oder Magnesiumkolben in der Ringnut selektiv mit einer Ver- schleißschutzschicht beschichtet ist.In EP 1657326 a plasma-chemical process in electrolytes is described, in which an aluminum or magnesium piston in the annular groove is selectively coated with a wear protection layer.
Eine weitere Möglichkeit, die Oberfläche der Werkstoffe verschleißbeständiger zu gestalten, ist die Härtung der Oberfläche. In US 4,750,945 werden Aluminiumwerkstoffe mittels Laser aufgeschmolzen und gehärtet. Durch die Laserbearbeitung steigt die Härte von ca. 80 HV in den unbehandelten Bereichen auf ca. 200 HV in den laserbehandelten Bezirken. Der Verschleißschutz ist verbessert, aber aufgrund der immer noch zu geringen Härte unzureichend. Erfolgt die Laserbehandlung der Oberfläche der Bauteile unter Zugabe von Stickstoff oder N-haltigen Gasen, so kann es zur Bildung von Aluminiumnitrid kommen, das etwa eine Härte von 1230 HV aufweist. In den HTM, Band 53, Heft 5 (1998) .Aufbau und Eigenschaften von lasernitrierten Randschichten auf Aluminiumwerkstoffen" wird ein Verfahren zur Lasernitrierung beschrieben. Dort wird ein UV-Laser in einer Stickstoffatmosphäre eingesetzt, um die Reaktion von Aluminium und Stickstoff durchzuführen. In EP 0745450 A2 (Audi) wird ein vergleichbares Lasernitrierverfahren zur Bearbeitung der Oberfläche von Zylinderlaufflächen von Hubkolbenbrennkraftma- schinen aus einer Aluminiumlegierung vorgestellt.Another way to make the surface of the materials more resistant to wear is the hardening of the surface. In US 4,750,945 aluminum materials are melted by laser and cured. The laser treatment increases the hardness from approx. 80 HV in the untreated areas to approx. 200 HV in the laser-treated areas. The wear protection is improved, but insufficient due to the still too low hardness. If the laser treatment of the surface of the components with the addition of nitrogen or nitrogen-containing gases, it may lead to the formation of aluminum nitride, which has approximately a hardness of 1230 HV. In the HTM, Volume 53, Issue 5 (1998). "Construction and properties of laser nitrided surface layers on aluminum materials" a method for laser nitriding is described, where a UV laser is used in a nitrogen atmosphere to carry out the reaction of aluminum and nitrogen EP 0745450 A2 (Audi) presents a comparable laser titration method for machining the surface of cylinder surfaces of reciprocating internal combustion engines made of an aluminum alloy.
Aluminiumnitrid (ALN) ist zwar sehr hart (ca. 1230 HV), hat aber den Nachteil, dass es sehr spröde ist und die ALN-Schicht zum Abplatzen neigt. Die ALN-Schichten sind sehr dünn und benötigen zur Herstellung lange Prozesszeiten. Bei einer punktuellen Belastung der ALN-Schicht kommt es zu einem so genannten „Eierschaleneffekt", d. h. die ALN-Schicht wird eingedrückt und der Verschleißschutz ist nicht mehr gegeben. Aus diesem Grunde wird das Verfahren der Laserbehandlung zu ALN- Schichten auf Aluminiumwerkstoffen in der Praxis wenig eingesetzt.Aluminum nitride (ALN) is very hard (about 1230 HV), but has the disadvantage that it is very brittle and the ALN layer tends to flake off. The ALN layers are very thin and require long process times to produce. When the ALN layer is exposed to a point load, the so-called "eggshell effect" occurs, ie the ALN layer is pressed in and the wear protection is no longer ensured, which is why the laser treatment process becomes ALN layers on aluminum materials in practice little used.
Bekannt sind weiter Plasmaspritzverfahren zum Aufspritzen von Hartstoffen auf Aluminiumwerkstoffen. Diese durch Plasmaspritzen erzeugten Produkte haben den Nachteil des Abplatzens der Hartstoffschicht.Also known are plasma spraying processes for spraying hard materials onto aluminum materials. These products produced by plasma spraying have the disadvantage of chipping the hard material layer.
Um Titan-Aluminium-Werkstoffe, welche eine gegenüber atmosphärischer Oxidation empfindliche Oberfläche aufweisen, uneingeschränkt in der Luft- und Raumfahrtindustrie verwenden zu können, ist durch die WO 02/36844 A2 bekannt, eine doppelschichtige Reaktionssperre auf ein Titan-Aluminium-Substrat aufzubringen. Die Reaktionssperre umfasst eine durch Reaktion von Aluminium und Sauerstoff aus disas- soziiertem Wasser unter hoher Temperatur und bei geringer Sauerstoffkonzentration in einer gasförmigen, wasserdampfhaltigen Atmosphäre hergestellte α-AI2O3 Schicht. Während der Bildung der α-AI2O3 Schicht wandert Titan durch die α-AI2O3 Schicht zu einer Gas/Reaktionssperren-Grenzschicht, wo es oxidiert und eine Ti2O3 Schicht bildet. Eine Oberfläche der Ti2O3 Schicht wird nachfolgend oxidiert, um eine TiO2 Schicht zu bilden. Hierdurch wird eine dreischichtige Reaktionssperre mit einer hohen Bindungsstärke gebildet, in der die nicht miteinander verbindbaren α-AI2O3 und TiO2 Schichten durch die Ti2O3 Schicht getrennt sind. Die dreischichtige Reaktionssperre ist nicht zur Verbesserung der Verschleißbeständigkeit von Aluminiumwerkstoffen geeignet. Darüber hinaus kann sie nur auf Werkstoffen ausgebildet werden, die sowohl Titan, als auch Aluminium enthalten.In order to be able to use titanium-aluminum materials, which have a sensitive to atmospheric oxidation surface, fully in the aerospace industry, is known from WO 02/36844 A2, apply a double-layered reaction barrier on a titanium-aluminum substrate. The reaction barrier comprises a reaction of aluminum and oxygen from disassociated water under high temperature and low oxygen concentration produced in a gaseous, water vapor-containing atmosphere α-Al2O3 layer. During the formation of the α-Al 2 O 3 layer, titanium migrates through the α-Al 2 O 3 layer to a gas / reaction barrier interface where it oxidizes to form a Ti 2 O 3 layer. A surface of the Ti 2 O 3 layer is subsequently oxidized to form a TiO 2 layer. In this way, a three-layer reaction barrier is formed with a high bond strength, in which the non-connectable α-Al2O3 and TiO2 layers are separated by the Ti2O3 layer. The three-layer reaction barrier is not suitable for improving the wear resistance of aluminum materials. In addition, it can only be formed on materials containing both titanium and aluminum.
Durch die US 6,933,053 B2 ist ein Verfahren zur Bildung einer Sperrschicht aus bestimmten reaktionsfähigen Elementen auf einem Aluminium enthaltenden Substrat bekannt. Hierzu wird eine trockene Atmosphäre aus Stickstoff und Sauerstoff und einer Wasserdampfkonzentration von weniger als 750 ppm (parts per million) bei einer Temperatur von über etwa 5500C nahe der Oberfläche, auf der die Sperrschicht hergestellt werden soll erzeugt. Bei konstanter Temperatur von über 5500C und konstantem Wasserdampfgehalt von weniger als 750 ppm reagiert der Wasserdampf in der trockenen Atmosphäre mit bestimmten reaktionsfähigen Elementen auf der Oberfläche des Substrats. Dadurch wird eine Sperrschicht aus den bestimmten reaktionsfähigen Elementen gebildet, die unter hohen Bindungskräften an der Oberfläche des Substrats anhaftet. Die Sperrschicht umfasst an der Grenze zwischen Sperrschicht und Substrat eine Aluminiumoxidschicht. Die Sperrschicht verhindert das Eindringen von Sauerstoff, wodurch die Oxidationsbeständigkeit, aber nicht die Verschleißbeständigkeit des Substrats verbessert wird.US 6,933,053 B2 discloses a method of forming a barrier layer of certain reactive elements on an aluminum-containing substrate. For this purpose, a dry atmosphere of nitrogen and oxygen and a water vapor concentration of less than 750 ppm (parts per million) at a temperature above about 550 ° C. near the surface on which the barrier layer is to be produced is produced. At a constant temperature of above 550 ° C. and a constant water vapor content of less than 750 ppm, the water vapor in the dry atmosphere reacts with certain reactive elements on the surface of the substrate. This forms a barrier layer of the particular reactive elements which adheres to the surface of the substrate under high binding forces. The barrier layer comprises an aluminum oxide layer at the boundary between the barrier layer and the substrate. The barrier layer prevents the penetration of oxygen, which improves the oxidation resistance but not the wear resistance of the substrate.
Um eine Oxidschicht selektiv auf der Oberfläche eines als Implantat zu verwendenden metallischen Werkstücks auszubilden, ohne dessen Eigenschaften dadurch zu verschlechtern, indem die Oxidschicht bei hohen Temperaturen erzeugt wird, ist durch die US 6,589,365 B2 bekannt, eine Wasserstoffperoxyd-Lösung selektiv auf einen mit einer Oxidschicht zu versehenden Teil der Oberfläche des Werkstücks aufzutragen und einen Lichtstrahl durch die Wasserstoffperoxyd Lösung auf das Werkstück zu richten. Hierdurch bildet sich im durch den Lichtstrahl durch die Wasserstoffperoxyd-Lösung hindurch angestrahlten Bereich die gewünschte Oxidschicht. Dadurch kann gezielt ein lokaler, ausgewählter Bereich der Oberfläche des Werkstücks mit einer Oxidschicht versehen werden. Das metallische Werkstück besteht dabei aus einem Material, das durch eine Gruppe gebildet wird, die eine Chrom- Kobalt-Legierung, eine Nickel-Chrom-Legierung, rostfreien Stahl, reines Titan, eine Titanlegierung, eine Platin-Gold-Legierung, eine Gold-Silber-Palladium-Legierung, sowie eine Silber- und eine Goldlegierung umfasst. Eine Verbesserung der Verschleißeigenschaften von Aluminiumwerkstoffen ist hierdurch nicht erreichbar.To form an oxide film selectively on the surface of a metallic workpiece to be used as an implant without degrading its properties by forming the oxide film at high temperatures is No. 6,589,365 B2 discloses applying a hydrogen peroxide solution selectively to a part of the surface of the workpiece to be provided with an oxide layer and directing a light beam through the hydrogen peroxide solution onto the workpiece. As a result, the desired oxide layer forms in the area illuminated by the light beam through the hydrogen peroxide solution. As a result, a local, selected area of the surface of the workpiece can be specifically provided with an oxide layer. The metallic workpiece consists of a material which is formed by a group comprising a chromium-cobalt alloy, a nickel-chromium alloy, stainless steel, pure titanium, a titanium alloy, a platinum-gold alloy, a gold alloy. Silver-palladium alloy, as well as a silver and a gold alloy includes. An improvement in the wear properties of aluminum materials is not achievable thereby.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren vorzuschlagen, mit dem eine Verschleißschutzschicht auf einem Aluminiumwerkstoff erzeugt werden kann, die sehr gute Rissempfindlichkeit, Festigkeit, Härte, Verschleiß- und Korrosionsschutzeigenschaften besitzt.The invention is therefore based on the object to provide a method by which a wear protection layer can be produced on an aluminum material, which has very good crack sensitivity, strength, hardness, wear and corrosion protection properties.
Die gestellte Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst, dass die Verschleißschutzschicht auf dem Aluminiumwerkstoff durch Laseroxid ieren in Sauerstoffatmosphäre erzeugt wird.This object is achieved by the features of claim 1, that the wear protection layer on the aluminum material by laser oxide is generated in an oxygen atmosphere.
Es bildet sich im oberflächennahen Bereich des Werkstoffes eine Schmelzschicht, die mit dem Sauerstoff reagiert und eine sehr harte Korundschicht bildet. Die stark exotherme Reaktion bei der Umsetzung von Metall mit Sauerstoff zur Metalloxid be- einflusst positiv die Reaktionsgeschwindigkeit, so dass sich als Hochtemperaturform Korund oder andere Oxide wie z.B. AL-Oxid oder Mischoxide gebildet aus Legierungselementen bildet. Es ist möglich, den Laser bei der Beschichtung zu bewegen oder umgekehrt das metallische Werkstück. Es wird die Oberfläche des Aluminiumwerkstückes mit dem Laserstrahl systematisch abgerastert. Dabei wird in einer reinen Sauerstoffatmosphäre gearbeitet, die durch einen Reaktionsraum mit reinem Sauerstoff oder durch Düsen, die unmittelbar den Sauerstoff in die Nähe des auftreffenden Laserstrahles auf dem Werkstoff transportieren, realisiert.In the near-surface region of the material, a melt layer forms, which reacts with the oxygen and forms a very hard corundum layer. The strongly exothermic reaction in the reaction of metal with oxygen to the metal oxide positively influences the reaction rate, so that corundum or other oxides such as AL oxide or mixed oxides formed from alloying elements form as high-temperature form. It is possible to move the laser during the coating or vice versa the metallic workpiece. The surface of the aluminum workpiece is scanned systematically with the laser beam. In this case, work is carried out in a pure oxygen atmosphere, which is realized by a reaction space with pure oxygen or by nozzles, which directly transport the oxygen in the vicinity of the incident laser beam on the material.
Der einzustellende Druck liegt zwischen Atmosphärendruck 0,1 und 100 bar. Das Verfahren kann auch selektiv betrieben werden, d. h. nur ausgewählte Oberflächenbereiche des Aluminiumwerkstoffes werden laseroxidiert.The pressure to be set is between atmospheric pressure 0.1 and 100 bar. The method can also be operated selectively, i. H. only selected surface areas of the aluminum material are laser-oxidized.
Als Laser eignet sich u. a. besonders ein Nd: YAG Laser mit 532 nm bzw. 1064 nm Wellenlänge. Die Energiedichte des Lasers wird vorzugsweise abhängig von der Korundschichtstärke von 0,2 bis 50 J/cm2 eingestellt. Es lassen sich aber auch andere Laser als Energiequelle einsetzen. Dabei können auch gepulste Varianten Anwendung finden. Als Laser kann für die Laseroxidation eine ultraviolette, grüne oder u. a. infrarote Laserstrahlung eingesetzt werden. Bei Einwirkung des Lasers auf dem Aluminiumwerkstoff wird dieser zu einer sehr feinkörnigen Aluminiumschicht beispielsweise bis zu 0,1 , bis zu 300 oder bis zu 2000 μm umgeschmolzen und auf dieser feinkörnigen Aluminiumschicht bildet sich dann die Verschleißschutzschicht aus Korund bis zu einer Dicke von 300 μm.Particularly suitable lasers include a Nd: YAG laser with 532 nm or 1064 nm wavelength. The energy density of the laser is preferably adjusted depending on the corundum layer thickness of 0.2 to 50 J / cm 2 . However, other lasers can also be used as an energy source. Pulsed variants can also be used here. As the laser, an ultraviolet, green or, inter alia, infrared laser radiation can be used for the laser oxidation. Upon exposure of the laser on the aluminum material, this is remelted to a very fine-grained aluminum layer, for example up to 0.1, up to 300 or up to 2000 microns and on this fine-grained aluminum layer then forms the wear protection layer of corundum to a thickness of 300 microns.
Das Verfahren wird nun an einem Beispiel beschrieben. In einer reinen Sauerstoffatmosphäre wird eine Aluminiumplatte aus der Legierung AISiI 2 mit einem Nd-YAG Laser mit der Wellenlänge 1064 nm behandelt. Die Energiedichte wurde mit 2 J/cm2 eingestellt. Der Druck beträgt 2 bar. Die Oberfläche der Aluminiumplatte wurde mit dem Laserstrahler rasterförmig abgetastet. Es entsteht auf der Oberfläche der Aluminiumplatte eine feinkörnige Aluminiumschmelzschicht, die etwa eine 8 μm dicke Verschleißschutzschicht aus Korund trägt. Die Härte der Korundschicht wurde mit 2006 ±40 HV ermittelt. The method will now be described by way of example. In a pure oxygen atmosphere, an aluminum plate made of AISiI 2 alloy is treated with an Nd-YAG laser with a wavelength of 1064 nm. The energy density was set at 2 J / cm 2 . The pressure is 2 bar. The surface of the aluminum plate was scanned in a raster shape with the laser emitter. The result is a fine-grained aluminum melt layer on the surface of the aluminum plate, which is about a 8 microns thick Wear protection layer of corundum carries. The hardness of the corundum layer was determined to be 2006 ± 40 HV.

Claims

Patentansprüche claims
1. Verfahren zur Bildung einer Verschleißschutzschicht auf Werkstoffen aus A- luminium, Magnesium, Titan und deren Legierungen oder dergleichen, wobei Teile der Oberfläche des Werkstoffes gehärtet wurden und die Verschleißschutzschicht auf der gehärteten Schicht gebildet wird, dadurch gekennzeichnet, dass die Verschleißschutzschicht mittels Laseroxidation in ein sauerstoffhaltiges Gas auf der feinkörnigen Metallschmelzschicht erfolgt.Anspruch [en] A process for forming a wear protection layer on aluminum, magnesium, titanium and their alloys or the like, wherein parts of the surface of the material have been hardened and the wear protection layer is formed on the hardened layer, characterized in that the wear protection layer is laser oxidized in an oxygen-containing gas is carried on the fine-grained metal melt layer.
2. Verfahren wie Anspruch 1 , dadurch gekennzeichnet, dass die Laseroxidation mittels ultravioletter, grüner oder infraroter Laserstrahlung bevorzugt mittels eines Nd: YAG-Lasers durchgeführt wird.2. Method as claimed in claim 1, characterized in that the laser oxidation by means of ultraviolet, green or infrared laser radiation is preferably carried out by means of an Nd: YAG laser.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass ein gepulster Laser Verwendung findet.3. The method according to any one of claims 1 or 2, characterized in that a pulsed laser is used.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Laseroxidation des Metallwerkstoffes bei Drücken zwischen 0,1 und 100 bar durchgeführt wird.4. The method according to any one of claims 1 to 3, characterized in that the laser oxidation of the metal material is carried out at pressures between 0.1 and 100 bar.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Laseroxidation des Aluminiumwerkstoffes mit einer vorzugsweisen Energiedichte von 0,1 bis 100 J/cm2 durchgeführt wird. 5. The method according to any one of claims 1 to 4, characterized in that the laser oxidation of the aluminum material is carried out with a preferred energy density of 0.1 to 100 J / cm 2 .
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Verschleißschutzschicht selektiv auf den jeweiligen Werkstoffen erzeugt wird.6. The method according to any one of claims 1 to 5, characterized in that the wear protection layer is selectively generated on the respective materials.
7. Bauteil hergestellt mit einem Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Bauteil ein Magnesium-, Titan-, Aluminium-Werkstoff ist und zumindest in Teilbereichen eine durch Laseroxidation erzeugte Verschleißschutzschicht aus Oxiden, deren Legierungen und Mischoxiden besteht wie Korund, AI2O3 (α, ß, Y) AIxOy, TixOy, MgxOy, wobei alle Legierungsanteile wie Bi, Sn, AI, Mg, Ti, Ta, V, Cu, Mn, Mo, ... u.v.m. stabile Mischoxide bilden können. 7. A component produced by a method according to any one of claims 1 to 6, characterized in that the component is a magnesium, titanium, aluminum material and at least in some areas produced by laser oxidation wear protection layer of oxides, their alloys and mixed oxides Corundum, Al 2 O 3 (α, β, Y) Al x O y, T x O y, Mg x O y, where all alloying shares such as Bi, Sn, Al, Mg, Ti, Ta, V, Cu, Mn, Mo, etc. uvm can form stable mixed oxides.
PCT/EP2007/004797 2006-08-18 2007-05-31 Laser oxidizing of magnesium, titanium or aluminium materials WO2008019721A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102006038781 2006-08-18
DE102006038781.3 2006-08-18
DE102006046503A DE102006046503A1 (en) 2006-08-18 2006-09-29 Laser oxidation of magnesium, titanium or aluminum materials
DE102006046503.2 2006-09-29

Publications (1)

Publication Number Publication Date
WO2008019721A1 true WO2008019721A1 (en) 2008-02-21

Family

ID=38330781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/004797 WO2008019721A1 (en) 2006-08-18 2007-05-31 Laser oxidizing of magnesium, titanium or aluminium materials

Country Status (2)

Country Link
DE (1) DE102006046503A1 (en)
WO (1) WO2008019721A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1921177A2 (en) * 2006-10-30 2008-05-14 AHC-Oberflächentechnik GmbH Creation of wear protection layers on substances made of barrier layer metals or their alloys using laser processing
DE102013110659A1 (en) * 2013-09-26 2015-03-26 AHC Oberflächentechnik GmbH Process for the production of wear and / or corrosion protective oxide layers
CN104480511A (en) * 2014-12-12 2015-04-01 南京理工大学 Composite wear-resistant antifriction coating on titanium alloy surface and preparation method thereof
WO2015058938A1 (en) * 2013-10-25 2015-04-30 Continental Automotive Gmbh Method for protecting the compressor wheel of an exhaust-gas turbocharger against damage and compressor wheel
DE102016121008A1 (en) 2016-11-03 2018-05-03 Osram Oled Gmbh Process for producing an organic light emitting diode and organic light emitting diode
CN113444997A (en) * 2020-03-24 2021-09-28 本田技研工业株式会社 Oxide film and member having oxide film
CN114799530A (en) * 2022-04-26 2022-07-29 中国人民解放军空军工程大学 Device and method for improving fatigue performance of catheter by femtosecond laser surface modification
CN115198226A (en) * 2022-08-16 2022-10-18 中国人民解放军空军工程大学 Method for improving metal corrosion resistance based on femtosecond laser induced surface oxidation layer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2740569A1 (en) * 1976-09-13 1978-03-16 Ford Werke Ag SURFACE ALLOY AND HEAT TREATMENT PROCESS
JPS6050154A (en) * 1983-08-26 1985-03-19 Yoshiaki Arata Surface treatment by laser beam
US4566937A (en) * 1984-10-10 1986-01-28 The United States Of America As Represented By The United States Department Of Energy Electron beam enhanced surface modification for making highly resolved structures
JPS61104063A (en) * 1984-10-24 1986-05-22 Agency Of Ind Science & Technol Surface treatment by laser
JPS61113756A (en) * 1984-11-09 1986-05-31 Yoshikawa Kogyo Kk Manufacture of seawater-resistant al-coated steel material
EP0237448B1 (en) * 1986-02-25 1989-05-24 PECHINEY RECHERCHE (Groupement d'Intérêt Economique régi par l'ordonnance du 23 Septembre 1967) Work pieces made of aluminium or its alloys, and of which at least one face presents at least one zone region resistant to wear
JPH0920941A (en) * 1995-07-05 1997-01-21 Mitsubishi Motors Corp Brake rotor for disk brake and its production
DE19544295A1 (en) * 1995-11-28 1997-06-05 Zeiss Carl Jena Gmbh Production of structures within a submicron range e.g. grating
DE19924523A1 (en) * 1999-05-28 2000-11-30 Laserworks Gmbh Rostock Wear resistant calibrating die for producing plastic profiles, is made from aluminum bronze
US20010030002A1 (en) * 2000-03-07 2001-10-18 Zheng Hong Yu Process for laser marking metal surfaces
DE10202184C1 (en) * 2002-01-22 2003-05-28 Federal Mogul Nuernberg Gmbh Production of wear resistant layers in regions of components close to the surface comprises using a laser nitriding treatment in which energy is applied to the surface so that a re-melting layer forms in the regions close to the surface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599636B1 (en) * 2000-10-31 2003-07-29 Donald L. Alger α-Al2O3 and Ti2O3 protective coatings on aluminide substrates
JP2003105557A (en) * 2001-10-01 2003-04-09 Matsumoto Shika Univ Method of forming oxide film of metal member

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2740569A1 (en) * 1976-09-13 1978-03-16 Ford Werke Ag SURFACE ALLOY AND HEAT TREATMENT PROCESS
JPS6050154A (en) * 1983-08-26 1985-03-19 Yoshiaki Arata Surface treatment by laser beam
US4566937A (en) * 1984-10-10 1986-01-28 The United States Of America As Represented By The United States Department Of Energy Electron beam enhanced surface modification for making highly resolved structures
JPS61104063A (en) * 1984-10-24 1986-05-22 Agency Of Ind Science & Technol Surface treatment by laser
JPS61113756A (en) * 1984-11-09 1986-05-31 Yoshikawa Kogyo Kk Manufacture of seawater-resistant al-coated steel material
EP0237448B1 (en) * 1986-02-25 1989-05-24 PECHINEY RECHERCHE (Groupement d'Intérêt Economique régi par l'ordonnance du 23 Septembre 1967) Work pieces made of aluminium or its alloys, and of which at least one face presents at least one zone region resistant to wear
JPH0920941A (en) * 1995-07-05 1997-01-21 Mitsubishi Motors Corp Brake rotor for disk brake and its production
DE19544295A1 (en) * 1995-11-28 1997-06-05 Zeiss Carl Jena Gmbh Production of structures within a submicron range e.g. grating
DE19924523A1 (en) * 1999-05-28 2000-11-30 Laserworks Gmbh Rostock Wear resistant calibrating die for producing plastic profiles, is made from aluminum bronze
US20010030002A1 (en) * 2000-03-07 2001-10-18 Zheng Hong Yu Process for laser marking metal surfaces
DE10202184C1 (en) * 2002-01-22 2003-05-28 Federal Mogul Nuernberg Gmbh Production of wear resistant layers in regions of components close to the surface comprises using a laser nitriding treatment in which energy is applied to the surface so that a re-melting layer forms in the regions close to the surface

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; ZHANG, KUN ET AL: "Study of laser oxidizing for titanium hardening", XP002446844, retrieved from STN Database accession no. 146:278507 *
JINSHU RECHULI , 30(3), 8-10 CODEN: JRECDB; ISSN: 0254-6051, 2005 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1921177A3 (en) * 2006-10-30 2011-03-16 AHC-Oberflächentechnik GmbH Creation of wear protection layers on substances made of barrier layer metals or their alloys using laser processing
EP1921177A2 (en) * 2006-10-30 2008-05-14 AHC-Oberflächentechnik GmbH Creation of wear protection layers on substances made of barrier layer metals or their alloys using laser processing
US9994948B2 (en) 2013-09-26 2018-06-12 AHC Oberflächentechnik GmbH Method for producing oxide layers which protect against wear and/or corrosion
DE102013110659A1 (en) * 2013-09-26 2015-03-26 AHC Oberflächentechnik GmbH Process for the production of wear and / or corrosion protective oxide layers
EP2853616A1 (en) 2013-09-26 2015-04-01 AHC-Oberflächentechnik GmbH Method for the preparation of wear and/or corrosion resistant oxide layers
WO2015058938A1 (en) * 2013-10-25 2015-04-30 Continental Automotive Gmbh Method for protecting the compressor wheel of an exhaust-gas turbocharger against damage and compressor wheel
CN104480511A (en) * 2014-12-12 2015-04-01 南京理工大学 Composite wear-resistant antifriction coating on titanium alloy surface and preparation method thereof
DE102016121008A1 (en) 2016-11-03 2018-05-03 Osram Oled Gmbh Process for producing an organic light emitting diode and organic light emitting diode
CN113444997A (en) * 2020-03-24 2021-09-28 本田技研工业株式会社 Oxide film and member having oxide film
CN113444997B (en) * 2020-03-24 2023-07-07 本田技研工业株式会社 Oxide film and member with oxide film
CN114799530A (en) * 2022-04-26 2022-07-29 中国人民解放军空军工程大学 Device and method for improving fatigue performance of catheter by femtosecond laser surface modification
CN115198226A (en) * 2022-08-16 2022-10-18 中国人民解放军空军工程大学 Method for improving metal corrosion resistance based on femtosecond laser induced surface oxidation layer
CN115198226B (en) * 2022-08-16 2023-08-22 中国人民解放军空军工程大学 Method for improving corrosion resistance of metal based on femtosecond laser induced surface oxide layer

Also Published As

Publication number Publication date
DE102006046503A1 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
WO2008019721A1 (en) Laser oxidizing of magnesium, titanium or aluminium materials
EP1921177A2 (en) Creation of wear protection layers on substances made of barrier layer metals or their alloys using laser processing
EP3155284A1 (en) Brake disc for a motor vehicle
DE1796175C2 (en) High temperature corrosion and scaling resistant diffusion protection layer on objects made of high temperature alloys based on nickel and / or cobalt
DE102010062357B4 (en) Apparatus and method for producing a magnesium-containing substrate coated with at least one anticorrosion layer
AT520637B1 (en) METHOD FOR IMPROVING THE COATABILITY OF A METAL STRIP
DE102014015474A1 (en) Coated brake disc and manufacturing process
DE202008010896U1 (en) Material, in particular components, with improved wear protection layers
EP2401419B1 (en) Coating system and method for making it
EP2853616B1 (en) Method for the preparation of wear and/or corrosion resistant oxide layers
DE102009053367A1 (en) Method for applying a metallic corrosion resistant coating on a high strength steel sheet material by a physical vapor deposition-technology, comprises forming the corrosion resistant coating from zinc
WO2015173023A1 (en) Method for producing a steel component which is shaped by hot-forming a steel sheet which has a metal coating, such a steel sheet, and a steel component produced from said steel sheet by means of a hot-forming process
DE2713932B2 (en) Process for the production of a corrosion-resistant top layer on stainless steel
EP3877564A1 (en) Hardened component, comprising a steel substrate and an anti-corrosion coating, corresponding component for producing the hardened component, production method, and use
WO1990014447A1 (en) Process for manufacturing a wear-resistant sliding surface in joint endoprostheses
DE102009054394B4 (en) Method for the defined modification of surfaces of a workpiece
DE102007016411B4 (en) Molybdenum semi-finished product provided with a protective layer and method for its production
DE102008034399B4 (en) Process for the production of coatings from MMC and components coated in this way
EP3712292B1 (en) Component consisting of a steel substrate, an intermediate coating layer and a corrosion protection layer, as well as their process of manufacture
EP0627496A2 (en) Method and device for coating metal substrates, especially steel- and aluminium-sheets in shape of tapes
EP2607515A2 (en) Diffusion coating method and chromium layer produced according to the method
EP3768876A1 (en) Method for producing improved cold-forming tools for high-strength and super-high-strength steels, and cold-forming tool
EP2955250B1 (en) Method for coating a substrate
DE3741292C2 (en)
EP0651071A1 (en) Method for producing parts with wear-resistant coatings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07764554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07764554

Country of ref document: EP

Kind code of ref document: A1