WO2018233745A1 - Method for producing a bearing ring by means of an additive manufacturing method and rolling element bearing having a bearing ring - Google Patents

Method for producing a bearing ring by means of an additive manufacturing method and rolling element bearing having a bearing ring Download PDF

Info

Publication number
WO2018233745A1
WO2018233745A1 PCT/DE2018/100354 DE2018100354W WO2018233745A1 WO 2018233745 A1 WO2018233745 A1 WO 2018233745A1 DE 2018100354 W DE2018100354 W DE 2018100354W WO 2018233745 A1 WO2018233745 A1 WO 2018233745A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
ring
weight
rolling
additive manufacturing
Prior art date
Application number
PCT/DE2018/100354
Other languages
German (de)
French (fr)
Inventor
Carsten Merklein
Michael Pausch
Sven Claus
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2018233745A1 publication Critical patent/WO2018233745A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/64Medium carbon steel, i.e. carbon content from 0.4 to 0,8 wt%
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/66High carbon steel, i.e. carbon content above 0.8 wt%, e.g. through-hardenable steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/40Ceramics, e.g. carbides, nitrides, oxides, borides of a metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/24Shaping by built-up welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a method for producing a bearing ring and a rolling bearing with a bearing ring. Background of the invention
  • EP 2 825 783 B1 discloses a pinion bearing arrangement of a transmission for a vehicle or aircraft, which comprises at least one roller bearing.
  • At least one of the roller bearings is a ball bearing, wherein the ball bearing has an inner ring and an outer ring. Both rings have raceways for balls located inside the rings. At least one raceway has a radius and the balls have a diameter. The ratio of the radius of the track to the diameter of the ball, namely the osculation is 0.53.
  • at least one of the rings is formed of a ball bearing steel made by a powder metallurgy method.
  • a powder metallurgy component is used, the 0.5 to 2.0 wt .-% C, at most 0.035 wt .-% S, 3.0 to 5.0 wt .-% Cr, 1, 0 to 4.0 Wt .-% V, 1, 0 to 12.0 wt .-% W and 2.0 to 12.0 wt .-% Mo contains.
  • the surface of the raceways has a hardness between 65 HRC and 70 HRC and the balls of the at least one ball bearing are made of ceramic material.
  • DE 10 2010 019 587 A1 relates to a rolling bearing with bearing rings and with rolling elements, which are made of a powder-metallurgically produced Schnellar- beitsstahl, wherein the high-speed steel at least 1, 29 to 2 wt .-% carbon, 0.5 to 0.6 % By weight of silicon, 0.2 to 0.4% by weight of manganese, 3.8 to 4.8% by weight of chromium, 2 to 5% by weight of molybdenum, 3 to 5, 1% by weight Vanadium, 5 to 14.3 wt .-% tungsten and 0 to 1 1 wt .-% cobalt.
  • Object of the invention is made of a powder-metallurgically produced Schnellar- beitsstahl, wherein the high-speed steel at least 1, 29 to 2 wt .-% carbon, 0.5 to 0.6 % By weight of silicon, 0.2 to 0.4% by weight of manganese, 3.8 to 4.8% by weight of chromium, 2 to 5% by weight of
  • the object of the present invention is to further develop a method for producing a bearing ring and a rolling bearing with a bearing ring, and in particular to realize a resource-efficient production of the bearing ring.
  • the bearing ring is formed near net shape, at least by an additive manufacturing method, wherein the ring material of the bearing ring at least 1, 29 to 2 wt .-% carbon, 0.5 to 0.6 wt .-% Silicon, 0.2 to 0.4% by weight of manganese, 3.8 to 4.8% by weight of chromium, 2 to 5% by weight of molybdenum, 3 to 5, 1% by weight of vanadium, 5 to 14.3 wt .-% tungsten and 0 to 1 1 wt .-% cobalt.
  • the ring material of the bearing ring at least 1, 29 to 2 wt .-% carbon, 0.5 to 0.6 wt .-% Silicon, 0.2 to 0.4% by weight of manganese, 3.8 to 4.8% by weight of chromium, 2 to 5% by weight of molybdenum, 3 to 5, 1% by weight of vanadium, 5 to 14.3 wt .-% tungsten and 0 to 1 1 wt .
  • the bearing ring is formed close to net shape, at least 0.5 to 2 wt .-% carbon, at most 0.035 wt .-% sulfur, 3 to 5% by weight of chromium, 1 to 4% by weight of vanadium, 1 to 12% by weight of tungsten and 2 to 12% by weight of molybdenum.
  • the production of the bearing ring by an additive manufacturing process or by a generative manufacturing process or a three-dimensional printing process.
  • the additive manufacturing Driving allows a fast and cost-effective production of the bearing ring, wherein the production takes place in particular on the basis of computer-internal data models of informal or form neutral starting material by means of chemical and / or physical processes.
  • a material powder with an alloy composition which essentially corresponds to the abovementioned alloy compositions is processed layer by layer into a bearing ring in the context of the additive production method.
  • the alloy composition of the bearing ring in the final near-net state comprises at least 1.29 to 2% by weight of carbon, 0.5 to 0.6% by weight of silicon, 0.2 to 0.4% by weight of manganese, 3.8 to 4.8% by weight of chromium, 2 to 5% by weight of molybdenum, 3 to 5.1% by weight of vanadium, 5 to 14.3% by weight of tungsten and 0 to 1 1% by weight of cobalt or at least 0.5 to 2 wt .-% carbon, at most 0.035 wt .-% sulfur, 3 to 5 wt .-% chromium, 1 to 4 wt .-% vanadium, 1 to 12 wt .-% tungsten and 2 bis 12 wt .-% molybdenum.
  • a laser or an electron beam is used in the processing of the material powder.
  • the production of the bearing ring by an additive manufacturing process offers the possibility to combine a high-performance material with the formation of an unusual geometry for a bearing ring.
  • undercuts maximum on-board elevations and near the raceway opening oil supply channels, which can not be made possible by a conventional production of the bearing ring, starting from a powder metallurgically produced high-performance steel, can be realized.
  • the powder metallurgical production route essentially comprises the process steps of pressing, sintering and rolling.
  • at least one raceway which is provided for guiding rolling elements, undergoes a finishing.
  • the finishing is advantageously a mechanical processing, in particular a grinding or honing.
  • an intermediate machining or the finishing process comprises stamping, forming, coating and / or heat treatment.
  • the additive manufacturing process comprises build-up welding.
  • the additive manufacturing process includes laser powder buildup welding.
  • laser powder build-up welding a relatively thin layer of material powder is laser-welded onto a substrate.
  • the surface properties of a hybrid ring formed in this way consisting of substrate and welded material, are adapted to the specific requirements, with a so-called tailored material being formed. Without a change in the substrate, certain properties such as a certain hardness, a certain wear resistance and / or a certain fatigue strength, which are required there, are achieved on the surface of the hybrid ring.
  • the substrate is preferably a bearing ring blank.
  • the outer layer produced by laser powder build-up welding improves the properties of the bearing ring and enables sustainable, application-specific production of the bearing ring.
  • the high-performance steel to be processed is supplied in a shape-neutral manner as a powder or in the form of a wire in a suitable machining head to an energy source such as a laser or an arc.
  • an energy source such as a laser or an arc.
  • the molten steel thus produced is guided onto the surface of a substrate carrier and solidifies there to form a solid shaped body.
  • suitable manipulation of the substrate carrier and processing head it is thus possible to produce infinitely complex geometries close to the end.
  • the additive ferment a powder bed process.
  • Powder bed processes are essentially to be understood as meaning Selective Laser Melting (LBM) and Selective Electron Beam Melting (EBM).
  • LBM Selective Laser Melting
  • EBM Selective Electron Beam Melting
  • the powder bed processes enable component production with maximum freedom from geometry.
  • a component is produced in layers by irradiation of a geometrically defined powder bed of the material to be processed with laser or electron beam.
  • the introduced energy of the radiation used is to be chosen so that the powder bed completely melts in the irradiated area and an area of the underlying layer is melted to produce a firm bond, regardless of whether already solidified material of a previous irradiation is present.
  • another layer of powder is applied, in which case the irradiation begins again. This process is repeated until the component to be manufactured is completely created.
  • An inventive rolling bearing has two bearing rings, namely an inner ring and an outer ring, which are formed from a ring material, wherein the inner ring on an outer peripheral surface and the outer ring on an inner peripheral surface each have a raceway for guiding rolling elements, wherein the rolling elements on the respective raceway roll, wherein the ring material at least 1, 29 to 2 wt .-% carbon, 0.5 to 0.6 wt .-% silicon, 0.2 to 0.4 wt .-% manganese, 3.8 to 4.8 Wt .-% chromium, 2 to 5 wt .-% molybdenum, 3 to 5.1 wt .-% vanadium, 5 to 14.3 wt .-% tungsten and 0 to 1 1 wt .-% cobalt, and wherein at least one of the two bearing rings is made at least by an additive manufacturing process.
  • the annulus material may contain at least 0.5 to 2 wt% carbon, at most 0.035 wt% sulfur, 3 to 5 wt% chromium, 1 to 4 wt% vanadium, 1 to 12 wt% tungsten and 2 to 12 wt% molybdenum.
  • a hardness of a surface of the respective raceway is at least 62 HRC.
  • the ring material in particular has an E-modulus of at least 220 MPa.
  • an osculation between the jewei- ligen career and the rolling elements, which are designed in particular as balls at least 1, 05.
  • the respective raceway preferably has a surface roughness with a mean roughness value R a of 0.005 to 0.03, with a skewness Rsk of 0.3 to -5 and with a slope Rku of 3 to 15.
  • a mean roughness value R a is the arithmetic mean of the amounts of all profile values of the roughness profile of a surface. Furthermore, a skewness Rsk is a measure of the asymmetry of an amplitude density curve of the surface roughness. A negative skewness indicates a surface with good bearing behavior.
  • the slope Rku is a measure of the steepness of the amplitude density curve of the surface roughness. For normally distributed profile values, the slope Rku is 3. The parameters skew Rsk and slope Rku are strongly influenced by individual peaks and valleys of the profile for the surface roughness.
  • the spherical rolling elements roll in preferably groove-shaped raceways on the inner ring and outer ring, so that the outer ring and the inner ring are rotatable relative to each other about an axis of rotation.
  • the osculation indicates the relationship between raceway radius and ball diameter. Thus, the osculation can be calculated by forming the quotient between the respective raceway radius and the ball diameter.
  • the osculation is 1. Accordingly, the osculation increases with increasing raceway radius. With increasing osculation, the contact area between ball and contact area decreases on the track, which has an advantageous effect on friction losses. With decreasing osculation increases accordingly the contact area between the ball and contact area of the track, at the same time increase the friction losses.
  • the rolling elements are formed from a ceramic material or from the annular material. Consequently, the rolling elements are formed of a ceramic or of the annular material, which contains at least 0.5 to 2% by weight of carbon. substance, at most 0.035% by weight of sulfur, 3 to 5% by weight of chromium, 1 to 4% by weight of vanadium, 1 to 12% by weight of tungsten and 2 to 12% by weight of molybdenum, or from the ring material containing at least 1.29 to 2% by weight of carbon, 0.5 to 0.6% by weight of silicon, 0.2 to 0.4% by weight of manganese, 3.8 to 4.8 Wt .-% chromium, 2 to 5 wt .-% molybdenum, 3 to 5, 1 wt .-% vanadium, 5 to 14.3 wt .-% tungsten and 0 to 1 1 wt .-% cobalt.
  • carbon substance, at most 0.035% by weight of sulfur, 3 to 5% by weight of chrom
  • At least one of the two bearing rings on an uneven distribution of alloying elements is used for the respective application.
  • a functionally higher-grade mixture of the alloying elements on a track is used for the respective application.
  • the high-grade mixture of the alloying elements changes with increasing distance to the raceway and is advantageously cheaper thereby.
  • additive manufacturing offers the possibility of not forming bearing rings completely, but only partially of powder metallurgical material. For example, if material is used as the starting material, its composition can be varied over the duration of the production process, thus influencing the composition of the annular material.
  • a rolling bearing according to the invention for supporting a spindle shaft or for supporting a compressor shaft or for supporting a rotor shaft.
  • the rolling bearing is particularly well suited for the storage of fast-rotating shafts.
  • the rolling bearing according to the invention allows a noise and wear-optimized storage of the shaft.
  • Figure 1 is a schematic perspective view of a rolling bearing according to the invention.
  • Figure 2 is a schematic partial sectional view of a bearing assembly with the rolling bearing according to the invention according to Figure 1 and with a shaft.
  • a rolling bearing 1 for a machine tool, not shown here, comprises two bearing rings 2, 3, namely an inner ring 2 and an outer ring 3 and balls arranged radially between the inner ring 2 and the outer ring 3 as rolling elements 6.
  • the rolling elements 6 are guided by a cage 8.
  • the rolling bearing 1 is designed as a deep groove ball bearing.
  • the rolling bearing 1 of Figure 1 supports a shaft 7.
  • the shaft 7 is presently designed as a spindle shaft of the machine tool and only partially shown.
  • the inner ring 2 has on an outer peripheral surface of a raceway 4 for guiding the rolling elements 6.
  • the outer ring 3 on an inner circumferential surface on a raceway 5 for guiding the rolling elements 6.
  • the rolling elements 6 roll on the respective raceway 4, 5 between the inner ring 2 and the outer ring 3, wherein the rolling elements 6 are formed of a ceramic material.
  • the inner ring 2 and the outer ring 3 are formed from a ring material, wherein the ring material in the present case at least 1, 29 to 2 wt .-% carbon, 0.5 to 0.6 wt .-% silicon, 0.2 to 0.4 wt % Of manganese, 3.8 to 4.8% by weight of chromium, 2 to 5% by weight of molybdenum, 3 to 5, 1% by weight of vanadium, 5 to 14.3% by weight of tungsten and 0 to 1 1 wt .-% cobalt.
  • the ring material in the present case at least 1, 29 to 2 wt .-% carbon, 0.5 to 0.6 wt .-% silicon, 0.2 to 0.4 wt % Of manganese, 3.8 to 4.8% by weight of chromium, 2 to 5% by weight of molybdenum, 3 to 5, 1% by weight of vanadium, 5 to 14.3% by weight of tungsten and 0 to 1 1 wt .-%
  • the ring material may contain at least 0.5 to 2 wt% carbon, at most 0.035 wt% sulfur, 3 to 5 wt% chromium, 1 to 4 wt% vanadium, 1 to 12 wt% tungsten and 2 to 12 wt% molybdenum.
  • Both bearing rings 2, 3 were formed by an additive manufacturing process from a powder material near net shape. Further, the two raceways 4, 5 were subjected to finishing by grinding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

The invention relates to a method for producing a bearing ring (2, 3) for a rolling element bearing (1). The invention further relates to a rolling element bearing (1) having two bearing rings (2, 3), namely an inner ring (2) and an outer ring (3), which are made from a ring material, wherein respective raceways (4, 5) for guiding rolling elements (6) are comprised by the inner ring (2) on an outer circumferential surface and by the outer ring (3) on an inner circumferential surface, wherein the rolling elements (6) roll on the raceways (4, 5), wherein the ring material comprises at least 1.29 to 2 wt% carbon, 0.5 to 0.6 wt% silicon, 0.2 to 0.4 wt% manganese, 3.8 to 4.8 wt% chromium, 2 to 5 wt% molybdenum, 3 to 5.1 wt% vanadium, 5 to 14.3 wt% tungsten and 0 to 11 wt% cobalt or alternatively 0.5 to 2 wt% carbon, at most 0.035 wt% sulfur, 3 to 5 wt% chromium, 1 to 4 wt% vanadium, 1 to 12 wt% tungsten and 2 to 12 wt% molybdenum, wherein at least one of the two bearing rings (2, 3) is produced at least by means of an additive manufacturing method.

Description

Bezeichnung der Erfindung  Name of the invention
VERFAHREN ZUR HERSTELLUNG EINES LAGERRINGES DURCH ADDITIVES FERTIGUNGSVERFAHREN UND WÄLZLAGER MIT LAGERRING Gebiet der Erfindung  METHOD FOR PRODUCING A BEARING RING THROUGH ADDITIVE PRODUCTION PROCESS AND BEARING BEARING WITH BEARING RING Field of the invention
Die Erfindung betrifft ein Verfahren zur Herstellung eines Lagerringes sowie ein Wälzlager mit einem Lagerring. Hintergrund der Erfindung The invention relates to a method for producing a bearing ring and a rolling bearing with a bearing ring. Background of the invention
Die EP 2 825 783 B1 offenbart eine Ritzellageranordnung eines Getriebes für ein Fahrzeug oder Luftfahrzeug, die mindestens ein Rollenlager umfasst. Mindestens eines der Rollenlager ist ein Kugellager, wobei das Kugellager einen Innenring und einen Außenring aufweist. Beide Ringe weisen Laufbahnen für Kugeln, die sich innerhalb der Ringe befinden, auf. Mindestens eine Laufbahn weist einen Radius auf und die Kugeln haben einen Durchmesser. Das Verhältnis vom Radius der Laufbahn zum Durchmesser der Kugel, nämlich die Schmiegung beträgt 0,53. Ferner ist mindestens einer der Ringe aus einem Ku- gellagerstahl ausgebildet, das durch ein pulvermetallurgisches Verfahren hergestellt wird. Dazu wird eine pulvermetallurgische Komponente verwendet wird, die 0,5 bis 2,0 Gew.-% C, maximal 0,035 Gew.-% S, 3,0 bis 5,0 Gew.-% Cr, 1 ,0 bis 4,0 Gew.-% V, 1 ,0 bis 12,0 Gew.-% W und 2,0 bis 12,0 Gew.-% Mo enthält. Die Oberfläche der Laufbahnen weist eine Härte zwischen 65 HRC und 70 HRC auf und die Kugeln des mindestens einen Kugellagers sind aus keramischem Material hergestellt. EP 2 825 783 B1 discloses a pinion bearing arrangement of a transmission for a vehicle or aircraft, which comprises at least one roller bearing. At least one of the roller bearings is a ball bearing, wherein the ball bearing has an inner ring and an outer ring. Both rings have raceways for balls located inside the rings. At least one raceway has a radius and the balls have a diameter. The ratio of the radius of the track to the diameter of the ball, namely the osculation is 0.53. Further, at least one of the rings is formed of a ball bearing steel made by a powder metallurgy method. For this purpose, a powder metallurgy component is used, the 0.5 to 2.0 wt .-% C, at most 0.035 wt .-% S, 3.0 to 5.0 wt .-% Cr, 1, 0 to 4.0 Wt .-% V, 1, 0 to 12.0 wt .-% W and 2.0 to 12.0 wt .-% Mo contains. The surface of the raceways has a hardness between 65 HRC and 70 HRC and the balls of the at least one ball bearing are made of ceramic material.
Ferner betrifft die DE 10 2010 019 587 A1 ein Wälzlager mit Lagerringen und mit Wälzkörpern, die aus einem pulvermetallurgisch hergestellten Schnellar- beitsstahl hergestellt sind, wobei der Schnellarbeitsstahl zumindest 1 ,29 bis 2 Gew.-% Kohlenstoff, 0,5 bis 0,6 Gew.-% Silizium, 0,2 bis 0,4 Gew.-% Mangan, 3,8 bis 4,8 Gew.-% Chrom, 2 bis 5 Gew.-% Molybdän, 3 bis 5, 1 Gew.-% Vanadium, 5 bis 14,3 Gew.-% Wolfram und 0 bis 1 1 Gew.-% Kobalt umfasst. Aufgabe der Erfindung Furthermore, DE 10 2010 019 587 A1 relates to a rolling bearing with bearing rings and with rolling elements, which are made of a powder-metallurgically produced Schnellar- beitsstahl, wherein the high-speed steel at least 1, 29 to 2 wt .-% carbon, 0.5 to 0.6 % By weight of silicon, 0.2 to 0.4% by weight of manganese, 3.8 to 4.8% by weight of chromium, 2 to 5% by weight of molybdenum, 3 to 5, 1% by weight Vanadium, 5 to 14.3 wt .-% tungsten and 0 to 1 1 wt .-% cobalt. Object of the invention
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zur Herstellung eines Lagerringes sowie ein Wälzlager mit einem Lagerring weiterzu- entwickeln, und insbesondere eine ressourceneffiziente Herstellung des Lagerrings zu realisieren. The object of the present invention is to further develop a method for producing a bearing ring and a rolling bearing with a bearing ring, and in particular to realize a resource-efficient production of the bearing ring.
Beschreibung der Erfindung Diese Aufgabe wird durch ein jeweiliges Verfahren mit den Merkmalen der Ansprüche 1 und 2 sowie durch ein jeweiliges Wälzlager mit den Merkmalen der Ansprüche 6 und 7 gelöst. Bevorzugte oder vorteilhafte Ausführungsformen der Erfindung ergeben sich aus den Unteransprüchen der nachfolgenden Beschreibung sowie den beigefügten Figuren. DESCRIPTION OF THE INVENTION This object is achieved by a respective method having the features of claims 1 and 2 and by a respective roller bearing having the features of claims 6 and 7. Preferred or advantageous embodiments of the invention will become apparent from the dependent claims of the following description and the accompanying drawings.
Gemäß einem erfindungsgemäßen Verfahren zur Herstellung eines Lagerringes für ein Wälzlager wird der Lagerring zumindest durch ein additives Fertigungsverfahren endkonturnah ausgebildet, wobei der Ringwerkstoff des Lagerringes zumindest 1 ,29 bis 2 Gew.-% Kohlenstoff, 0,5 bis 0,6 Gew.-% Silizium, 0,2 bis 0,4 Gew.-% Mangan, 3,8 bis 4,8 Gew.-% Chrom, 2 bis 5 Gew.-% Molybdän, 3 bis 5, 1 Gew.-% Vanadium, 5 bis 14,3 Gew.-% Wolfram und 0 bis 1 1 Gew.-% Kobalt umfasst. According to a method according to the invention for producing a bearing ring for a roller bearing, the bearing ring is formed near net shape, at least by an additive manufacturing method, wherein the ring material of the bearing ring at least 1, 29 to 2 wt .-% carbon, 0.5 to 0.6 wt .-% Silicon, 0.2 to 0.4% by weight of manganese, 3.8 to 4.8% by weight of chromium, 2 to 5% by weight of molybdenum, 3 to 5, 1% by weight of vanadium, 5 to 14.3 wt .-% tungsten and 0 to 1 1 wt .-% cobalt.
Gemäß einem alternativen erfindungsgemäßen Verfahren zur Herstellung eines Lagerringes für ein Wälzlager wird der Lagerring zumindest durch ein additives Fertigungsverfahren endkonturnah ausgebildet, wobei der Ringwerkstoff des Lagerringes zumindest 0,5 bis 2 Gew.-% Kohlenstoff, höchstens 0,035 Gew.-% Schwefel, 3 bis 5 Gew.-% Chrom, 1 bis 4 Gew.-% Vanadium, 1 bis 12 Gew.-% Wolfram und 2 bis 12 Gew.-% Molybdän umfasst. According to an alternative method according to the invention for producing a bearing ring for a rolling bearing, the bearing ring is formed close to net shape, at least 0.5 to 2 wt .-% carbon, at most 0.035 wt .-% sulfur, 3 to 5% by weight of chromium, 1 to 4% by weight of vanadium, 1 to 12% by weight of tungsten and 2 to 12% by weight of molybdenum.
Mit anderen Worten erfolgt die Herstellung des Lagerrings durch ein additives Fertigungsverfahren beziehungsweise durch ein generatives Fertigungsverfahren oder einem dreidimensionalen Druckverfahren. Das additive Fertigungsver- fahren ermöglicht eine schnelle und kostengünstige Fertigung des Lagerrings, wobei die Fertigung insbesondere auf der Basis von rechnerinternen Datenmodellen aus formlosem oder form neutralem Ausgangsmaterial mittels chemischer und/oder physikalischer Prozesse erfolgt. Insbesondere wird ein Werkstoff pul- ver mit einer Legierungszusammensetzung, die im Wesentlichen der oben genannten Legierungszusammensetzungen entspricht, im Rahmen des additiven Fertigungsverfahrens Schicht für Schicht zu einem Lagerring verarbeitet. Die Legierungszusammensetzung des Lagerrings im fertigen endkonturnahen Zustand umfasst zumindest 1 ,29 bis 2 Gew.-% Kohlenstoff, 0,5 bis 0,6 Gew.-% Silizium, 0,2 bis 0,4 Gew.-% Mangan, 3,8 bis 4,8 Gew.-% Chrom, 2 bis 5 Gew.- % Molybdän, 3 bis 5,1 Gew.-% Vanadium, 5 bis 14,3 Gew.-% Wolfram und 0 bis 1 1 Gew.-% Kobalt oder zumindest 0,5 bis 2 Gew.-% Kohlenstoff, höchstens 0,035 Gew.-% Schwefel, 3 bis 5 Gew.-% Chrom, 1 bis 4 Gew.-% Vanadium, 1 bis 12 Gew.-% Wolfram und 2 bis 12 Gew.-% Molybdän. Insbesondere wird bei der Verarbeitung des Werkstoff pulvers ein Laser oder ein Elektronenstrahl verwendet. In other words, the production of the bearing ring by an additive manufacturing process or by a generative manufacturing process or a three-dimensional printing process. The additive manufacturing Driving allows a fast and cost-effective production of the bearing ring, wherein the production takes place in particular on the basis of computer-internal data models of informal or form neutral starting material by means of chemical and / or physical processes. In particular, a material powder with an alloy composition which essentially corresponds to the abovementioned alloy compositions is processed layer by layer into a bearing ring in the context of the additive production method. The alloy composition of the bearing ring in the final near-net state comprises at least 1.29 to 2% by weight of carbon, 0.5 to 0.6% by weight of silicon, 0.2 to 0.4% by weight of manganese, 3.8 to 4.8% by weight of chromium, 2 to 5% by weight of molybdenum, 3 to 5.1% by weight of vanadium, 5 to 14.3% by weight of tungsten and 0 to 1 1% by weight of cobalt or at least 0.5 to 2 wt .-% carbon, at most 0.035 wt .-% sulfur, 3 to 5 wt .-% chromium, 1 to 4 wt .-% vanadium, 1 to 12 wt .-% tungsten and 2 bis 12 wt .-% molybdenum. In particular, a laser or an electron beam is used in the processing of the material powder.
Ferner bietet die Herstellung des Lagerrings durch ein additives Fertigungsverfahren die Möglichkeit einen Hochleistungswerkstoff mit der Ausbildung einer außergewöhnlichen Geometrie für einen Lagerring zu kombinieren. Dabei können insbesondere Hinterschnitte, maximale Bordüberhöhungen und nahe der Laufbahn mündende Ölversorgungskanäle, die durch eine konventionelle Fertigung des Lagerrings ausgehend von einem pulvermetallurgisch erzeugten Hochleistungsstahl nicht ermöglicht werden können, realisiert werden. Furthermore, the production of the bearing ring by an additive manufacturing process offers the possibility to combine a high-performance material with the formation of an unusual geometry for a bearing ring. In particular undercuts, maximum on-board elevations and near the raceway opening oil supply channels, which can not be made possible by a conventional production of the bearing ring, starting from a powder metallurgically produced high-performance steel, can be realized.
Unter endkonturnah ist zu verstehen, dass der Lagerring keiner oder nur einer geringen Nachbearbeitung unterzogen wird. Mithin wird die Geometrie des Lagerrings im Wesentlichen durch das additive Fertigungsverfahren bestimmt. Mittels additiver Fertigungsverfahren werden kleinste Stückzahlen bei großer Pro- duktvielfalt erzeugt. Dies stellt einen besonderen Vorteil gegenüber der klassischen pulvermetallurgischen Herstellroute dar. Die pulvermetallurgische Herstellroute umfasst im Wesentlichen die Verfahrensschritte Pressen, Sintern und Walzen. Vorzugweise wird zumindest eine Laufbahn, die zur Führung von Wälzkörper vorgesehen ist, einer Endbearbeitung unterzogen. Die Endbearbeitung ist vorteilhafterweise eine mechanische Bearbeitung, insbesondere eine Schleifbearbeitung oder eine Honbearbeitung. Ferner ist es auch denkbar, dass eine Zwi- schenbearbeitung oder die Endbearbeitung eine Prägung, Umformung, Be- schichtung und/oder Wärmebehandlung umfasst. Beispielsweise kann nach dem Materialauftrag ein Walzen beziehungsweise Rollieren erfolgen, um eine entsprechend hohe Verdichtung zu erzielen. Gemäß einer bevorzugten Ausführungsform umfasst das additive Fertigungsverfahren ein Auftragschweißen. Insbesondere umfasst das additive Fertigungsverfahren Laser-Pulver-Auftragschweißen. Beim Laser-Pulver-Auftragschweißen wird eine relativ dünne Schicht Werkstoff pulver mittels Laser auf ein Substrat aufgeschweißt. Dadurch werden die Oberflächeneigenschaften eines so gebildeten Hybridrings, bestehend aus Substrat und aufgeschweißtem Werkstoff, anforderungsspezifisch angepasst, wobei ein sogenanntes tailored material ausgebildet wird. Ohne eine Veränderung des Substrats werden an der Oberfläche des Hybridrings bestimmte Eigenschaften wie beispielsweise eine bestimmte Härte, eine bestimmte Verschleißfestigkeit und/oder eine bestimmte Ermüdungsfestigkeit erreicht, die dort benötigt werden. Das Substrat ist vorzugsweise ein Lagerringrohling. Die mittels Laser-Pulver-Auftragschweißen erzeugte Außenschicht verbessert die Eigenschaften des Lagerrings und ermöglicht eine nachhaltige, anwendungsspezifische Produktion des Lagerrings. Bei dem Auftragschweißverfahren wird der zu verarbeitende Hochleistungsstahl formneutral als Pulver oder in Form eines Drahtes in einem geeigneten Bearbeitungskopf einer Energiequelle wie beispielsweise einem Laser oder einem Lichtbogen zugeführt. Durch ein Trägergas wird die so erzeugte Stahlschmelze auf die Oberfläche eines Substratträgers geführt und erstarrt dort zu einem fes- ten Formkörper. Durch geeignete Manipulation von Substratträger und Bearbeitungskopf lassen sich so beliebig komplexe Geometrien endkontunah erzeugen. Under near net shape is to be understood that the bearing ring is subjected to little or no rework. Thus, the geometry of the bearing ring is essentially determined by the additive manufacturing process. Using additive manufacturing processes, the smallest quantities are produced with a large variety of products. This represents a particular advantage over the classical powder metallurgical production route. The powder metallurgical production route essentially comprises the process steps of pressing, sintering and rolling. Preferably, at least one raceway, which is provided for guiding rolling elements, undergoes a finishing. The finishing is advantageously a mechanical processing, in particular a grinding or honing. Furthermore, it is also conceivable that an intermediate machining or the finishing process comprises stamping, forming, coating and / or heat treatment. For example, can be done after the application of material rolling or rolling to achieve a correspondingly high compression. According to a preferred embodiment, the additive manufacturing process comprises build-up welding. In particular, the additive manufacturing process includes laser powder buildup welding. In laser powder build-up welding, a relatively thin layer of material powder is laser-welded onto a substrate. As a result, the surface properties of a hybrid ring formed in this way, consisting of substrate and welded material, are adapted to the specific requirements, with a so-called tailored material being formed. Without a change in the substrate, certain properties such as a certain hardness, a certain wear resistance and / or a certain fatigue strength, which are required there, are achieved on the surface of the hybrid ring. The substrate is preferably a bearing ring blank. The outer layer produced by laser powder build-up welding improves the properties of the bearing ring and enables sustainable, application-specific production of the bearing ring. In the cladding process, the high-performance steel to be processed is supplied in a shape-neutral manner as a powder or in the form of a wire in a suitable machining head to an energy source such as a laser or an arc. By means of a carrier gas, the molten steel thus produced is guided onto the surface of a substrate carrier and solidifies there to form a solid shaped body. By suitable manipulation of the substrate carrier and processing head, it is thus possible to produce infinitely complex geometries close to the end.
Gemäß einer weiteren bevorzugten Ausführungsform umfasst das additive Fer- tigungsverfahren ein Pulverbettverfahren. Unter Pulverbettverfahren sind im Wesentlichen ein Selektives-Laser-Schmelzen (LBM) und ein Selektives- Elektronenstrahl-Schmelzen (EBM) zu verstehen. Die Pulverbettverfahren ermöglichen eine Bauteilfertigung mit höchster Geometriefreiheit. According to a further preferred embodiment, the additive ferment a powder bed process. Powder bed processes are essentially to be understood as meaning Selective Laser Melting (LBM) and Selective Electron Beam Melting (EBM). The powder bed processes enable component production with maximum freedom from geometry.
Bei pulverbettbasierten Verfahren wird ein Bauteil durch Bestrahlung einer geometrisch definierten Pulverschüttung des zu verarbeitenden Materials mit Laser- oder Elektronenstrahl schichtweise erzeugt. Die eingebrachte Energie der verwendeten Strahlung ist dabei so zu wählen, dass die Pulverschüttung im be- strahlten Bereich vollständig aufschmilzt und ein Bereich der unterhalb liegenden Schicht zur Herstellung einer festen Bindung mit angeschmolzen wird, unabhängig davon, ob bereits erstarrtes Material einer vorherigen Bestrahlung vorliegt. Nach erfolgter Bestrahlung wird eine weitere Schicht Pulver aufgebracht, wobei dann die Bestrahlung von neuem beginnt. Dieser Vorgang wird so oft wiederholt, bis das zu fertigende Bauteil komplett erstellt ist. In powder bed-based processes, a component is produced in layers by irradiation of a geometrically defined powder bed of the material to be processed with laser or electron beam. The introduced energy of the radiation used is to be chosen so that the powder bed completely melts in the irradiated area and an area of the underlying layer is melted to produce a firm bond, regardless of whether already solidified material of a previous irradiation is present. After irradiation, another layer of powder is applied, in which case the irradiation begins again. This process is repeated until the component to be manufactured is completely created.
Ein erfindungsgemäßes Wälzlager weist zwei Lagerringe auf, nämlich einen Innenring und einen Außenring, die aus einem Ringwerkstoff ausgebildet sind, wobei der Innenring an einer Außenumfangsfläche und der Außenring an einer Innenumfangsfläche jeweils eine Laufbahn zur Führung von Wälzkörpern aufweisen, wobei die Wälzkörper auf der jeweiligen Laufbahn abwälzen, wobei der Ringwerkstoff zumindest 1 ,29 bis 2 Gew.-% Kohlenstoff, 0,5 bis 0,6 Gew.-% Silizium, 0,2 bis 0,4 Gew.-% Mangan, 3,8 bis 4,8 Gew.-% Chrom, 2 bis 5 Gew.-% Molybdän, 3 bis 5,1 Gew.-% Vanadium, 5 bis 14,3 Gew.-% Wolfram und 0 bis 1 1 Gew.-% Kobalt umfasst, und wobei mindestens einer der beiden Lagerringe zumindest durch ein additives Fertigungsverfahren hergestellt ist. Alternativ kann der Ringwerkstoff zumindest 0,5 bis 2 Gew.-% Kohlenstoff, höchstens 0,035 Gew.-% Schwefel, 3 bis 5 Gew.-% Chrom, 1 bis 4 Gew.-% Vanadium, 1 bis 12 Gew.-% Wolfram und 2 bis 12 Gew.-% Molybdän umfassen. An inventive rolling bearing has two bearing rings, namely an inner ring and an outer ring, which are formed from a ring material, wherein the inner ring on an outer peripheral surface and the outer ring on an inner peripheral surface each have a raceway for guiding rolling elements, wherein the rolling elements on the respective raceway roll, wherein the ring material at least 1, 29 to 2 wt .-% carbon, 0.5 to 0.6 wt .-% silicon, 0.2 to 0.4 wt .-% manganese, 3.8 to 4.8 Wt .-% chromium, 2 to 5 wt .-% molybdenum, 3 to 5.1 wt .-% vanadium, 5 to 14.3 wt .-% tungsten and 0 to 1 1 wt .-% cobalt, and wherein at least one of the two bearing rings is made at least by an additive manufacturing process. Alternatively, the annulus material may contain at least 0.5 to 2 wt% carbon, at most 0.035 wt% sulfur, 3 to 5 wt% chromium, 1 to 4 wt% vanadium, 1 to 12 wt% tungsten and 2 to 12 wt% molybdenum.
Insbesondere beträgt eine Härte einer Oberfläche der jeweiligen Laufbahn mindestens 62 HRC. Der Ringwerkstoff weist insbesondere ein E-Modul von mindestens 220 MPa auf. Bevorzugt beträgt eine Schmiegung zwischen der jewei- ligen Laufbahn und den Wälzkörpern, die insbesondere als Kugeln ausgebildet sind mindestens 1 ,05. Ferner bevorzugt weist die jeweilige Laufbahn eine Oberflächenrauheit mit einem Mittenrauhwert Ra von 0,005 bis 0,03, mit einer Schiefe Rsk von 0,3 bis -5 und mit einer Steilheit Rku von 3 bis 15 auf. In particular, a hardness of a surface of the respective raceway is at least 62 HRC. The ring material in particular has an E-modulus of at least 220 MPa. Preferably, an osculation between the jewei- ligen career and the rolling elements, which are designed in particular as balls at least 1, 05. Furthermore, the respective raceway preferably has a surface roughness with a mean roughness value R a of 0.005 to 0.03, with a skewness Rsk of 0.3 to -5 and with a slope Rku of 3 to 15.
Unter einem Mittenrauhwert Ra ist der arithmetische Mittelwert der Beträge aller Profilwerte des Rauheitsprofils einer Oberfläche zu verstehen. Ferner ist unter einer Schiefe Rsk ein Maß für die Unsymmetrie einer Amplitudendichtekurve der Oberflächenrauheit zu verstehen. Eine negative Schiefe kennzeichnet eine Oberfläche mit gutem Tragverhalten. Die Steilheit Rku gilt als Maß für die Steilheit der Amplitudendichtekurve der Oberflächenrauheit. Bei normalverteilten Profilwerten beträgt die Steilheit Rku 3. Die Kenngrößen Schiefe Rsk und Steilheit Rku werden stark von einzelnen Spitzen und Tälern des Profils für die Oberflächenrauheit beeinflusst. A mean roughness value R a is the arithmetic mean of the amounts of all profile values of the roughness profile of a surface. Furthermore, a skewness Rsk is a measure of the asymmetry of an amplitude density curve of the surface roughness. A negative skewness indicates a surface with good bearing behavior. The slope Rku is a measure of the steepness of the amplitude density curve of the surface roughness. For normally distributed profile values, the slope Rku is 3. The parameters skew Rsk and slope Rku are strongly influenced by individual peaks and valleys of the profile for the surface roughness.
Die kugelförmigen Wälzkörper wälzen in bevorzugt rillenförmig ausgebildeten Laufbahnen am Innenring und Außenring ab, sodass der Außenring und der Innenring relativ zueinander um eine Drehachse verdrehbar sind. Die Schmiegung gibt das Verhältnis zwischen Laufbahnradius und Kugeldurchmesser an. Mithin lässt sich die Schmiegung durch Bildung des Quotienten zwischen dem jeweiligen Laufbahnradius und dem Kugeldurchmesser berechnen. The spherical rolling elements roll in preferably groove-shaped raceways on the inner ring and outer ring, so that the outer ring and the inner ring are rotatable relative to each other about an axis of rotation. The osculation indicates the relationship between raceway radius and ball diameter. Thus, the osculation can be calculated by forming the quotient between the respective raceway radius and the ball diameter.
Ist der Radius der jeweiligen Laufbahn gleich dem Durchmesser der darauf abwälzenden Kugel, beträgt die Schmiegung 1 . Dementsprechend steigt die Schmiegung mit zunehmendem Laufbahnradius an. Mit steigender Schmiegung nimmt die Kontaktfläche zwischen Kugel und Kontaktbereich an der Laufbahn ab, was sich vorteilhaft bei Reibverlusten auswirkt. Mit sinkender Schmiegung vergrößert sich entsprechend die Kontaktfläche zwischen Kugel und Kontaktbereich der Laufbahn, wobei gleichzeitig die Reibverluste ansteigen. If the radius of the respective track is equal to the diameter of the ball rolling on it, the osculation is 1. Accordingly, the osculation increases with increasing raceway radius. With increasing osculation, the contact area between ball and contact area decreases on the track, which has an advantageous effect on friction losses. With decreasing osculation increases accordingly the contact area between the ball and contact area of the track, at the same time increase the friction losses.
Bevorzugt sind die Wälzkörper aus einem keramischen Werkstoff oder aus dem Ringwerkstoff ausgebildet. Mithin sind die Wälzkörper aus einer Keramik ausgebildet oder aus dem Ringwerkstoff, der zumindest 0,5 bis 2 Gew.-% Kohlen- stoff, höchstens 0,035 Gew.-% Schwefel, 3 bis 5 Gew.-% Chrom, 1 bis 4 Gew.- % Vanadium, 1 bis 12 Gew.-% Wolfram und 2 bis 12 Gew.-% Molybdän um- fasst, oder aus dem Ringwerkstoff, der zumindest 1 ,29 bis 2 Gew.-% Kohlenstoff, 0,5 bis 0,6 Gew.-% Silizium, 0,2 bis 0,4 Gew.-% Mangan, 3,8 bis 4,8 Gew.-% Chrom, 2 bis 5 Gew.-% Molybdän, 3 bis 5, 1 Gew.-% Vanadium, 5 bis 14,3 Gew.-% Wolfram und 0 bis 1 1 Gew.-% Kobalt umfasst. Preferably, the rolling elements are formed from a ceramic material or from the annular material. Consequently, the rolling elements are formed of a ceramic or of the annular material, which contains at least 0.5 to 2% by weight of carbon. substance, at most 0.035% by weight of sulfur, 3 to 5% by weight of chromium, 1 to 4% by weight of vanadium, 1 to 12% by weight of tungsten and 2 to 12% by weight of molybdenum, or from the ring material containing at least 1.29 to 2% by weight of carbon, 0.5 to 0.6% by weight of silicon, 0.2 to 0.4% by weight of manganese, 3.8 to 4.8 Wt .-% chromium, 2 to 5 wt .-% molybdenum, 3 to 5, 1 wt .-% vanadium, 5 to 14.3 wt .-% tungsten and 0 to 1 1 wt .-% cobalt.
Gemäß einem bevorzugten Ausführungsbeispiel weist mindestens einer der beiden Lagerringe eine ungleichmäßige Verteilung von Legierungselementen auf. Mit anderen Worten kommt eine für den jeweiligen Anwendungsfall funktionsbedingt hochwertigere Mischung der Legierungselemente an einer Laufbahn zum Einsatz. Die hochwertige Mischung der Legierungselemente verändert sich mit zunehmendem Abstand zur Laufbahn und wird vorteilhafterweise dadurch kostengünstiger. Es erfolgt die Abbildung eines Werkstoffgradienten über den Querschnitt des Lagerrings, wobei die Mischung der Legierungselemente nur dort zum Einsatz kommt, wo diese auch benötigt wird, nämlich in der Laufbahn. Die additive Fertigung bietet zudem die Möglichkeit, Lagerringe nicht vollständig, sondern nur zum Teil aus pulvermetallurgischem Werkstoff auszubilden. Beispielsweise kann bei Verwendung von Werkstoff pulver als Ausgangswerk- stoff dessen Zusammensetzung über die Dauer des Herstellprozesses variiert und so die Zusammensetzung des Ringwerkstoffes beeinflusst werden. According to a preferred embodiment, at least one of the two bearing rings on an uneven distribution of alloying elements. In other words, a functionally higher-grade mixture of the alloying elements on a track is used for the respective application. The high-grade mixture of the alloying elements changes with increasing distance to the raceway and is advantageously cheaper thereby. There is a mapping of a material gradient over the cross section of the bearing ring, wherein the mixture of alloying elements is used only where it is needed, namely in the raceway. In addition, additive manufacturing offers the possibility of not forming bearing rings completely, but only partially of powder metallurgical material. For example, if material is used as the starting material, its composition can be varied over the duration of the production process, thus influencing the composition of the annular material.
Die Verwendung eines erfindungsgemäßen Wälzlagers wird zur Lagerung einer Spindelwelle oder zur Lagerung einer Verdichterwelle oder zur Lagerung einer Rotorwelle vorgeschlagen. Somit eignet sich das Wälzlager besonders gut zur Lagerung schnelldrehender Wellen. Das erfindungsgemäße Wälzlager ermöglicht eine geräusch- und verschleißoptimierte Lagerung der Welle. The use of a rolling bearing according to the invention is proposed for supporting a spindle shaft or for supporting a compressor shaft or for supporting a rotor shaft. Thus, the rolling bearing is particularly well suited for the storage of fast-rotating shafts. The rolling bearing according to the invention allows a noise and wear-optimized storage of the shaft.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
Weitere die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren, näher dargestellt. Dabei zeigt: Figur 1 eine schematische Perspektivdarstellung eines erfindungsgemäßen Wälzlagers, und Further measures improving the invention will be described in more detail below together with the description of a preferred embodiment of the invention with reference to FIGS. Showing: Figure 1 is a schematic perspective view of a rolling bearing according to the invention, and
Figur 2 eine schematische Teilschnittdarstellung einer Lageranordnung mit dem erfindungsgemäßen Wälzlager gemäß Figur 1 und mit einer Welle. Figure 2 is a schematic partial sectional view of a bearing assembly with the rolling bearing according to the invention according to Figure 1 and with a shaft.
Ausführliche Beschreibung der Zeichnungen Gemäß Figur 1 umfasst ein erfindungsgemäßes Wälzlager 1 für eine - hier nicht dargestellte - Werkzeugmaschine zwei Lagerringe 2, 3, nämlich einen Innenring 2 und einen Außenring 3 sowie radial zwischen dem Innenring 2 und dem Außenring 3 angeordnete Kugeln als Wälzkörper 6. Die Wälzkörper 6 werden durch einen Käfig 8 geführt. Das Wälzlager 1 ist als Rillenkugellager aus- gebildet. DETAILED DESCRIPTION OF THE DRAWINGS According to FIG. 1, a rolling bearing 1 according to the invention for a machine tool, not shown here, comprises two bearing rings 2, 3, namely an inner ring 2 and an outer ring 3 and balls arranged radially between the inner ring 2 and the outer ring 3 as rolling elements 6. The rolling elements 6 are guided by a cage 8. The rolling bearing 1 is designed as a deep groove ball bearing.
In Figur 2 lagert das Wälzlager 1 aus Figur 1 eine Welle 7. Die Welle 7 ist vorliegend als Spindelwelle der Werkzeugmaschine ausgebildet und nur teilweise dargestellt. Der Innenring 2 weist an einer Außenumfangsfläche eine Laufbahn 4 zur Führung der Wälzkörper 6 auf. Ferner weist auch der Außenring 3 an einer Innenumfangsfläche eine Laufbahn 5 zur Führung der Wälzkörper 6 auf. Die Wälzkörper 6 wälzen auf der jeweiligen Laufbahn 4, 5 zwischen dem Innenring 2 und dem Außenring 3 ab, wobei die Wälzkörper 6 aus einem keramischen Werkstoff ausgebildet sind. In Figure 2, the rolling bearing 1 of Figure 1 supports a shaft 7. The shaft 7 is presently designed as a spindle shaft of the machine tool and only partially shown. The inner ring 2 has on an outer peripheral surface of a raceway 4 for guiding the rolling elements 6. Furthermore, the outer ring 3 on an inner circumferential surface on a raceway 5 for guiding the rolling elements 6. The rolling elements 6 roll on the respective raceway 4, 5 between the inner ring 2 and the outer ring 3, wherein the rolling elements 6 are formed of a ceramic material.
Der Innenring 2 und der Außenring 3 sind aus einem Ringwerkstoff ausgebildet, wobei der Ringwerkstoff vorliegend zumindest 1 ,29 bis 2 Gew.-% Kohlenstoff, 0,5 bis 0,6 Gew.-% Silizium, 0,2 bis 0,4 Gew.-% Mangan, 3,8 bis 4,8 Gew.-% Chrom, 2 bis 5 Gew.-% Molybdän, 3 bis 5, 1 Gew.-% Vanadium, 5 bis 14,3 Gew.-% Wolfram und 0 bis 1 1 Gew.-% Kobalt umfasst. Alternativ kann der Ringwerkstoff zumindest 0,5 bis 2 Gew.-% Kohlenstoff, höchstens 0,035 Gew.- % Schwefel, 3 bis 5 Gew.-% Chrom, 1 bis 4 Gew.-% Vanadium, 1 bis 12 Gew.- % Wolfram und 2 bis 12 Gew.-% Molybdän umfassen. Beide Lagerringe 2, 3 wurden durch ein additives Fertigungsverfahren aus einem Werkstoff pulver endkonturnah ausgebildet. Ferner wurden die beiden Laufbahnen 4, 5 einer Endbearbeitung durch Schleifen unterzogen. The inner ring 2 and the outer ring 3 are formed from a ring material, wherein the ring material in the present case at least 1, 29 to 2 wt .-% carbon, 0.5 to 0.6 wt .-% silicon, 0.2 to 0.4 wt % Of manganese, 3.8 to 4.8% by weight of chromium, 2 to 5% by weight of molybdenum, 3 to 5, 1% by weight of vanadium, 5 to 14.3% by weight of tungsten and 0 to 1 1 wt .-% cobalt. Alternatively, the ring material may contain at least 0.5 to 2 wt% carbon, at most 0.035 wt% sulfur, 3 to 5 wt% chromium, 1 to 4 wt% vanadium, 1 to 12 wt% tungsten and 2 to 12 wt% molybdenum. Both bearing rings 2, 3 were formed by an additive manufacturing process from a powder material near net shape. Further, the two raceways 4, 5 were subjected to finishing by grinding.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
Wälzlager Rolling
Innenring; Lagerring  Inner ring; bearing ring
Außenring; Lagerring  Outer ring; bearing ring
Laufbahn  career
Laufbahn  career
Wälzlager  Rolling
Welle  wave
Käfig  Cage

Claims

Patentansprüche claims
1 . Verfahren zur Herstellung eines Lagerringes (2, 3) für ein Wälzlager (1 ), wobei der Lagerring (2, 3) zumindest durch ein additives Fertigungsverfah- ren endkonturnah ausgebildet wird, wobei der Ringwerkstoff des Lagerringes (2, 3) zumindest 1 ,29 bis 2 Gew.-% Kohlenstoff, 0,5 bis 0,6 Gew.-% Silizium, 0,2 bis 0,4 Gew.-% Mangan, 3,8 bis 4,8 Gew.-% Chrom, 2 bis 5 Gew.-% Molybdän, 3 bis 5, 1 Gew.-% Vanadium, 5 bis 14,3 Gew.-% Wolfram und 0 bis 1 1 Gew.-% Kobalt umfasst. 1 . Method for producing a bearing ring (2, 3) for a rolling bearing (1), wherein the bearing ring (2, 3) is formed close to the final shape at least by an additive manufacturing process, wherein the annular material of the bearing ring (2, 3) at least 1, 29 up to 2% by weight of carbon, 0.5 to 0.6% by weight of silicon, 0.2 to 0.4% by weight of manganese, 3.8 to 4.8% by weight of chromium, 2 to 5 Wt .-% molybdenum, 3 to 5, 1 wt .-% vanadium, 5 to 14.3 wt .-% tungsten and 0 to 1 1 wt .-% cobalt.
2. Verfahren zur Herstellung eines Lagerringes (2, 3) für ein Wälzlager (1 ), wobei der Lagerring (2, 3) zumindest durch ein additives Fertigungsverfahren endkonturnah ausgebildet wird, wobei der Ringwerkstoff des Lagerringes (2, 3) zumindest 0,5 bis 2 Gew.-% Kohlenstoff, höchstens 0,035 Gew.- % Schwefel, 3 bis 5 Gew.-% Chrom, 1 bis 4 Gew.-% Vanadium, 1 bis 12 Gew.-% Wolfram und 2 bis 12 Gew.-% Molybdän umfasst. 2. A method for producing a bearing ring (2, 3) for a rolling bearing (1), wherein the bearing ring (2, 3) is formed near the endkonturnah at least by an additive manufacturing process, wherein the annular material of the bearing ring (2, 3) at least 0.5 up to 2% by weight of carbon, at most 0.035% by weight of sulfur, 3 to 5% by weight of chromium, 1 to 4% by weight of vanadium, 1 to 12% by weight of tungsten and 2 to 12% by weight Molybdenum includes.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass zumindest eine Laufbahn (4, 5), die zur Führung von Wälzkörper (6) vorgesehen ist, einer Endbearbeitung unterzogen wird. 3. The method according to any one of claims 1 or 2, characterized in that at least one track (4, 5), which is provided for guiding rolling elements (6), is subjected to a finishing.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das additive Fertigungsverfahren ein Auftragschweißen umfasst. 4. The method according to any one of the preceding claims, characterized in that the additive manufacturing process comprises a buildup welding.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das additive Fertigungsverfahren ein Pulverbettverfahren umfasst. 6. Wälzlager (1 ) mit zwei Lagerringen (2, 3), nämlich einem Innenring (2) und einen Außenring (3), die aus einem Ringwerkstoff ausgebildet sind, wobei der Innenring (2) an einer Außenumfangsfläche und der Außenring (3) an einer Innenumfangsfläche jeweils eine Laufbahn (4, 5) zur Führung von Wälzkörpern (6) aufweisen, wobei die Wälzkörper (6) auf der jeweiligen Laufbahn (4, 5) abwälzen, wobei der Ringwerkstoff zumindest 1 ,29 bis 2 Gew.-% Kohlenstoff, 0,5 bis 0,5. The method according to any one of the preceding claims, characterized in that the additive manufacturing process comprises a powder bed process. 6. Rolling bearing (1) with two bearing rings (2, 3), namely an inner ring (2) and an outer ring (3), which are formed from a ring material, wherein the inner ring (2) on an outer peripheral surface and the outer ring (3) on an inner circumferential surface in each case a raceway (4, 5) for guiding Rolling bodies (6), wherein the rolling elements (6) roll on the respective track (4, 5), wherein the ring material at least 1, 29 to 2 wt .-% carbon, 0.5 to 0,
6 Gew.-% Silizium, 0,2 bis 0,4 Gew.-% Mangan, 3,8 bis 4,8 Gew.-% Chrom, 2 bis 5 Gew.-% Molybdän, 3 bis 5,1 Gew.- % Vanadium, 5 bis 14,3 Gew.-% Wolfram und 0 bis 1 1 Gew.-% Kobalt um- fasst, dadurch gekennzeichnet, dass mindestens einer der beiden Lagerringe (2, 3) zumindest durch ein additives Fertigungsverfahren hergestellt ist. 6 wt .-% silicon, 0.2 to 0.4 wt .-% manganese, 3.8 to 4.8 wt .-% chromium, 2 to 5 wt .-% molybdenum, 3 to 5.1 wt. % Vanadium, 5 to 14.3 wt .-% tungsten and 0 to 1 1 wt .-% cobalt comprises, characterized in that at least one of the two bearing rings (2, 3) is made at least by an additive manufacturing process.
7. Wälzlager (1 ) mit zwei Lagerringen (2, 3), nämlich einem Innenring (2) und einen Außenring (3), die aus einem Ringwerkstoff ausgebildet sind, wobei der Innenring (2) an einer Außenumfangsfläche und der Außenring (3) an einer Innenumfangsfläche jeweils eine Laufbahn (4, 5) zur Führung von Wälzkörpern (6) aufweisen, wobei die Wälzkörper (6) auf der jeweiligen Laufbahn (4, 5) abwälzen, wobei der Ringwerkstoff zumindest 0,5 bis 2 Gew.-% Kohlenstoff, höchstens 0,035 Gew.-% Schwefel, 3 bis 5 Gew.-% Chrom, 1 bis 4 Gew.-% Vanadium, 1 bis 12 Gew.-% Wolfram und 2 bis 12 Gew.-% Molybdän umfasst, dadurch gekennzeichnet, dass mindestens einer der beiden Lagerringe (2, 3) zumindest durch ein additives Ferti- gungsverfahren hergestellt ist. 7. rolling bearing (1) with two bearing rings (2, 3), namely an inner ring (2) and an outer ring (3), which are formed from a ring material, wherein the inner ring (2) on an outer peripheral surface and the outer ring (3) on an inner peripheral surface each have a track (4, 5) for guiding rolling elements (6), wherein the rolling elements (6) roll on the respective track (4, 5), wherein the ring material at least 0.5 to 2 wt .-% Carbon, at most 0.035% by weight of sulfur, 3 to 5% by weight of chromium, 1 to 4% by weight of vanadium, 1 to 12% by weight of tungsten and 2 to 12% by weight of molybdenum, characterized at least one of the two bearing rings (2, 3) is produced at least by an additive manufacturing method.
8. Wälzlager (1 ) nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass die Wälzkörper (6) aus einem keramischen Werkstoff oder dem Ringwerkstoff ausgebildet sind. 8. Rolling bearing (1) according to any one of claims 6 or 7, characterized in that the rolling elements (6) are formed of a ceramic material or the annular material.
9. Wälzlager (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens einer der beiden Lagerringe (2, 3) eine ungleichmäßige Verteilung von Legierungselementen aufweist. 9. Rolling bearing (1) according to one of the preceding claims, characterized in that at least one of the two bearing rings (2, 3) has an uneven distribution of alloying elements.
10. Verwendung eines Wälzlagers (1 ) nach einem der Ansprüche 6 bis 4 zur Lagerung einer Spindelwelle oder zur Lagerung einer Verdichterwelle oder zur Lagerung einer Rotorwelle. 10. Use of a rolling bearing (1) according to any one of claims 6 to 4 for supporting a spindle shaft or for supporting a compressor shaft or for supporting a rotor shaft.
PCT/DE2018/100354 2017-06-21 2018-04-13 Method for producing a bearing ring by means of an additive manufacturing method and rolling element bearing having a bearing ring WO2018233745A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017113703.3A DE102017113703A1 (en) 2017-06-21 2017-06-21 Method for producing a bearing ring and rolling bearing with bearing ring
DE102017113703.3 2017-06-21

Publications (1)

Publication Number Publication Date
WO2018233745A1 true WO2018233745A1 (en) 2018-12-27

Family

ID=62148066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2018/100354 WO2018233745A1 (en) 2017-06-21 2018-04-13 Method for producing a bearing ring by means of an additive manufacturing method and rolling element bearing having a bearing ring

Country Status (2)

Country Link
DE (1) DE102017113703A1 (en)
WO (1) WO2018233745A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019101055B4 (en) * 2019-01-16 2023-02-09 Burkard Hefter Roller bearing slewing ring, method for producing such a roller bearing slewing ring and component arrangement with such a roller bearing slewing ring
DE102019105223A1 (en) * 2019-03-01 2020-09-03 Kolibri Metals Gmbh Metallic material composition for additively manufactured parts using 3D laser melting (SLM)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039144C1 (en) * 2000-08-07 2001-11-22 Fraunhofer Ges Forschung Production of precise components comprises laser sintering a powder mixture made from a mixture of iron powder and further powder alloying elements
DE102010019587A1 (en) 2010-05-05 2011-11-10 Schaeffler Technologies Gmbh & Co. Kg roller bearing
WO2014168545A1 (en) * 2013-04-09 2014-10-16 Aktiebolaget Skf Bearing component and its manufacturing method
GB2521397A (en) * 2013-12-18 2015-06-24 Skf Ab A ring for a bearing, an inner ring, an outer ring, and a bearing
DE102014214957A1 (en) * 2014-07-30 2016-02-04 Schaeffler Technologies AG & Co. KG Bearing ring and method for producing a bearing ring
EP2825783B1 (en) 2012-03-15 2017-02-01 Aktiebolaget SKF Pinion bearing arrangement
WO2017032403A1 (en) * 2015-08-24 2017-03-02 Siemens Aktiengesellschaft Rolling element bearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039144C1 (en) * 2000-08-07 2001-11-22 Fraunhofer Ges Forschung Production of precise components comprises laser sintering a powder mixture made from a mixture of iron powder and further powder alloying elements
DE102010019587A1 (en) 2010-05-05 2011-11-10 Schaeffler Technologies Gmbh & Co. Kg roller bearing
EP2825783B1 (en) 2012-03-15 2017-02-01 Aktiebolaget SKF Pinion bearing arrangement
WO2014168545A1 (en) * 2013-04-09 2014-10-16 Aktiebolaget Skf Bearing component and its manufacturing method
GB2521397A (en) * 2013-12-18 2015-06-24 Skf Ab A ring for a bearing, an inner ring, an outer ring, and a bearing
DE102014214957A1 (en) * 2014-07-30 2016-02-04 Schaeffler Technologies AG & Co. KG Bearing ring and method for producing a bearing ring
WO2017032403A1 (en) * 2015-08-24 2017-03-02 Siemens Aktiengesellschaft Rolling element bearing

Also Published As

Publication number Publication date
DE102017113703A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
DE69910327T2 (en) V-belt pulley and continuously variable transmission with such a pulley
DE19964620B4 (en) Method for producing a tapered roller bearing
EP1882109B1 (en) Antifriction bearing race, particularly for highly stressed antifriction bearings in aircraft power units and methods for the production thereof
DE19501391C2 (en) Continuously variable toroidal gear
DE2352578A1 (en) ROLLER BEARING RING, ROLLER BEARING AND METHOD OF MANUFACTURING THEREOF
DE102005027142A1 (en) Preform geometry of a toothing
WO2018233745A1 (en) Method for producing a bearing ring by means of an additive manufacturing method and rolling element bearing having a bearing ring
DE102006023690A1 (en) Method for producing a rolling bearing component and rolling bearing component
EP3973205A1 (en) Friction brake body for a friction brake of a motor vehicle, method for producing a friction brake
EP4065860B1 (en) Belt tensioning roller for a traction mechanism, and method for producing a belt tensioning roller
DE102018008529A1 (en) Method for producing a toothed sintered component
DE60132814T2 (en) Roll bearing with a powder metallurgical component
EP2024654A2 (en) Rolling bearing component, and method for the production thereof
DE102015005133A1 (en) Method for producing a component, in particular a gearwheel
DE102016221840A1 (en) Outer ring for a turbocharger
AT517751A1 (en) Process for producing a sintered gear
EP3642497A1 (en) Noise- and wear-optimised rolling bearing for mounting a shaft
DE102022113649A1 (en) Process for manufacturing a sintered component with a toothing
EP1778991A1 (en) Anti-friction bearing comprising at least one precision deep-drawn component with a running or guide surface for rolling bodies and method for producing a component of this type
DE102016214174A1 (en) Turbine shaft for a turbine wheel in an exhaust heat recovery system of an internal combustion engine, method for producing and using such
WO2016169564A1 (en) Method for producing rolling bodies for anti-friction bearings
DE102008009381A1 (en) Wheel thrust bearing assembly for swiveling wheel of motor vehicle, has outer member or inner member, which has wheel fixing flange and other member is subjected to air cooling or heat treatment after forging
AT525693B1 (en) Process for manufacturing a component
DE102021208973A1 (en) Manufacturing process for a workpiece with a finishing layer, and a workpiece with a finishing layer
WO2011128174A1 (en) Rolling bearing, in particular in machine tool spindles, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18723680

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18723680

Country of ref document: EP

Kind code of ref document: A1