CS260398B1 - Method of aldoses preparation - Google Patents

Method of aldoses preparation Download PDF

Info

Publication number
CS260398B1
CS260398B1 CS874657A CS465787A CS260398B1 CS 260398 B1 CS260398 B1 CS 260398B1 CS 874657 A CS874657 A CS 874657A CS 465787 A CS465787 A CS 465787A CS 260398 B1 CS260398 B1 CS 260398B1
Authority
CS
Czechoslovakia
Prior art keywords
aldoses
preparation
water
aldose
molybdenum
Prior art date
Application number
CS874657A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS465787A1 (en
Inventor
Vojtech Bilik
Igor Knezek
Original Assignee
Vojtech Bilik
Igor Knezek
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vojtech Bilik, Igor Knezek filed Critical Vojtech Bilik
Priority to CS874657A priority Critical patent/CS260398B1/en
Publication of CS465787A1 publication Critical patent/CS465787A1/en
Publication of CS260398B1 publication Critical patent/CS260398B1/en

Links

Abstract

Účelom spósobu přípravy aldóz je zlepšeme sposobov přípravy aldóz, t. j. zjednodušenie a zhospodárnenie týchto spósobov príprav. Uvedený účel sa dosiahne tak, že k N-fenylglykozylamínu, vodě a/alebo etanolu a molybdénanovej zlúčenine sa přidá kyselina šťavelová v mólovom pomere molybdénu s oxidačným stupňom VI ku kyselině šťaveíovej 1 : aspoň 4 a reakčná zmes sa hydrolyzuje technikou preháňania vodnou parou. Spósob přípravy aldóz má použitie v organickej chémii a biochémii.The purpose of aldose preparation is to improve them methods of preparing aldoses, i. j. simplification and rationalizing these ways preparations. This purpose is achieved by that to N-phenylglycosylamine, water and / or ethanol and molybdate compound are added oxalic acid in molar ratio of molybdenum with oxidation grade VI to the acid oxalate 1: at least 4 and the reaction mixture is hydrolysed by the water-passing technique steam. A method of preparing aldoses is for use in organic chemistry and biochemistry.

Description

Vynález sa lýka spósobu přípravy aldóz.The invention relates to a process for the preparation of aldoses.

V niektorých spósoboch izoláčií jednej aldózy zo zmesi aldóz sa použila reakcia aldóz s anilínmi ktorá využívá rozdielnu kryštalizačnú schopnost vzniknutých N-feiiylglykozylamínov. Zo zmesi arabinózy a ribózy sa izoluje N-fenylribozylamín, zo zmesi xylózy a lyxózy N-fenyllyxozylamín [V. Bílili, J. Čaplovič: Chem. Zvěsti 27, 547 (1973) ], fruktózy, glukózy a manózy N-fenylmanozylamín [V. Bílik, K. Tihlárik: Chem. Zvěsti 28, 106 (1984)], z D-glycero-L-glukoheptózy a D-glycero-L-manoheptózy N-fenyl-D-glycero-L-manoheptozylamin [V. Bílik, L. Petruš: Chem. Zvěsti 30, 359 (1976)] a zo zmesi L-arabinózy a D-xylózy N-(4-nitrofenylj-L-arabinozylamín [V. Bílik, A. Kramář:In some methods of isolating one aldose from a mixture of aldoses, the reaction of aldoses with anilines has been utilized which exploits the different crystallization capacity of the resulting N-phenylglycosylamines. N-phenylribozylamine is isolated from arabinose-ribose mixture, and N-phenyllyxozylamine from V. a mixture of xylose and lyxose [V. Bilili, J. Caplovic: Chem. Rumors 27, 547 (1973)], fructose, glucose, and mannose N-phenylmanozylamine [V. Bílik, K. Tihlárik: Chem. Rumors 28, 106 (1984)], from D-glycero-L-glucoheptose and D-glycero-L-manoheptose N-phenyl-D-glycero-L-manoheptozylamine [V. Bilik, L. Petrus: Chem. Rumors 30, 359 (1976)] and from a mixture of L-arabinose and D-xylose N- (4-nitrophenyl) -L-arabinozylamine [V. Bílik, A. Kramář:

Chem. Zvěsti 33, 641 (1979)].Chem. Rumors 33, 641 (1979)].

Z N-fenylglykozylamínov sa móžu aldózy uvolňovat formaldehydom [T. Fujita, T. Sáto: Bull. Chem. Soc. Japan 33, 353 (1960) J, benzaldehydom [R. I,. Whistler, J. N. BeMiller: Methods Carbohydr. Chem. 1, 81 (1962)], hydrolýzou technikou preháňania vodnou parou [V. Bílik, J. ČápltíviČ: Chětti. Zvésti 27, 547 (1973); V. Bílik, L. Petruš: Chem. Zvěsti 30, 359 (1976)], hydrolýzou silné kyslým iónomeničom (CS AO č. 196 996).Aldoses can be released from formaldehyde from N-phenylglycosylamines [T. Fujita, T. Sato: Bull. Chem. Soc. Japan 33, 353 (1960) J, benzaldehyde [R. I ,. Whistler, J. N. BeMiller: Methods Carbohydr. Chem. 1, 81 (1962)], by hydrolysis by the water vapor bleeding technique [V. Bílik, J. ČápltíviČ: Chětti. Rev. 27, 547 (1973); V. Bílek, L. Petruš: Chem. Rumors 30, 359 (1976)], by strong acid ion exchange hydrolysis (CS AO No. 196 996).

Pri všetkých týchto reakciách třeba, aby molybdénanové ióny v postupoch uvoTňovania neboli přítomné. Preto sa museli roztoky aldóz před příslušnou derivatizáciou na odpovedajúce N-fenylglykozylamíny deionizovať, čo zvyšuje prácnosť a zdražuje připravené aldózy. Aldózy sa v slabo kyslých vodných roztokoch za přítomnosti molybdénanových iónov epimerizujú a vytvárajú rovnovážnu zmes C—2-epimérnych aldóz [V. Bílik: Chem. listy 77, 496 (1983)].In all these reactions, molybdate ions need not be present in the release procedures. Therefore, aldose solutions had to be deionized prior to appropriate derivatization to the corresponding N-phenylglycosylamines, which increases laboriousness and increases the cost of the prepared aldoses. The aldoses are epimerized in weakly acidic aqueous solutions in the presence of molybdenum ions to form an equilibrium mixture of C-2-epimeric aldoses [V. Bilik: Chem. 77, 496 (1983)].

Uvedené nevýhody v podstatnej miere odstraňuje sposob přípravy aldóz podfa vynálezu ktorého podstata spočívá v tom, že k N-fenylglykozylamínu, vodě a/alebo etanolu a molybdénanovej zlúčenine sa přidá kyselina šťavelová v mólovom pomere molybdenu s oxidačným stupňom VI ku kyselině šfavelovej 1 : aspoň 4 a reakčná zmes sa liydrolyzuje technikou preháňania vodnou parou.The above-mentioned disadvantages are substantially eliminated by the process for the preparation of aldoses according to the invention, which comprises adding oxalic acid in a molar ratio of molybdenum having an oxidation degree of VI to oxalic acid of 1: at least 4 to N-phenylglycosylamine, water and / or ethanol and a molybdenum compound. and the reaction mixture is hydrolyzed by a steam-jet technique.

Příklad 1Example 1

K roztoku, ktorý obsahuje 25 ml vody, 2 mililitry 99 % hmot. kyseliny octovej, 3 g tetrahydrátu heptamolybdénanu hexaamonného sa přidá 250 g monohydrátu D-glukózy. Zmes sa zahrieva po dosiahnutí teploty 90 °C po dobu 50 min. Reakčná zmes sa zriedi s 120 ml metanolu, potom s 120 ml 96 % hmot. etanolu a roztok sa nechá krystalizovat pri teplote 23 °C počas 2 dní. Kryštalická D-glukóza sa odfiltruje (105 g, t. j. 42 %-ný výťažok v přepočte na východiskovú D-glukózu). Filtrát sa upraví zmesou metanolu a etanolu v hmotnostnom pomere 1 : 1 na 500 ml celkového' objemu, přidá sa 100 ml anilínu a nechá stát 20 h pri teplote 23 °C.To a solution containing 25 ml of water, 2 ml of 99 wt. acetic acid, 3 g of hexaammonium heptamolybdate tetrahydrate are added 250 g of D-glucose monohydrate. The mixture is heated after reaching 90 ° C for 50 min. The reaction mixture was diluted with 120 mL of methanol, then 120 mL of 96 wt. ethanol and the solution was allowed to crystallize at 23 ° C for 2 days. The crystalline D-glucose is filtered off (105 g, i.e. 42% yield based on the starting D-glucose). The filtrate is treated with 1: 1 methanol / ethanol to 500 mL total volume, 100 mL of aniline is added and allowed to stand at 23 ° C for 20 h.

Krystalický N-fenyl-D-manozylamín sa odfiltruje (80 g, t. j. 25 %-ný výťažok D-manózy vztahované na východiskovú D-glukózu, resp. 43 %-ný výťažok zohfadnením na regenerovanú D-glukózu) a premyje zmesou metanolu a etanolu v hmotnostnom pomere 1 : 1. Získaný N-fenyl-D-manozylamín obsahuje 4 mg molybdénu v oxidačnom stupni VI. Do 500 ml vody sa přidá 80 g N-fenyl-D-manozylamínu, 21 mg dihydrátu kyseliny šfavelovej (mólový poměr kyseliny šťavefovej k molybdénu v oxidačnom stupni VI je 4 : 1) a zmes sa hydrolyzuje technikou preháňania vodnou parou, až sa do předlohy nadestiluje 800 ml zmesi vody a anilínu. Roztok obsahujúci D-manózu sa přečistí aktívnym uhlím, filtrát sa zahustí a destilačný zvyšok krystalizuje zo 150 ml metanolu, čím sa získá 46 g (t. j. 80 %-ný výťažok v přepočte na východiskový N-fenyl-D-manozylamín) D-manózy. Matečný roztok sa zahustí, destilačný zvyšok sa rozpustí v 30 ml metanolu, čím sa získá druhý krystalický podiel D-manózy (7 g, t. j. 12,5 %-ný výťažok).Crystalline N-phenyl-D-manozylamine is filtered off (80 g, i.e. 25% yield of D-mannose based on the starting D-glucose and 43% yield, respectively, based on recovered D-glucose) and washed with a mixture of methanol and ethanol. in the ratio of 1: 1 by weight. The obtained N-phenyl-D-manozylamine contains 4 mg of molybdenum in oxidation stage VI. To 500 ml of water is added 80 g of N-phenyl-D-manozylamine, 21 mg of oxalic acid dihydrate (molar ratio of oxalic acid to molybdenum in oxidation stage VI is 4: 1) and the mixture is hydrolyzed by water vapor bleeding until a charge is obtained. Distilled 800 ml of a mixture of water and aniline. The solution containing D-mannose is treated with charcoal, the filtrate is concentrated and the distillation residue is crystallized from 150 ml of methanol to give 46 g (i.e. 80% yield, starting from N-phenyl-D-mannoslamine) of D-mannose. The mother liquor was concentrated, and the residue was dissolved in 30 ml of methanol to give a second crystalline fraction of D-mannose (7 g, i.e. 12.5% yield).

Příklad 2Example 2

Zmes 100 g L-arabinózy, 1 g kyseliny molybdénovej a 500 ml vody sa zahrieva počas 3 h pri teplote 95 °C. Roztok sa zahustí, sirupovitý zvyšok sa rozpustí v 200 ml metanolu a nechá krystalizovat pri teplote 23 °C počas 24 h. Kryštalická L-arabinóza (60 g) sa odfiltruje, materský roztok zahustí, destilačný zvyšok sa rozpustí v 40 ml zmesi 96 % hmot. etanolu a vody v hmotnostnom pomere 7:1a přidá 15 ml anilínu. Zmes sa nechá stát pri teplote 23 °C počas 24 h. Krystalický N-fenyl-L-ribozylamín (32 g, t. j. 21,5 %-ný výťažok L-ribózy vo fo-rme N-fenyl-L-ribozylamínu vztahované na východiskovú L-arabinózu, resp.A mixture of 100 g of L-arabinose, 1 g of molybdic acid and 500 ml of water is heated at 95 ° C for 3 h. The solution is concentrated, the syrup residue is dissolved in 200 ml of methanol and left to crystallize at 23 ° C for 24 h. The crystalline L-arabinose (60 g) is filtered off, the mother liquor is concentrated, and the residue is dissolved in 40 ml of a 96% w / w mixture. ethanol: water (7: 1, w / w) added 15 ml of aniline. The mixture was allowed to stand at 23 ° C for 24 h. Crystalline N-phenyl-L-ribozylamine (32 g, i.e. 21.5% yield of L-ribose in the N-phenyl-L-ribozylamine form relative to the starting L-arabinose and L-ribozylamine, respectively).

53.5 %-ný výťažok zohfadnením regenerované j L-arabinózy) sa odfiltruje.53.5% yield by recovery of recovered L-arabinose) was filtered off.

Získaný N-fenyl-L-ribozylamín obsahujeThe obtained N-phenyl-L-ribozylamine contains

1.5 mg molybdénu v oxidačnom stupni VI. Do 250 ml vody· sa přidá 32 g N-fenyl-L-ribozylamínu, 8 mg dihydrátu kyseliny šťave1'ovej (mólový poměr kyseliny šťavefovej k molybdénu v oxidačnom stupni VI je 4 : 1) a zmes sa hydrolyzuje technikou preháňania vodnou parou, až sa do předlohy nadestiluje 350 ml zmesi vody a anilínu. Roztok obsahujúci D-ribózu sa přečistí aktívnym uhlím a filtrát zahustí do sucha, čím sa získá 20 g chromatografickej čistej L-ribózy. Kryštalická L-ribóza sa získá kryštalizáciou zo 100 % hmot. etanolu.1.5 mg of molybdenum in oxidation stage VI. To 250 ml of water, 32 g of N-phenyl-L-ribozylamine, 8 mg of oxalic acid dihydrate (molar ratio of oxalic acid to molybdenum in oxidation stage VI is 4: 1) are added, and the mixture is hydrolyzed by steam-jetting until 350 ml of a mixture of water and aniline is distilled into the receiver. The solution containing D-ribose is treated with charcoal and the filtrate is concentrated to dryness to give 20 g of chromatographic pure L-ribose. Crystalline L-ribose is obtained by crystallization from 100 wt. ethanol.

Epimerizácia je inhihovaná aj pri podstatné nižších teplotách, ako pri uvedenom spósobe hydrolýzy technikou preháňania vodnou parou, například pri zahušťovaní roztokov aldóz. Kyselina šťavelová vytvára s molybdénanovými iónmi stabilný komplex, ktorým sa inhibuje epimerizácia aldóz aj podstatné dlhší čas, ako sa uvádza v príkladoch prevedenia. Nie je aíe efektívne skladovat roztoky aldóz dlhší čas pri nižších teplotách, nakofko roztoky aldóz sú dobréThe epimerization is also inhaled at substantially lower temperatures than in the above-mentioned method of hydrolysis by the steam-jet technique, for example when the aldose solutions are concentrated. Oxalic acid forms a stable complex with molybdate ions, which inhibits the epimerization of aldoses even for a substantial period of time, as exemplified in the examples. It is not more efficient to store aldose solutions for extended periods of time at lower temperatures, since aldose solutions are good

B živné pódy pre niektoré mikroorganizmy, ktoré ich móžu znehodnotit.B nutrient bases for some microorganisms that can destroy them.

Spósob přípravy aldóz može nájsť široké použitie v organickej chémii pri príprave aldóz D- i L-radu.The method for the preparation of aldoses can be widely used in organic chemistry in the preparation of aldoses of both the D- and L-series.

Claims (1)

260398 S podstatné dlhši čas, ako sa uvádzá v príkla-doch prevedenia. Nie je ale efektívne skla-dovat roztoky aldóz dlhši čas pri nižšíchteplotách, nakolko roztoky aldóz sú dobré 6 živné půdy pre niektoré mikroorganizmy,ktoré ich můžu znehodnotit. Spůsob přípravy aldóz může nájsť široképoužitie v organickej chemii pri prípravealdóz D- i L-radu. PREDMET Spósob přípravy aldóz z odpovedajúcichN-fenylglykozylamínov vyznačujúci sa tým,že k N-fenylglykozylamínu, vodě a/alebo e-tanolu a molybdénanovej zlúčenine sa při-dá kyselina šťavefová v mólovotn pomere VYNALEZU molybdénu s oxidačným stupňom VI ku ky-selině šťaveTove] 1 : aspoň 4 a reakčnázmes sa hydrolyzuje technikou preháňaniavodnou parou.260398 With a considerably longer time than is indicated in the examples. However, it is not effective to store aldose solutions for longer periods at lower temperatures, as aldose solutions are good 6 nutrient media for some microorganisms that can destroy them. The process for the preparation of aldoses can be widely used in organic chemistry for the preparation of D- and L-series. OBJECTIVE A method of preparing aldoses from the corresponding N-phenylglycosylamines, characterized in that N-phenylglycosylamine, water and / or ethanol and molybdenum compound are added with oxalic acid in the molybdenum-oxidized molar ratio of VI to oxalate 1. at least 4 and the reaction mixture is hydrolyzed by a steam-steaming technique.
CS874657A 1987-06-23 1987-06-23 Method of aldoses preparation CS260398B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS874657A CS260398B1 (en) 1987-06-23 1987-06-23 Method of aldoses preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS874657A CS260398B1 (en) 1987-06-23 1987-06-23 Method of aldoses preparation

Publications (2)

Publication Number Publication Date
CS465787A1 CS465787A1 (en) 1988-05-16
CS260398B1 true CS260398B1 (en) 1988-12-15

Family

ID=5389836

Family Applications (1)

Application Number Title Priority Date Filing Date
CS874657A CS260398B1 (en) 1987-06-23 1987-06-23 Method of aldoses preparation

Country Status (1)

Country Link
CS (1) CS260398B1 (en)

Also Published As

Publication number Publication date
CS465787A1 (en) 1988-05-16

Similar Documents

Publication Publication Date Title
US6049004A (en) Nitric acid removal from oxidation products
US5015296A (en) Continuous epimerization of sugars, in particular D-arabinose to D-ribose
US4355158A (en) Process for the preparation of riboflavin
EP1131329B1 (en) High purity production of l-ribose from l-arabinose
Beélik et al. Some new reactions and derivatives of kojic acid
CS260398B1 (en) Method of aldoses preparation
JP6534444B2 (en) Process for obtaining formate from reaction mixture
CS260397B1 (en) Method of aldoses preparation
JP3081016B2 (en) Crystalline thionicotinamide-adenine dinucleotide potassium phosphate and process for producing the same
US20060149084A1 (en) Method for extracting 2-ketone-l-gulonic acid from a polar, preferably aqueous solvent
JP2781140B2 (en) Method for purifying sialic acid or an analog thereof
FR2567130A1 (en) SUGAR PHOSPHATES FOR USE IN SHAMPOO, RINSE AND COSMETICS, AND PROCESS FOR PREPARING THESE PHOSPHATES
CS260393B1 (en) Method of aldoses preparation
JPH0432833B2 (en)
FI59241B (en) CRYSTALIZATION OF XYLITOL IN VAT
SU1105489A1 (en) Method of obtaining potassium acetate
CS260394B1 (en) Method of aldoses preparation
US4970302A (en) Selective catalytic conversion of cyanohydrins to their corresponding aldehydes without concurrent amine formation
EP0601897A1 (en) Method for the preparation of glycosylamines from reducing sugars
KR810001104B1 (en) Process for preparation of n-methyl moranoline
LU81707A1 (en) PROCESS FOR PRODUCING ASCORBIC AND ERYTHORBIC ACIDS
BE880361A (en) PROCESS FOR THE PRODUCTION OF 2-CETOGULONIC ACID, ITS ALKYL ESTERS AND ITS SALTS
CS274394B1 (en) Method of optically active 2-deoxy-l-ribose preparation
CS260396B1 (en) Method of aldoses stabilization against epimerization in presence of molybdate ions
CH641472A5 (en) PROCESS FOR PRODUCING 2-CETOGULONIC ACID, ITS ALKYL ESTERS AND ITS SALTS.