Oblast techniky
Vynález se týká způsobu automatického nebo poloautomatického navařování opotřebených úseků kolejnic a jiných exponovaných míst kolejové dráhy, jako na příklad jazyků u výhybek a srdcovek u křížení kolejnic, bez jejich demontáže přímo na kolejové dráze.
Dosavadní stav techniky
V českém patentovém dokumentu CZ 282 237 je popsán způsob automatického nebo poloautomatického navařování opotřebovaných úseků ocelových kolejnic, vyrobených z materiálů, známých pod obchodním označením 75 ČSD, 85 ČSD-Vk a 95 ČSD-Vk, jejich hmotnostní chemické složení se pohybuje v rozmezích: uhlík C = 0,45 až 0,82 %; mangan Mn = 0,7 až 1,50 %; křemík Si = 0,07 až 0,55 %; přičemž zbytek tvoří železo Fe a výrobní nečistoty, na které se nanáší přídavný materiál o hmotnostním chemickém složení v rozmezích: uhlík C = 0,06 až 0,10 %; mangan Mn = 0,5 až 1,5 %; křemík Si = 0,05 až 0,5 %; zbytek tvoří železo Fe a výrobní nečistoty, elektrickým obloukem pod tavidlem o hodnotě pH = 1,3 až 3,2, při množství vneseného tepla Q = (5,9 až 8,0 kJ/cm). K a rychlosti posuvu v = 40 až 75 cm/min, kde Q = η.60.υ.Ι/ν, přičemž K = 1 pro navařování homí plochy a K = 2,6 pro navařování boční plochy opotřebované kolejnice. Přitom η je účinnost, U je napětí, I je intenzita navařovacího proudu a v je rychlost posuvu navařovací hubice.
Navařováním výše uvedeného přídavného materiálu daným způsobem na dané kolejnice se docílí návaru, jehož tvrdost dosahuje maximálně 315 HV, přičemž následným mechanickým namáháním za provozu se již zřetelně nezvyšuje. Takováto tvrdost návaru je například výhodná pro opravy opotřebovaných hlav kolejnic v obloucích kolejové dráhy, kde dynamické namáhání kolejnic je relativně malé a v celém oblouku přibližně rovnoměrné. U více namáhaných úseků kolejové dráhy, jako jsou na příklad konce vzájemně spojených kolejnic, srdcovky kolejnic a jazyky výhybek, kde dochází za provozu k silnému dynamickému namáhání pouze na krátkém úseku kolejové dráhy, je někdy zapotřebí vytvořit návar odolnější, tedy tvrdší, než je tvrdost základního materiálu kolejové dráhy. Takovýto návar se doposud provádí navařováním více legovaných přídavných materiálů, známých pod obchodním označením OK-Tubrodur 15.43 o směrném hmotnostním složení uhlík C = 0,15 %; křemík Si = max. 0,5 %; mangan Mn = 1,1 %; chrom Cr = 1,0 %; nikl Ni = 2,3 %; molybden Mo = 0,5 %; hliník Al = 1,4 %; zbytek železo Fe a výrobní nečistoty, nebo OK-Tubrodur 15.65 o směrném hmotnostním složení uhlík C = 0,3 %; křemík Si = 0,55 %; mangan Mn = 13,5 %; chrom Cr = 16 %; nikl Ni = 1,7 %; molybden Mo = 0,8 %; vanad V = 0,6 %; zbytek železo Fe a výrobní nečistoty. Tyto přídavné materiály se navařují elektrickým obloukem na opotřebované úseky kolejové dráhy, předehřáté na 350 až 400 °C. Při použití přídavného materiálu OK-Tubrodur 15.43 se docílí tvrdosti návarové vrstvy až 400 HV, která se již při provozu významně nezpevňuje a při použití přídavného materiálu OK-Tubrodur 15.65 se docílí tvrdosti návarové vrstvy cca 250 HV, která se při mechanickém vytvrzování za provozu zpevní až na 550 HV.
Nevýhodou tohoto způsobu je jeho ekonomická náročnost, vyplývající jak z použití drahého vysoce legovaného přídavného materiálu, kterým se vyplňuje celý opotřebovaný objem kolejnice, tak i z nutnosti předehřevu opravovaného úseku kolejové dráhy, aby se v navařené vrstvě a teplotně ovlivněné zóně potlačila tvorba škodlivého martenzitu. Navíc při opravách jazyku výhybky dochází v důsledku předehřátí k jeho tvarové deformaci, kterou je třeba následně odstraňovat.
-1 CZ 287365 B6
Podstata vynálezu
Výše uvedené nevýhody v podstatě odstraňuje způsob automatického nebo poloautomatického navařování přídavného materiálu za použití tavidla o hodnotě pH = 1,3 až 3,2 na opotřebované homí a nebo boční plochy kolejové dráhy, například hlav kolejnic, jazyků výhybek a srdcovek u křížení kolejnic, obzvláště tramvajového a železničního svršku, které jsou vyrobeny z oceli o hmotnostním chemickém složení, pohybujícím se v rozmezí uhlík C = 0,45 až 0,82 %; mangan Mn = 0,7 až 1,5 %; křemík Si = 0,07 až 0,55 %; zbytek tvoří železo Fe a výrobní nečistoty, jehož podstata spočívá v tom, že přídavný materiál o hmotnostním chemickém složení: uhlík C = 0,06 až 0,10 %; mangan Mn = 0,5 až 1,5 %; křemík Si = 0,05 až 0,5 %; nikl Ni = 1,8 až 4,5 %; vanad V = 0,005 až 0,2 %; molybden Mo = 0,005 až 0,3 %; niob.Nb = 0,005 až 0,1 %; chrom Cr = 0,001 až 0,04 %; hliník Al = 0,005 až 1,6 %; titan Ti = 0,001 až 0,1 %; přičemž celkový obsah Ni, V, Mo, Cr, Al a Ti nepřevýší v součastu 5 %, zbytek tvoří železo Fe a výrobní nečistoty, se nanáší na kolejnici elektrickým obloukem při množství vneseného tepla Q = (5,9 až 11,5 kJ/cm). K a rychlosti posuvu v = 40 až 70cm/min, kde Q = p.60.U.I/v, přičemž η je účinnost, U je napětí, I je intenzita proudu, v je rychlost posuvu a konstanta K = 1 pro navařování homí plochy kolejnice a K = 2,6 pro navařování boční plochy kolejnice.
Navařením tohoto přídavného materiálu uvedeným způsobem se docílí návaru, jehož tvrdost dosahuje hodnot až 350 HV a který neobsahuje jak ani v sobě, ani ve svém okolí nepopuštěnou martenzitickou strukturu, tak ani trhliny, a to bez nutnosti předchozího předehřevu kolejnice na 350 až 400 °C za použití relativně levného nízkolegovaného přídavného materiálu, který je až třikrát levnější než materiál doposud používaný. Další výhodou tohoto návaru je, že jej lze po jeho opotřebení znovu opravit dalším návarem, což u dosud používaného vysoce legovaného přídavného materiálu nebylo možné vzhledem k tomu, že kolejnice, respektive opravovaný úsek kolejové dráhy bylo možné opravovat pouze po předchozím odstranění přídavného materiálu původní opravy broušením, což je u dosahovaných tvrdostí 400 až 550 HV časově i materiálově velice nákladné, nebo nahradit novou kolejnicí, respektive jazykem, respektive srdcovkou.
Je výhodné, zvolí-li se parametry navařování na homí plochu kolejnice v rozmezí napětí U = 24 až 34 V a intenzita proudu I = 250 až 350 A, a na boční plochu v rozmezí napětí U = 34 až 38 V a intenzita proudu I = 450 až 550 A.
Je-li zapotřebí dosáhnout tvrdost návaru o hodnotě cca 400 HV až 500 HV, je výhodné, navaří-li se na kolejnici předkládaným způsobem podkladová vrstva, na kterou se pak navaří homí vrstva z více nebo vysoce legovaného přídavného materiálu.
Tímto způsobem se jednak docílí značné úspory více či vysoce legovaného přídavného materiálu, kterým se již nevyplňuje celý opotřebovaný objem kolejnice, ale pouze jeho homí, povrchová část, a jednak se odstraní dosud nutný předehřev opravovaného úseku při dosažení minimálně stejné kvality návaru jako při navařování s předehřevem. Toto je umožněno díky podkladové vrstvě, která značně omezuje difúzi uhlíku C ze základního materiálu kolejnice do homí povrchové návarové vrstvy. Další výhoda odpadnutí předehřevu se projeví obzvláště při opravách jazyků výhybek, kde již nedochází k jeho nežádoucím deformacím, způsobovaným dříve předehřevem.
Má-li se dosáhnout tvrdost návaru o hodnotě cca 400 HV, která se při následném mechanickém zpevňování během provozu již markantně nezvyšuje, je výhodné navařit na podkladovou vrstvu více legovaný přídavný materiál o směrném hmotnostním složení: uhlík C = 0,15 %; křemík Si = max. 0,5 %; mangan Mn = 1,1 %; chrom Cr = 1,0 %; nikl Ni = 2,3 %; molybden Mo = 0,5 %; hliník Al = 1,4 %; zbytek tvoří železo Fe a výrobní nečistoty.
Má-li se dosáhnout návaru, jehož tvrdost dosáhne po následném mechanickém zpevňování za provozu hodnotu až 500 HV, je výhodné navařit na podkladovou vrstvu vysoce legovaný přídavný materiál o směrném hmotnostním chemickém složení: uhlík C = 0,3 %; křemík Si =
-2CZ 287365 B6
0,55 %; mangan Mn = 13,5 %; chrom Cr = 16 %; nikl Ni = 1,7 %; molybden Mo = 0,8 %; vanad V = 0,6 %; zbytek tvoří železo Fe a výrobní nečistoty.
Přehled obrázků na výkresech
Na přiložených výkresech jsou znázorněny některé příklady provedení vynálezu, kde obr. 1 představuje spojení konců dvou hlavových kolejnic; obr. 2 představuje příčný řez koncem kolejnice z obr. 1 při navařování; obr. 3 představuje výhybkový jazyk; a obr. 4 představuje příčný řez výhybkovým jazykem z obr. 3 při navařování.
Příklady provedení vynálezu
Jak je zřejmé z obr. 2, respektive z obr. 4, znázorňuje vyšrafovaná část zbývající tvar opotřebované kolejnice, respektive jazyku výhybky a nevyšrafovaná část jej doplňuje na původní neopotřebovaný tvar. Opotřebovaná horní část hlavy kolejnice je označena vztahovou značkou 1 a opotřebovaná boční část jazyku výhybky, respektive hlavy kolejnice, je označena vztahovou značkou 2. Opotřebované plochy se očistí a zbrousí do kovového lesku a hlava kolejnice, respektive jazyk výhybky, se doplní do původního tvaru, respektive profilu, navařením jedné nebo několika vrstev přídavného materiálu, kterým je navařovací drát 9 pod tavidlem 7. Navařovací drát 9 je přiváděn navařovací hubicí 8, která svírá se svislicí úhel v rozmezí a = 0 až 45°, a to jak při navařování horní plochy, tak i boční plochy opravované části. Housenky 4, 4' se nanášejí na nepředehřátou kolejnici, respektive jazyk výhybky, v podélném nebo příčném směru při teplotě okolní atmosféry alespoň 10 °C a před nanesením následující housenky 4, 4' se předchozí housenka 4, 4' vždy očistí. Po vyplnění celého opotřebovaného objemu hlavy kolejnice, respektive jazyku výhybky, se návar upraví zbroušením do původního neopotřebovaného tvaru, respektive profilu, kolejové dráhy.
Příklad 1
Je-li třeba docílit tvrdost návaru o hodnotě 285 až 350 HV, navařuje se pouze přídavný materiál o chemickém složení uhlík C = 0,06 až 0,10 %; mangan Mn = 0,5 až 1,5 %; křemík Si = 0,05 až 0,5 %; nikl Ni = 1,8 až 4,5 %; vanad = 0,005 až 0,2 %; molybden Mo = 0,005 až 0,3 %; Nb = 0,005 až 0,1 %; chrom Cr = 0,001 až 0,4 %; hliník Al - 0,005 až 1,6 %; titan Ti = 0,001 až 0,1 %; zbytek železo Fe a výrobní nečistoty, přičemž celková hmotnost niklu Ni, vanadu V, molybdenu Mo, niobu Nb, chrómu Cr, hliníku Al a titanu Ti nepřevýší v součtu 5 %. Jedná se například o přídavný materiál, známý pod obchodním označením A234, o směrném chemickém složení: uhlík C = 0,07 %; křemík Si = 0,3 %; mangan Mn = 1,2 %; nikl Ni = 2,3 % a stopová množství vanadu V, molybdenu Mo, niobu Nb, chrómu Cr, hliníku Al a titanu Ti, zbytek železo Fe a výrobní nečistoty, který se navaří za použití parametrů, uvedených v následující tabulce 1, ve které je rovněž uvedena tvrdost návaru. Tato tvrdost se následujícím mechanickým namáháním během provozu po kolejové dráze již skoro nezvyšuje.
-3CZ 287365 B6
Tabulka 1
poř. č. |
typ kolejnice |
parametry navařování |
vnesené teplo Q (kJ/cm) |
tvrdost HV |
U(V) |
I(A) |
v (cm/min) |
1 |
75 ČSD |
25 |
250 |
60 |
5,94 |
328 |
2 |
75 ČSD |
25 |
300 |
60 |
7,13 |
328 |
3 |
75 ČSD |
34 |
350 |
60 |
11,31 |
339 |
4 |
75 ČSD |
34 |
480 |
60 |
15,50 |
286 |
5 |
75 ČSD |
38 |
550 |
60 |
19,86 |
289 |
6 |
95 ČSD-Vk |
34 |
450 |
60 |
14,54 |
292 |
7 |
95 ČSD-Vk |
25 |
250 |
60 |
6,18 |
332 |
8 |
95 ČSD-Vk |
30 |
330 |
60 |
9,41 |
346 |
9 |
95 ČSD-Vk |
34 |
480 |
60 |
15,50 |
297 |
10 |
95 ČSD-Vk |
38 |
550 |
60 |
19,86 |
296 |
Pořadová čísla 1 až 3, 7 a 8 popisují příklady navařování na horní plochy, zatímco pořadová čísla 4 až 6, 9 a 10 popisují navařování na boční plochy.
Příklad 2
Je-li třeba docílit tvrdost návaru, která má dosahovat hodnotu 400 HV, respektive 500 HV, navaří se podkladová vrstva o tloušťce alespoň jedné housenky 4, 4' přídavným materiálem a za použití parametrů navařování jako v příkladu 1, načež se na tuto podkladovou vrstvu navaří další housenky 44, 44' doposud běžně používaného přídavného materiálu, známého pod obchodním označením OK-Tubrodur 15.43 o směrném chemickém sloužení: uhlík C = 0,15 %; křemík Si = max. 0,5 %; mangan Mn = 1,1 %; chrom Cr = 1,0 %; nikl Ni = 2,3 %; molybden Mo = 0,5 %; hliník AI = 1,4 %; zbytek železo Fe a výrobní nečistoty, respektive přídavného materiálu OKTubrodur 15.65 o směrném chemickém složení: uhlík C = 0,3 %; křemík Si = 0,55 %; mangan Mn = 13,5 %; chrom Cr = 16 %; nikl Ni = 1,7 %; molybden Mo = 0,8 %; vanad V - 0,6 %; zbytek železo Fe a výrobní nečistoty. Podkladová vrstva může být tvořena jednou nebo několika vrstvami housenek 4, 4' a horní povrchová vrstva může být rovněž tvořena jednou nebo několika vrstvami housenek 44,44'.
Parametry navařování horní povrchové vrstvy vysoce legovaným přídavným materiálem jsou doporučeny výrobcem a jsou všeobecně známé a výsledná tvrdost návaru není nijak ovlivněna podkladovou vrstvou z nízkolegovaného přídavného materiálu.
Průmyslová využitelnost
Způsob automatického nebo poloautomatického navařování podle předkládaného vynálezu je vhodný zejména pro opravy kolejových drah železniční a tramvajové dopravy, ale nevylučuje se jeho použití i pro opravy kolejových či závěsných drah nejrůznějších profilů, u jeřábů, lanovek a podobně.