DE10039144C1 - Production of precise components comprises laser sintering a powder mixture made from a mixture of iron powder and further powder alloying elements - Google Patents

Production of precise components comprises laser sintering a powder mixture made from a mixture of iron powder and further powder alloying elements

Info

Publication number
DE10039144C1
DE10039144C1 DE10039144A DE10039144A DE10039144C1 DE 10039144 C1 DE10039144 C1 DE 10039144C1 DE 10039144 A DE10039144 A DE 10039144A DE 10039144 A DE10039144 A DE 10039144A DE 10039144 C1 DE10039144 C1 DE 10039144C1
Authority
DE
Germany
Prior art keywords
powder
mass
mixture
elements
laser sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE10039144A
Other languages
German (de)
Inventor
Simichi Abdolreza
Frank Petzoldt
Haiko Pohl
Holger Loeffler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EOS GmbH
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to DE10039144A priority Critical patent/DE10039144C1/en
Priority to PCT/DE2001/002887 priority patent/WO2002011929A1/en
Priority to EP01957742A priority patent/EP1307312A1/en
Priority to AU2001279573A priority patent/AU2001279573A1/en
Application granted granted Critical
Publication of DE10039144C1 publication Critical patent/DE10039144C1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

Production of precise components comprises laser sintering a powder mixture made from a mixture of iron powder and further powder alloying elements. A powder alloy is produced from the powder elements during the course of the sintering process.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung präziser Bauteile gemäß dem Oberbegriff des Hauptanspruchs.The invention relates to a method for producing more precisely Components according to the preamble of the main claim.

Ein derartiges Verfahren ist aus der EP 0 782 487 B1 bekannt. Da­ nach wird ein Bauteil nach dem Verfahren des Lasersinterns durch Sintern von Metallpulvermischungen mit drei Kompomenten hergestellt. Dabei ist das wichtigste Ziel der Erfindung die Erhöhung der Schmelztemperatur des fertigen Bauteiles.Such a method is known from EP 0 782 487 B1. There after a component is made using the laser sintering process by sintering metal powder mixtures with three components manufactured. The most important aim of the invention is Increase the melting temperature of the finished component.

Bei der Herstellung von metallischen Bauteilen aus konventio­ nellen Pulvermischungen besteht das Problem, dass die Porosi­ tät der hergestellten Bauteile relativ hoch ist und dass die Erhöhung der Dichte der fertigen Bauteile mit dem Nachteil ei­ ner niedrigen Einsatztemperatur dieser Bauteile verbunden ist.In the production of metallic components from konventio nelle powder mixtures there is the problem that the Porosi Activity of the manufactured components is relatively high and that Increasing the density of the finished components with the disadvantage egg ner low operating temperature of these components is connected.

Der Erfindung liegt die Aufgabe zugrunde, metallische Bauteile im Verfahren des Lasersinterns kostengünstig mit sehr guten mechanischen Eigenschaften und in hoher Qualität herzustellen.The invention has for its object metallic components in the process of laser sintering inexpensively with very good ones mechanical properties and to produce in high quality.

Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Die Unteransprüche stellen vorteilhafte Weiterbildungen dar.This task is accomplished by a process with the characteristics of Claim 1 solved. The subclaims are advantageous Further training.

Danach besteht die Pulvermischung mit der im Verfahren des La­ sersinterns Bauteile hergestellt werden sollen, aus dem Haupt­ bestandteil Eisen und weiteren Pulverbestandteilen, die in elementarer, vorlegierter oder in teilweise vorlegierter Form vorliegen können. Aus diesen Pulverlegierungselementen entsteht im Verlaufe des Lasersinterprozesses eine Pulverlegie­ rung.Then there is the powder mixture with that in the process of La internal components are to be produced from the main component iron and other powder components, which in elementary, pre-alloyed or in partially pre-alloyed form can be present. From these powder alloy elements arises  a powder alloy in the course of the laser sintering process tion.

Dem Hauptbestandteil Eisen der Pulvermischung werden je nach Anforderungen an das Fertigbauteil oder das Herstellungsver­ fahren folgende weitere Pulverelemente einzeln oder in belie­ biger Kombination zugegeben: Kohlenstoff C, Silizium Si, Kup­ fer Cu, Zinn Sn, Nickel Ni, Molybdän Mo, Mangan Mn, Chrom Cr, Kobalt Co, Wolfram W, Vanadium V, Titan Ti, Phosphor P, Bor B.The main component iron of the powder mixture are depending on Requirements for the prefabricated component or the manufacturing ver drive the following additional powder elements individually or in belie The following combination is added: carbon C, silicon Si, copper fer Cu, tin Sn, nickel Ni, molybdenum Mo, manganese Mn, chromium Cr, Cobalt Co, Tungsten W, Vanadium V, Titanium Ti, Phosphorus P, Boron B.

Diese Pulverbestandteile können einzeln oder in beliebiger Kombination, je nach Anforderungen an die Eigenschaften des Fertigbauteils oder des Herstellungsverfahrens, in folgenden Mengen zugegeben werden: Kohlenstoff C: 0,01-2 M.-%, Silizium Si: bis zu 1 M.-%, Kupfer Cu: bis zu 10 M.-%, Zinn Sn: bis zu 2 M.-%, Nickel Ni: bis zu 10 M.-%, Molybdän Mo: bis zu 6 M.-%, Mangan Mn: bis zu 2 M.-% oder 10-13 M.-%, Chrom Cr: bis zu 5 M.-% oder 12-18 M.-%, Kobalt Co: bis zu 2 M.-%, Wolfram W bis zu 5 M.-%, Vanadium V: bis zu 1 M.-%, Titan Ti: bis zu 0,5 M.-%, Phosphor P: bis zu 1 M.-%, Bor B: bis zu 1 M.-%.These powder components can be used individually or in any Combination, depending on the requirements for the properties of the Prefabricated component or the manufacturing process, in the following Quantities are added: carbon C: 0.01-2 mass%, silicon Si: up to 1% by mass, copper Cu: up to 10% by mass, tin Sn: up to 2% by mass, Nickel Ni: up to 10% by mass, molybdenum Mo: up to 6% by mass, Manganese Mn: up to 2% by mass or 10-13% by mass, chromium Cr: up to 5% by mass or 12-18 mass%, cobalt Co: up to 2 mass%, tungsten W up to 5% by mass, vanadium V: up to 1% by mass, titanium Ti: up to 0.5% by mass, Phosphorus P: up to 1% by mass, boron B: up to 1% by mass.

Die Erfindung sieht vor, dass die einzelnen Pulverbestandteile in elementarer, legierter oder teilweise legierter Form vor­ liegen. Dabei kann es sich um Pulverteilchen handeln, die mit dem Hauptbestandteil Eisen legiert sind. In diesem Fall liegen sie als z. B. Ferrobor, Ferrochrom, Ferrophosphor oder Eisensi­ lizid vor. Es können auch weitere Pulverelemente in legierter oder vorlegierter Form zugegeben werden, wie z. B. Kupferphos­ phid, die aber im übrigen hier nicht einzeln aufgezählt wer­ den. Es ist auch vorgesehen, dass die aus den o. g. Pulverbe­ standteilen gebildete Pulvermischung in einem separaten Ver­ fahrensschritt vorlegiert wird.The invention provides that the individual powder components in elementary, alloyed or partially alloyed form lie. It can be powder particles with the main component is iron. In this case lie they as z. B. Ferrobor, Ferrochrom, Ferrophosphor or Eisensi licid before. Other powder elements can also be alloyed or added alloy form, such as. B. Kupferphos phid, which, however, are not listed individually here the. It is also envisaged that the from the above. Powder constituent powder mixture formed in a separate Ver step is alloyed.

Gemäß einer vorteilhaften Ausgestaltung der Erfindung besteht die Pulvermischung aus wasser- oder gasverdüsten Pulvern, Karbonylpulvern, gemahlenen Pulvern oder einer Kombination aus diesen.According to an advantageous embodiment of the invention the powder mixture of water or gas atomized powders, Carbonyl powder, ground powder or a combination of this.

Es ist vorgesehen, dass die Pulverpartikel der Pulvermischung eine Größe < 50 µm, bevorzugt zwischen 20-30 µm aufweisen.It is envisaged that the powder particles of the powder mixture have a size of <50 μm, preferably between 20-30 μm.

In einer vorteilhaften Ausgestaltung der Erfindung ist auch vorgesehen, dass die Pulverpartikelgröße zwischen 50 und max. 100 µm liegen kann. Diese Partikelgröße ist dann besonderes vorteilhaft, wenn die Bauteile schnell hergestellt werden sol­ len, d. h. wenn die Pulverschichten im Lasersinterverfahren eine Schichtdicke von max. 100 µm aufweisen, bei welcher Schicht­ dicke das Verfahren relativ schnell drchgeführt werden kann.In an advantageous embodiment of the invention is also provided that the powder particle size is between 50 and Max. Can be 100 µm. This particle size is special advantageous if the components are to be manufactured quickly len, d. H. if the powder layers in the laser sintering process  Layer thickness of max. 100 µm, which layer thickness the procedure can be carried out relatively quickly.

Es hat sich herausgestellt, dass eine Partikelverteilung von 30% < 20 µm und einer Restmenge aus Partikeln der Größe zwi­ schen 20 und 60 µm zu besonderes guten Verfahrensergebnissen führt, da dadurch hohe Schüttdichte bei gleichzeitig guter Fließfähigkeit erreicht wird.It has been found that a particle distribution of 30% <20 µm and a residual amount of particles between two 20 and 60 µm to particularly good process results leads, because this way high bulk density at the same time good Flowability is achieved.

Gemäß einer vorteilhaften Ausgestaltung nach Anspruch 9 ist vorgesehen, dass der Hauptbestandteil der Pulvermischung, das Eisenpulver, einen Anteil zwischen 5 und 20% von Partikeln der Größe < 10 µm aufweist und die Restmenge der Pulverpartikel eine Größe zwischen 50 und 60 µm aufweist.According to an advantageous embodiment according to claim 9 provided that the main component of the powder mixture, the Iron powder, a proportion between 5 and 20% of particles the size <10 microns and the remaining amount of powder particles has a size between 50 and 60 microns.

Durch die optimierte Wahl der Belichtungsparameter kann die Dichte der Bauteile nach dem Lasersintern so eingestellt wer­ den, dass entweder kurze Bauzeiten mit niedrigerer Bauteil­ dichte oder hohe Eigenschaftsanforderungen (hohe Dichten bei längeren Bauzeiten) berücksichtigt werden.Due to the optimized choice of exposure parameters, the The density of the components after laser sintering is set in this way that either short construction times with lower component dense or high property requirements (high densities at longer construction times) are taken into account.

Die technischen Anwendungsgebiete der Erfindung bestehen in der Herstellung metallischer Prototypen (Rapid Prototyping), von Einzelteilen (Direct Parts) oder Werkzeugen (z. B. Formein­ sätze für den Kunstoffspritzguss oder Metalldruckguss - Rapid Tooling) mit dem generativen Verfahren Direktes Metall Laser­ sintern. Aufgrund der sehr guten mechanischen Eigenschaften können solche Teile im Formen- und Werkzeugbau sowie im Ma­ schinen-, Anlagen- und Fahrzeugbau verwendet werden.The technical fields of application of the invention consist in the production of metallic prototypes (rapid prototyping), of individual parts (direct parts) or tools (e.g. mold kits for plastic injection molding or metal die casting - Rapid Tooling) with the generative method Direct Metal Laser sinter. Because of the very good mechanical properties can such parts in mold and tool construction as well as in Ma machine, plant and vehicle construction can be used.

Das erfindungsgemäße Verfahren wird im Folgenden anhand eini­ ger Ausführungsbeispie näher beschrieben:The method according to the invention is described below with reference to a Example of execution:

Beispiel 1example 1

Konventionelle Pulver werden in der gewünschten Legierungszu­ sammensetzung miteinander gemischt, wobei die Pulvereigen­ schaften dabei so eingestellt werden, dass sie den Anforderun­ gen an das Fertigbauteil oder das Verfahren entsprechen. Es ist wesentlich, dass ein gutes Fliessverhalten bei gleichzei­ tig hoher Schüttdichte erreicht wird. Die Rolle der Zusatz­ stoffe besteht in der Einstellung bestimmter mechanischer, physikalischer und chemischer Eigenschaften des fertigen Bau­ teils. Weiterhin kann die Rolle der Zusatzstoffe in der Erhö­ hung des Absorptionsvermögens des Eisenpulvers von Laserstrah­ len, der Verringerung des Schmelzpunktes des Pulversystems, dem Einsatz niedrigschmelzender Elemente/Legierungen, der Verringerung der Oberflächenspannung und Viskosität sowie der De­ soxidation zur Verbesserung der Sinteraktivität zum Erzielen hoher Dichten bestehen. Z. B. bewirkt Kohlenstoff als feiner elementarer Graphit (Pulvergröße 1-2 µm) die Erhöhung des Absorptionsvermögens von Eisen-/Stahlpulver und die Verringe­ rung des Schmelzpunktes der Pulvermischung durch eutektische Reaktion und Desoxidation. Kupfer- oder Bronzepulver mit einer Pulvergröße von kleiner 45 µm fungiert als ein niedrigschmel­ zendes Element bzw. eine niedrigschmelzende Verbindung und verbessert die Sinteraktivität. Phosphor und Bor verringern die Oberflächenspannung und die Viskosität der Schmelze, die während des Lasersinterprozesses entsteht, um durch das Ver­ meiden der Kugelbildung eine gute Oberflächenqualität zu er­ zielen. Die Rolle der weiteren Pulver-Legierungselemente kann sowohl in der Einstellung gewünschter mechanischer Eigenschaf­ ten als auch in der Reaktion mit anderen Elementen zur ver­ stärkten Schmelzebildung (Fe-C-Mo) liegen. Die Pulverelemente Kohlenstoff, Molybdän, Chrom, Mangan, Nickel bewirken die ho­ hen mechanischen Eigenschaften des fertigen Bauteils. Phos­ phor, Bor, Kupfer und Zinn bewirken eine hohe Sinteraktivität. Durch die Wahl geeigneter Lasersinterparameter kann die Dichte zwischen 70 und 95% der theoretischen Dichte variiert werden.Conventional powders are added in the desired alloy composition mixed together, the powder being be adjusted so that they meet the requirements to the finished component or the procedure. It it is essential that good flow behavior at the same time high bulk density is reached. The role of addition fabrics consists in the setting of certain mechanical, physical and chemical properties of the finished building part. Furthermore, the role of additives in the increase Absorption of iron powder by laser beam len, the reduction of the melting point of the powder system, the use of low-melting elements / alloys, the reduction  the surface tension and viscosity as well as the De Soxidation to improve the sintering activity to achieve high densities exist. For example, carbon makes it finer elemental graphite (powder size 1-2 µm) increasing the Absorbance of iron / steel powder and the rings tion of the melting point of the powder mixture by eutectic Reaction and deoxidation. Copper or bronze powder with one Powder size of less than 45 µm acts as a low melting point element or a low-melting compound and improves sintering activity. Reduce phosphorus and boron the surface tension and the viscosity of the melt, the arises during the laser sintering process in order to be avoid spherical formation to a good surface quality aim. The role of the other powder alloy elements can both in the setting of the desired mechanical properties as well as in the reaction with other elements strong melt formation (Fe-C-Mo). The powder elements Carbon, molybdenum, chromium, manganese, nickel cause the ho hen mechanical properties of the finished component. Phos phor, boron, copper and tin cause a high sintering activity. The density can be selected by choosing suitable laser sintering parameters can be varied between 70 and 95% of the theoretical density.

Beim direkten Lasersintern der beschriebenen Pulvermischung werden Dichten von 70-95% der theoretischen Dichte erzielt. Die maximale Dichte hängt von der Belichtungsstrategie und der chemischen Zusammensetzung, der Legierungsweise sowie den Ei­ genschaften (Pulverform, Partikelverteilung, Pulvergröße) der verwendeten Pulvermischung ab: z. B. kann mit den Lasersinter­ parametern 215 W cw CO2-Laser mit der Baugeschwindigkeit von 5,4 cm3/h eine Dichte von 92 ± 1% der theoretischen Dichte für Pulver, bestehend aus (in M.-%): 0,7-1 C, 2-4 Cu, bis zu 1,5 Mo, bis zu 2 Ni, bis zu 0,4 Sn, 0,15 B, erreicht werden.With direct laser sintering of the powder mixture described, densities of 70-95% of the theoretical density are achieved. The maximum density depends on the exposure strategy and the chemical composition, the type of alloy and the properties (powder form, particle distribution, powder size) of the powder mixture used: z. B. with the laser sintering parameters 215 W cw CO 2 laser with the construction speed of 5.4 cm 3 / h a density of 92 ± 1% of the theoretical density for powder, consisting of (in% by mass): 0, 7-1 C, 2-4 Cu, up to 1.5 Mo, up to 2 Ni, up to 0.4 Sn, 0.15 B.

Beispiel 2Example 2

Eine Pulvermischung bestehend aus Eisen, 0,8 M.-% C, 0,3 M.-% B wird mit den Lasersinterparametern 215 W CO2-Laser, 100 mm/s Laserscangeschwindigkeit, 0,3 mm Laserspurbreite bei einer Schichthöhe von 100 µm zu einer Dichte von 80-85% der theo­ retischen Dichte lasergesintert. Die Bauteilhärte nach dem La­ sersintern beträgt ca. 200 HV30. A powder mixture consisting of iron, 0.8 mass% C, 0.3 mass% B is made with the laser sintering parameters 215 W CO 2 laser, 100 mm / s laser scanning speed, 0.3 mm laser track width with a layer height of 100 µm laser-sintered to a density of 80-85% of the theoretical density. The component hardness after laser sintering is approx. 200 HV30.

Beispiel 3Example 3

Eine Pulvermischung bestehend aus Eisen, 0,7-1 M.-% C, 2-4 M.-% Cu, 1,5 M.-% Mo, 0,15 M.-% B wird mit den Lasersinterpa­ rametern 215 W CO2-Laser, 100 mm/s Laserscangeschwindigkeit, 0,3 mm Laserspurbreite bei einer Schichthöhe von 50 µm zu ei­ ner Dichte von 92 +/- 1% der theoretischen Dichte lasergesin­ tert. Die Bauteilhärte nach dem Lasersintern beträgt ca. 370 HV30.A powder mixture consisting of iron, 0.7-1% by mass of C, 2-4% by mass of Cu, 1.5% by mass of Mo, 0.15% by mass of B is made with the laser sintering parameters 215 W. CO 2 laser, 100 mm / s laser scanning speed, 0.3 mm laser track width with a layer height of 50 µm to a density of 92 +/- 1% of the theoretical density. The component hardness after laser sintering is approx. 370 HV30.

Beispiel 4Example 4

Eine Pulvermischung bestehend aus Eisen, 1-1,2 M.-% C, 2-4 M.-% Cu, 0,4 M.-% P wird mit den Lasersinterparametern 215 W CO2-Laser, 100 mm/s Laserscangeschwindigkeit, 0,3 mm Laserspur­ breite bei einer, im Vergleich zum ersten Beispiel, verringer­ ten Schichthöhe von 50 µm zu einer Dichte von 90 +/- 1% der theoretischen Dichte lasergesintert.A powder mixture consisting of iron, 1-1.2 M .-% C, 2-4 M .-% Cu, 0.4 M .-% P is with the laser sintering parameters 215 W CO 2 laser, 100 mm / s laser scanning speed , 0.3 mm laser track width with a, compared to the first example, reduced layer height of 50 µm to a density of 90 +/- 1% of the theoretical density.

Beispiel 5Example 5

Eine Eisenpulvermischung mit 0,8 M.-% Kohlenstoff ergibt nach dem Lasersintern Rauheitswerte von RZ 150 µm und Ra 29 µm. Wird der Kohlenstoffanteil auf 1,6 M.-% erhöht, verbessern sich die Rauheitswerte auf RZ 60 µm und Ra 19 µm. Pulvermischungen mit sehr guten mechanischen Eigenschaften nach dem Lasersintern weisen Rauheitswerte von RZ 75 µm und Ra 11 µm auf.An iron powder mixture with 0.8% by mass of carbon gives roughness values of R Z 150 µm and R a 29 µm after laser sintering. If the carbon content is increased to 1.6% by mass, the roughness values improve to R Z 60 µm and R a 19 µm. Powder mixtures with very good mechanical properties after laser sintering have roughness values of R Z 75 µm and R a 11 µm.

Claims (10)

1. Verfahren zur Herstellung präziser Bauteile durch Lasersin­ tern eines Pulvermaterials, das aus einer Mischung von minde­ stens zwei Pulverelementen besteht, dadurch gekennzeichnet, dass die Pulvermischung durch den Hauptbestandteil Eisenpulver und weitere Pulverlegierungselemente gebildet ist, die in ele­ mentarer, vorlegierter oder teilweise vorlegierter Form vor­ liegen, wobei im Verlaufe des Lasersinterprozesses aus diesen Pulverelementen eine Pulverlegierung entsteht.1. A method for producing precise components by laser sintering a powder material consisting of a mixture of at least two powder elements, characterized in that the powder mixture is formed by the main component iron powder and other powder alloy elements, which are in elementary, pre-alloyed or partially pre-alloyed form are present, a powder alloy being formed from these powder elements in the course of the laser sintering process. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass fol­ gende, in elementarer, legierter oder vorlegierter Form vor­ liegende, Pulverelemente jedes für sich oder in beliebiger Kombination dem Eisenpulver zugegeben werden: Kohlenstoff, Si­ lizium, Kupfer, Zinn, Nickel, Molybdän, Mangan, Chrom, Kobalt, Wolfram, Vanadium, Titan, Phosphor, Bor.2. The method according to claim 1, characterized in that fol present, in elementary, alloyed or pre-alloyed form lying, powder elements each individually or in any Combination can be added to the iron powder: carbon, Si silicon, copper, tin, nickel, molybdenum, manganese, chrome, cobalt, Tungsten, vanadium, titanium, phosphorus, boron. 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Pulverelemente jedes für sich oder in beliebiger Kombination in folgenden Mengen zugegeben werden: Kohlenstoff: 0,01-2 M.- %, Silizium: bis zu 1 M.-%, Kupfer: bis zu 10 M.-%, Zinn: bis zu 2 M.-%, Nickel: bis zu 10 M.-%, Molybdän: bis zu 6 M.-%, Mangan: bis zu 2 M.-% oder 10-13 M.-%, Chrom: bis zu 5 M.-% oder 12-18 M.-%, Kobalt: bis zu 2 M.-%, Wolfram bis zu 5 M.- %, Vanadium: bis zu 1 M.-%, Titan: bis zu 0,5 M.-%, Phosphor: bis zu 1 M.-%, Bor: bis zu 1 M.-%.3. The method according to claim 2, characterized in that the Powder elements each individually or in any combination be added in the following amounts: carbon: 0.01-2 M.- %, Silicon: up to 1% by mass, copper: up to 10% by mass, tin: up to 2% by mass, nickel: up to 10% by mass, molybdenum: up to 6% by mass, Manganese: up to 2% by mass or 10-13% by mass, chromium: up to 5% by mass or 12-18 M .-%, cobalt: up to 2 M .-%, tungsten up to 5 M.- %, Vanadium: up to 1% by mass, titanium: up to 0.5% by mass, phosphorus: up to 1% by mass, boron: up to 1% by mass. 4. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Pulverelemente in legierter oder vor­ legierter Form als Ferrochrom, Ferrobor, Ferrophosphor, Kup­ ferphosphid oder Eisensilizid vorliegen.4. The method according to any one of the preceding claims, characterized characterized that the powder elements in alloyed or before alloyed form as ferrochrome, ferroboron, ferrophosphorus, cup Ferphosphide or iron silicide are present. 5. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Pulvermischung aus gasverdüsten Pul­ vern, Karbonylpulvern, gemahlenen Pulvern oder einer Kombinati­ on davon besteht.5. The method according to any one of the preceding claims, characterized characterized in that the powder mixture of gas atomized pul vern, carbonyl powder, ground powder or a Kombinati one of them exists. 6. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Pulvermischung aus einer Menge von Pulverpartikeln mit einer Größe kleiner 50 µm, bevorzugt zwi­ schen 20-30 µm besteht. 6. The method according to any one of the preceding claims, characterized characterized in that the powder mixture consists of an amount of Powder particles with a size smaller than 50 microns, preferably between 20-30 µm.   7. verfahren nach einem der vorangegangenen Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Pulvermischung aus Partikeln mit einer Größe 50-max. 100 µm besteht.7. The method according to any one of the preceding claims 1 to 5, characterized in that the powder mixture of particles with a size 50-max. 100 µm. 8. Verfahren nach einem der vorangegangenen Ansprüche 1-5, dadurch gekennzeichnet, dass die Pulvermischung zu 30% aus Partikeln besteht, die kleiner sind als 20 µm und dass die Restmenge aus Partikeln mit der Größe zwischen 20 und 60 µm besteht.8. The method according to any one of the preceding claims 1-5, characterized characterized in that the powder mixture is 30% particles exists that are smaller than 20 µm and that the remaining amount Particles with a size between 20 and 60 microns. 9. Verfahren nach einem der vorangegangenen Ansprüche 1-5, dadurch gekennzeichnet, dass der Hauptbestandteil der Pulvermischung, das Eisenpulver, zwischen 5 und 20% der Partikel der Größe kleiner 10 µm aufweist und dass die Restmenge aus Partikeln der Größe 50-60 µm besteht.9. The method according to any one of the preceding claims 1-5, characterized characterized that the main component of the powder mixture, the iron powder, between 5 and 20% of the particle size has less than 10 microns and that the remaining amount of particles of Size is 50-60 µm. 10. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Parameter des Lasersintervorganges wie Laserenergie, Lasergeschwindigkeit, Spurbreite und Belich­ tung, in Abhängigkeit von den gewünschten Eigenschaften des Fertigteiles eingestellt werden.10. The method according to any one of the preceding claims, characterized characterized that the parameters of the laser sintering process such as laser energy, laser speed, track width and exposure tion, depending on the desired properties of the Finished part can be set.
DE10039144A 2000-08-07 2000-08-07 Production of precise components comprises laser sintering a powder mixture made from a mixture of iron powder and further powder alloying elements Expired - Fee Related DE10039144C1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE10039144A DE10039144C1 (en) 2000-08-07 2000-08-07 Production of precise components comprises laser sintering a powder mixture made from a mixture of iron powder and further powder alloying elements
PCT/DE2001/002887 WO2002011929A1 (en) 2000-08-07 2001-07-27 Method for producing exact parts by means of laser sintering
EP01957742A EP1307312A1 (en) 2000-08-07 2001-07-27 Method for producing exact parts by means of laser sintering
AU2001279573A AU2001279573A1 (en) 2000-08-07 2001-07-27 Method for producing exact parts by means of laser sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10039144A DE10039144C1 (en) 2000-08-07 2000-08-07 Production of precise components comprises laser sintering a powder mixture made from a mixture of iron powder and further powder alloying elements

Publications (1)

Publication Number Publication Date
DE10039144C1 true DE10039144C1 (en) 2001-11-22

Family

ID=7652040

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10039144A Expired - Fee Related DE10039144C1 (en) 2000-08-07 2000-08-07 Production of precise components comprises laser sintering a powder mixture made from a mixture of iron powder and further powder alloying elements

Country Status (4)

Country Link
EP (1) EP1307312A1 (en)
AU (1) AU2001279573A1 (en)
DE (1) DE10039144C1 (en)
WO (1) WO2002011929A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10239369A1 (en) * 2002-08-28 2004-03-18 Schott Glas Sintered body used in the production of prototypes comprises a powdered borosilicate glass, glass ceramic or glass solder material applied on a working surface in a defined thickness
DE10340052A1 (en) * 2003-08-28 2005-05-04 Dieter Ronsdorf Process to manufacture a flexible three-dimensional work-piece clamping or holding fixture by laser sintering or laser welding and selective hardening
DE102004008054B4 (en) * 2003-02-25 2006-07-20 Matsushita Electric Works, Ltd., Kadoma Metal powder composition for use in selective laser sintering
EP1992709A1 (en) * 2007-05-14 2008-11-19 EOS GmbH Electro Optical Systems Metal powder for use in additive method for the production of three-dimensional objects and method using such metal powder
DE102007058976A1 (en) * 2007-12-07 2009-06-10 Bayerische Motoren Werke Aktiengesellschaft Process to fabricate a metal form component by laser build-up of low carbon metal powder lasers
DE102007059865A1 (en) * 2007-12-12 2009-06-18 Bayerische Motoren Werke Aktiengesellschaft Producing a mold body by structuring powder forming metallic material in layered manner, comprises subjecting layers one upon the other and melting each powder layer before bringing the powder layer with a wave like high energy radiation
US20110002806A1 (en) * 2008-10-24 2011-01-06 Ningbo Hopesun New Material Co., Ltd. High-Alloy Cold Work Die Steel
DE102010029078A1 (en) * 2010-05-18 2011-11-24 Matthias Fockele Producing an article by layer-wise structures made of powdered metallic or ceramic material, comprises individually preparing material powder layers subsequent to each other on a support, and location-selectively solidifying each layer
DE102010060487A1 (en) * 2010-11-11 2012-05-16 Taiwan Powder Technologies Co., Ltd. Steel powder used for forming sintered compact, comprises iron, carbon, silicon, manganese, chromium, titanium, copper and nickel, and solidifying agent
GB2486046A (en) * 2010-10-20 2012-06-06 Materials Solutions Making an article from a superalloy by additive layer manufacturing
DE102011000202A1 (en) * 2011-01-18 2012-07-19 Taiwan Powder Technologies Co., Ltd. Martensitic stainless steel powder composition, comprises carbon, silicon, manganese, chromium, titanium and remainder of iron
US8986604B2 (en) 2010-10-20 2015-03-24 Materials Solutions Heat treatments of ALM formed metal mixes to form super alloys
DE102013110417A1 (en) * 2013-09-20 2015-03-26 Thyssenkrupp Steel Europe Ag Metal powder for powder-based manufacturing processes and method for producing a metallic component from metal powder
WO2015036802A3 (en) * 2013-09-16 2015-05-07 The University Of Nottingham Additive manufacturing
DE102014214562A1 (en) * 2014-07-24 2016-01-28 Siemens Aktiengesellschaft Process for processing and using waste from metal removing or cutting processes
EP3096909A4 (en) * 2014-01-24 2017-03-08 United Technologies Corporation Alloying metal materials together during additive manufacturing of one or more parts
DE102015013357A1 (en) * 2015-10-15 2017-04-20 Vdm Metals International Gmbh Corrosion resistant powder
DE102016202154A1 (en) * 2016-02-12 2017-08-17 Robert Bosch Gmbh Sintered material and process for its preparation
DE102016221840A1 (en) 2016-11-08 2018-05-09 Schaeffler Technologies AG & Co. KG Outer ring for a turbocharger
WO2018233745A1 (en) * 2017-06-21 2018-12-27 Schaeffler Technologies AG & Co. KG Method for producing a bearing ring by means of an additive manufacturing method and rolling element bearing having a bearing ring
CN109890552A (en) * 2016-11-01 2019-06-14 纳米钢公司 For powder bed melting can 3D printing hard ferrous metal alloy
WO2020177976A1 (en) 2019-03-01 2020-09-10 Kolibri Metals Gmbh Metal material composition for additively manufactured parts
DE102019111236A1 (en) * 2019-04-30 2020-11-05 Voestalpine Böhler Edelstahl Gmbh & Co Kg Steel material and process for its manufacture
EP3791978A1 (en) * 2019-09-13 2021-03-17 Rolls-Royce Corporation Additive manufactured ferrous components
DE102016202885B4 (en) 2015-02-27 2022-01-05 Japan Silicolloy Industry Co., Ltd. Selective laser sintering process
US12000006B2 (en) 2016-11-01 2024-06-04 Maclean-Fogg Company 3D printable hard ferrous metallic alloys for powder bed fusion

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9833788B2 (en) 2004-03-21 2017-12-05 Eos Gmbh Electro Optical Systems Powder for layerwise manufacturing of objects
WO2005090448A1 (en) 2004-03-21 2005-09-29 Toyota Motorsport Gmbh Powders for rapid prototyping and methods for the production thereof
US20050207931A1 (en) 2004-03-21 2005-09-22 Toyota Motorsport Gmbh unknown
US9330406B2 (en) 2009-05-19 2016-05-03 Cobra Golf Incorporated Method and system for sales of golf equipment
US8007373B2 (en) 2009-05-19 2011-08-30 Cobra Golf, Inc. Method of making golf clubs
WO2019177614A1 (en) 2018-03-15 2019-09-19 Hewlett-Packard Development Company, L.P. Composition
CA3122303C (en) * 2019-03-14 2024-04-23 Hoeganaes Corporation Metallurgical compositions for press-and-sinter and additive manufacturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9117128U1 (en) * 1990-12-07 1996-02-08 Board of Regents, the University of Texas System, Austin, Tex. Sintered part and powder for sintering
DE19721595A1 (en) * 1997-05-23 1999-01-28 Atz Evus Applikations & Tech Material for the direct production of metallic functional samples
EP0782487B1 (en) * 1994-09-21 1999-09-01 Aktiebolaget Electrolux Method for fabricating dimensionally accurate pieces by laser sintering

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156697A (en) * 1989-09-05 1992-10-20 Board Of Regents, The University Of Texas System Selective laser sintering of parts by compound formation of precursor powders
US5314003A (en) * 1991-12-24 1994-05-24 Microelectronics And Computer Technology Corporation Three-dimensional metal fabrication using a laser
DE4305201C1 (en) * 1993-02-19 1994-04-07 Eos Electro Optical Syst Three dimensional component mfr with laser-cured resin and filler - involves mixing steel or ceramic powder in resin, laser curing given shape, heating in nitrogen@ atmosphere and nitric acid to remove resin and then sintering filler
WO1995021275A1 (en) * 1994-02-08 1995-08-10 Stackpole Limited Hi-density sintered alloy
US5745834A (en) * 1995-09-19 1998-04-28 Rockwell International Corporation Free form fabrication of metallic components

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9117128U1 (en) * 1990-12-07 1996-02-08 Board of Regents, the University of Texas System, Austin, Tex. Sintered part and powder for sintering
EP0782487B1 (en) * 1994-09-21 1999-09-01 Aktiebolaget Electrolux Method for fabricating dimensionally accurate pieces by laser sintering
DE19721595A1 (en) * 1997-05-23 1999-01-28 Atz Evus Applikations & Tech Material for the direct production of metallic functional samples

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10239369A1 (en) * 2002-08-28 2004-03-18 Schott Glas Sintered body used in the production of prototypes comprises a powdered borosilicate glass, glass ceramic or glass solder material applied on a working surface in a defined thickness
DE10239369B4 (en) * 2002-08-28 2005-11-10 Schott Ag Use of a powdery material for selective sintering
DE102004008054B4 (en) * 2003-02-25 2006-07-20 Matsushita Electric Works, Ltd., Kadoma Metal powder composition for use in selective laser sintering
DE102004008054B8 (en) * 2003-02-25 2007-02-08 Matsushita Electric Works, Ltd., Kadoma Metal powder composition for use in selective laser sintering
US7258720B2 (en) 2003-02-25 2007-08-21 Matsushita Electric Works, Ltd. Metal powder composition for use in selective laser sintering
DE10340052A1 (en) * 2003-08-28 2005-05-04 Dieter Ronsdorf Process to manufacture a flexible three-dimensional work-piece clamping or holding fixture by laser sintering or laser welding and selective hardening
DE10340052B4 (en) * 2003-08-28 2006-02-09 Dieter Ronsdorf Method for producing flexible functional clamping elements
EP1992709A1 (en) * 2007-05-14 2008-11-19 EOS GmbH Electro Optical Systems Metal powder for use in additive method for the production of three-dimensional objects and method using such metal powder
DE102007058976A1 (en) * 2007-12-07 2009-06-10 Bayerische Motoren Werke Aktiengesellschaft Process to fabricate a metal form component by laser build-up of low carbon metal powder lasers
DE102007059865A1 (en) * 2007-12-12 2009-06-18 Bayerische Motoren Werke Aktiengesellschaft Producing a mold body by structuring powder forming metallic material in layered manner, comprises subjecting layers one upon the other and melting each powder layer before bringing the powder layer with a wave like high energy radiation
US20110002806A1 (en) * 2008-10-24 2011-01-06 Ningbo Hopesun New Material Co., Ltd. High-Alloy Cold Work Die Steel
US8632641B2 (en) * 2008-10-24 2014-01-21 Ningbo Hopesun New Material Co., Ltd. High-alloy cold work die steel
DE102010029078A1 (en) * 2010-05-18 2011-11-24 Matthias Fockele Producing an article by layer-wise structures made of powdered metallic or ceramic material, comprises individually preparing material powder layers subsequent to each other on a support, and location-selectively solidifying each layer
GB2486046A (en) * 2010-10-20 2012-06-06 Materials Solutions Making an article from a superalloy by additive layer manufacturing
GB2486046B (en) * 2010-10-20 2012-12-19 Materials Solutions Heat treatments of ALM formed metal mixes to form super alloys
US8986604B2 (en) 2010-10-20 2015-03-24 Materials Solutions Heat treatments of ALM formed metal mixes to form super alloys
US9388479B2 (en) 2010-10-20 2016-07-12 Materials Solutions Heat treatments of ALM formed metal mixes to form super alloys
DE102010060487A1 (en) * 2010-11-11 2012-05-16 Taiwan Powder Technologies Co., Ltd. Steel powder used for forming sintered compact, comprises iron, carbon, silicon, manganese, chromium, titanium, copper and nickel, and solidifying agent
DE102011000202A1 (en) * 2011-01-18 2012-07-19 Taiwan Powder Technologies Co., Ltd. Martensitic stainless steel powder composition, comprises carbon, silicon, manganese, chromium, titanium and remainder of iron
WO2015036802A3 (en) * 2013-09-16 2015-05-07 The University Of Nottingham Additive manufacturing
DE102013110417A1 (en) * 2013-09-20 2015-03-26 Thyssenkrupp Steel Europe Ag Metal powder for powder-based manufacturing processes and method for producing a metallic component from metal powder
EP3096909A4 (en) * 2014-01-24 2017-03-08 United Technologies Corporation Alloying metal materials together during additive manufacturing of one or more parts
US10576543B2 (en) 2014-01-24 2020-03-03 United Technologies Corporation Alloying metal materials together during additive manufacturing or one or more parts
DE102014214562A1 (en) * 2014-07-24 2016-01-28 Siemens Aktiengesellschaft Process for processing and using waste from metal removing or cutting processes
DE102016202885B4 (en) 2015-02-27 2022-01-05 Japan Silicolloy Industry Co., Ltd. Selective laser sintering process
DE102015013357A1 (en) * 2015-10-15 2017-04-20 Vdm Metals International Gmbh Corrosion resistant powder
DE102016202154A1 (en) * 2016-02-12 2017-08-17 Robert Bosch Gmbh Sintered material and process for its preparation
US10920295B2 (en) 2016-11-01 2021-02-16 The Nanosteel Company, Inc. 3D printable hard ferrous metallic alloys for powder bed fusion
US12000006B2 (en) 2016-11-01 2024-06-04 Maclean-Fogg Company 3D printable hard ferrous metallic alloys for powder bed fusion
CN109890552A (en) * 2016-11-01 2019-06-14 纳米钢公司 For powder bed melting can 3D printing hard ferrous metal alloy
EP3535086A4 (en) * 2016-11-01 2020-06-17 The Nanosteel Company, Inc. 3d printable hard ferrous metallic alloys for powder bed fusion
DE102016221840A1 (en) 2016-11-08 2018-05-09 Schaeffler Technologies AG & Co. KG Outer ring for a turbocharger
WO2018233745A1 (en) * 2017-06-21 2018-12-27 Schaeffler Technologies AG & Co. KG Method for producing a bearing ring by means of an additive manufacturing method and rolling element bearing having a bearing ring
WO2020177976A1 (en) 2019-03-01 2020-09-10 Kolibri Metals Gmbh Metal material composition for additively manufactured parts
DE102019111236A1 (en) * 2019-04-30 2020-11-05 Voestalpine Böhler Edelstahl Gmbh & Co Kg Steel material and process for its manufacture
EP3791978A1 (en) * 2019-09-13 2021-03-17 Rolls-Royce Corporation Additive manufactured ferrous components
US11865642B2 (en) 2019-09-13 2024-01-09 Rolls-Royce Corporation Additive manufactured ferrous components

Also Published As

Publication number Publication date
EP1307312A1 (en) 2003-05-07
WO2002011929A1 (en) 2002-02-14
AU2001279573A1 (en) 2002-02-18

Similar Documents

Publication Publication Date Title
DE10039144C1 (en) Production of precise components comprises laser sintering a powder mixture made from a mixture of iron powder and further powder alloying elements
DE10039143C1 (en) Production of precise components comprises laser sintering a powdered material consisting of iron powder and further powder alloying, and homogenizing, annealing, heat treating, degrading inner faults and/or improving the surface quality
DE102004008054B4 (en) Metal powder composition for use in selective laser sintering
DE69521292T2 (en) METHOD FOR PRODUCING A LAYERING MATERIAL FROM METAL
DE2753903C2 (en)
DE112007003090B4 (en) Method for producing a three-dimensionally shaped object
EP2061078B1 (en) Cooling element
DE60025931T2 (en) PREPARATION METHOD FOR IMPROVED METALLURGICAL POWDER COMPOSITION AND USE OF THE SAME
DE19715708B4 (en) Wear resistant sintered alloy at high temperature
DE3810218C2 (en)
EP0440620B1 (en) Semifinished product for electrical contacts, made of a composite material based on silver and tin oxide, and powder metallurgical process for producing it
DE3232001A1 (en) WEAR-RESISTANT SINTER ALLOY, METHOD FOR THE PRODUCTION THEREOF AND THE SOCKET PRODUCED THEREOF
WO2015039986A2 (en) Metal powder for powder-based production processes and method for production of a metallic component from metal powder
EP3411171B1 (en) Method for producing a three-dimensional hard metal body in layers
DE3911904A1 (en) Powder-metallurgical process for producing a semifinished product for electric contacts from a silver-based composite with iron
DE2001341A1 (en) Alloy or mixed metal based on molybdenum
DE68924678T2 (en) Steel alloy powder for injection molding process, its connections and a process for producing sintered parts therefrom.
DE19708197B4 (en) Sintered sliding element and method for its production
EP0988124B1 (en) Method and powder for producing metal functional models
DE102007058976A1 (en) Process to fabricate a metal form component by laser build-up of low carbon metal powder lasers
DE102021105991A1 (en) Process for the production of a three-dimensional component
EP0338401B1 (en) Powder-metallurgical process for the production of a semi-finished product for electrical contacts made from a composite material based on silver and iron
DE3421858C2 (en)
EP0597832B1 (en) Metal-powder blend
DE3207161C2 (en) Hard alloy

Legal Events

Date Code Title Description
8100 Publication of patent without earlier publication of application
D1 Grant (no unexamined application published) patent law 81
8381 Inventor (new situation)

Free format text: SIMICHI, ADBOLREZA, DR., TEHERAN, IR PETZOLDT, FRANK, DR., 27578 BREMERHAVEN, DE POHL, HAIKO, 28757BREMEN, DE LOEFFLER, HOLGER, 28201 BREMEN, DE

8363 Opposition against the patent
8365 Fully valid after opposition proceedings
8327 Change in the person/name/address of the patent owner

Owner name: EOS GMBH ELECTRO OPTICAL SYSTEMS, 82152 KRAILL, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20150303