CS260397B1 - Method of preparation of aldoses - Google Patents

Method of preparation of aldoses Download PDF

Info

Publication number
CS260397B1
CS260397B1 CS874656A CS465687A CS260397B1 CS 260397 B1 CS260397 B1 CS 260397B1 CS 874656 A CS874656 A CS 874656A CS 465687 A CS465687 A CS 465687A CS 260397 B1 CS260397 B1 CS 260397B1
Authority
CS
Czechoslovakia
Prior art keywords
aldoses
citric acid
molybdenum
mixture
water
Prior art date
Application number
CS874656A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS465687A1 (en
Inventor
Vojtech Bilik
Igor Knezek
Original Assignee
Vojtech Bilik
Igor Knezek
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vojtech Bilik, Igor Knezek filed Critical Vojtech Bilik
Priority to CS874656A priority Critical patent/CS260397B1/en
Publication of CS465687A1 publication Critical patent/CS465687A1/en
Publication of CS260397B1 publication Critical patent/CS260397B1/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Saccharide Compounds (AREA)

Abstract

Účelom. sposobu přípravy aldóz je zlepšenle spósobov přípravy aldóz, t. j. zjednodušenie a zhospodárnenie týchto spósobov příprav. Uvedený účel sa dosiahne tak, že k N-fenylglykozylamínu, vodě a/alebo etanolu a molybdénanovej zlúčenine sa přidá kyselina citrónová v mólovom pomere molybdénu s oxidačným stupňom VI ku kyselině citrónovej 1 : aspoň 4 a reakčná zmes sa hydrolyzuje technikou preháňania vodnou parou. Spósob přípravy aldóz má použitie v organickej chémii a biochémii.The purpose of the method for preparing aldoses is to improve the methods for preparing aldoses, i.e. to simplify and economize these methods of preparation. The stated purpose is achieved by adding citric acid to N-phenylglycosylamine, water and/or ethanol and a molybdate compound in a molar ratio of molybdenum with oxidation state VI to citric acid of 1: at least 4 and the reaction mixture is hydrolyzed by steam stripping. The method for preparing aldoses has applications in organic chemistry and biochemistry.

Description

260397260397

Vynález sa týká spcsobu přípravy aldóz. V niektorých sposoboch izolácií jednej al-dózy zo zraesi aldóz sa použila reakcia al-dóz s anilínmi, ktorá využívá rozdielnu kryš-talizačná schopnost vzniknutých N-fenylgly-kozylamínov. Zo zmesi arabinózy a ribózysa izoluje N-fenylribozylamín, zo zmesl xy-lózy a lyxózy N-fenyllyxozy lamin [V. Bílik,J. Čaplovič: Chsm. Zvěsti 27, 547 (1973)j,fruktózy, glukózy a manózy N-fenylmano-zylamín [V. Bílik, K. Tihlárik: Chem. Zvěs-ti 28, 106 (1984)], z D-glycero-L-glukohep-tózy a D-glycero-L-manoheptózy Ň-fenyl-D--glycero-L-manoheptozylamín [V. Bílik, L.Petruš: Chem. Zvěsti 30, 359 (1976)] a zozmesi L-arabinózy a D-xylózy N-(4-nitrofc-nyl)-L-arabinozylamín [V. Bílik, A. Kramář:Chem. Zvěsti 33, 641 (1979)]. Z N-fenylglykozylamínov sa můžu aldózyuvolňovat formaldehydom [T. Fujita, T. Sá-to: Bull. Chem. Soc. Japan 33, 353 (1960)],benzaldehydom [R. L. Whistler, J. N. Be-Miller: Methods Carbohydr. Chem. 1, 81(1962)], hydrolýzou technikou preháňaniavodnou parou [V. Bílik, J. Čaplovič: Chem.Zvěsti 27, 547 (1973); V. Bílik, L. Petruš:Chem. Zvěsti 30, 359 (1976)], hydrolýzousilné kyslým iónomeničom (CS AO č.196 996). Při všetkých týchto reakciách třeba, abymolybdénanové ióny v postupoch uvolňova-nia neboli přítomné. Preto sa museli roztokyaldóz před příslušnou derivatizáciou na od-povedajňce N-fenylglykozylamíny deionizo-viit, čo zvyšuje pracnost a zdražuje připra-vené aldózy. Aldózy sa v slabo kyslých vod-ných roztokoch za přítomnosti molybdéna-no'ých iónov epimerizujú a vytvárajú rov-novážní! zmes C—2-epimérnych aldóz (V.Bílik: Chem. listy 77, 496 (1983)].The invention relates to a process for the preparation of aldoses. In some methods of isolating one of the aldose precipitates, the reaction of aldoses with anilines was used, employing a different crystallization ability of the resulting N-phenylglycosylamines. N-Phenylribozylamine is isolated from a mixture of arabinose and ribose and from N-phenyllyxozylamine [V. Bílik, J. Caplovic: Chsm. 27, 547 (1973), fructose, glucose and mannose N-phenylmanzylamine [V. Bilik, K. Applicants: Chem. 28, 106 (1984)], D-glycero-L-glucohepthosis and D-glycero-L-manoheptose N-phenyl-D-glycero-L-manoheptozylamine [V. Bílik, L. Petruš: Chem. Annals 30, 359 (1976)] and L-arabinose and D-xylose N- (4-nitrophenyl) -L-arabinose amine mixtures [V. Bílik, A. Kramář: Chem. Rumors 33, 641 (1979)]. From the N-phenylglycosylamines, I can be aldose released by formaldehyde [T. Fujita, T. Sá-to: Bull. Chem. Soc. Japan 33, 353 (1960)], benzaldehyde [R. L. Whistler, J.N. Be-Miller: Methods Carbohydr. Chem. 1, 81 (1962)], by hydrolysis with steam-boiling water [V. Bílik, J. Čaplovič: Chem.Zvěsti 27, 547 (1973); V. Bílik, L. Petruš: Chem. Announcements 30, 359 (1976)], hydrolyzed by an acidic ion exchanger (CS AO no.196,996). In all these reactions, the molybdenum ions in the release processes are not required. Therefore, solutionaldoses had to be deionized before the corresponding derivatization, in particular by N-phenylglycosylamines, which increases the labor and price of the prepared aldoses. Aldoses are epimerized in weakly acidic aqueous solutions in the presence of molybdenum ions to form equilibrium! a mixture of C-2-epimeric aldoses (United Kingdom: Chem. sheets 77, 496 (1983)).

Uvedené nevýhody v podstatnej miere od-straňuje spósob přípravy aldóz podlá vy-nálezu, ktorého podstata spočívá v tom, žek N-fenylglykozylamínu, vodě a/alebo eta-nolu a molybdénanovej zlúčenine sa přidákyselina citrónová v mólovom pomere mo-lybdénu v oxidačnom stupni VI ku kyseliněcitrónovej 1 : aspoň 4 a reakčná zmes sahydrolyzuje technikou preháňania vodnouparou. Příklad 1 K roztoku, ktorý obsahuje 25 ml vody, 2mililitry 99 % hmot. kyseliny octovej, 3 gtetrahydrátu heptamolybdénanu hexaamon-ného sa přidá 250 g monohydrátu D-glukó-zv. Zmes sa zahrieva po dosiahnutí teploty90 °C po dobu 50 min. Reakčná zmes sazriedi so 120 ml metanolu, potom so 120 ml96 % hmot. etanolu a roztok sa nechákryštalizovať pri teplote 23 °C počas 2 dní.Krystalická D-glukóza sa odfiltruje (105 g,t. j. 42 %-ný výťažok v přepočte na výcho-diskoví! D-glukózu).The above drawbacks are substantially hindered by the method of preparation of aldoses according to the invention, wherein the N-phenylglycosylamine, water and / or ethanol and molybdenum compound are citric acid addition moieties in the molybdenum oxidation stage VI to acid citric acid 1: at least 4, and the reaction mixture is hydrolysed by means of a vortexing technique. EXAMPLE 1 To a solution containing 25 ml of water, 2 ml of 99% wt. of acetic acid, 3 g of hexammonium heptamolybdate is added 250 g of D-glucose monohydrate. The mixture was heated to 90 ° C for 50 min. The reaction mixture is diluted with 120 ml of methanol, then with 120 ml of 96% by weight. The solution was crystallized at 23 ° C for 2 days. Crystalline D-glucose was filtered off (105 g, i.e. 42% yield as starting D-glucose).

Filtrát sa upraví zmesou metanolu a eta-nolu v hmotnostnom pomere 1 : 1 na 500 ml celkového objemu, přidá sa 100 ml anilínua nechá stáť 20 h pri teplote 23 °C. Kryšta-lický N-fenyl-D-manozylamín sa odfiltruje(80 g, t. j. 25 % výťažok D-manózy vztaho-vané na východisková D-glukózu, resp. 43%-ný výťažok zohledněním na regene-rovaná D-glukózu) a premyje zmesou meta-nolu a etanolu v hmotnostnom pomere 1 : 1.Získaný N-fenyl-D-manozylamín obsahuje 4miligramy molybdénu v oxidačnom stupniVI. Do 500 ml vody sa přidá 80 g N-fenyl-D--manozylamínu, 35 mg monohydrátu kyseli-ny citrónovej (mólový poměr kyseliny citró-nové] k molybdénu v oxidačnom stupni VIje 4 : 1) a zmes sa hydrolyzuje technikoupreháňania vodnou parou, až sa do předlo-hy nadestiluje 800 ml zmesi vody a anilí-nu. Roztok obsahujáci D-manózu sa přečis-tí aktívnym uhlím, filtrát sa zahustí a des-tilačný zvyšok krystalizuje zo 150 ml meta-nolu, čím sa získá 46 g (t. j. 80 %-ný výťa-žok v přepočte na východiskový N-fenyl-D--manozylamín) D-manózy. Materský roztoksa zahustí, destilačný zvyšok sa rozpustí v30 ml metanolu, čím sa získá druhý kryš-talický podiel D-manózy (7 g, t. j. 12,5 %-nývýťažok). Příklad 2The filtrate is treated with a 1: 1 mixture of methanol and ethanol to 500 ml of total volume, 100 ml of aniline is added and left to stand for 20 hours at 23 ° C. Crystalline N-phenyl-D-manozylamine is filtered off (80 g, ie 25% yield of D-mannose based on starting D-glucose and 43% yield, respectively, by taking into account D-glucose) and washed a 1: 1 mixture of methanol and ethanol. The obtained N-phenyl-D-manozylamine contains 4 milligrams of molybdenum in the oxidation step VI. To 500 ml of water add 80 g of N-phenyl-D-manozylamine, 35 mg of citric acid monohydrate (molar ratio of citric acid) to molybdenum in the oxidation stage VI is 4: 1) and the mixture is hydrolyzed by water vapor penetration, until 800 ml of water / aniline mixture is distilled into the preform. The D-mannose-containing solution is purified by charcoal, the filtrate is concentrated and the distillation residue is crystallized from 150 ml of methanol to give 46 g (i.e. 80% yield, based on N-phenyl). D-manozylamine) D-mannose. The mother liquor is concentrated, the residue is dissolved in 30 ml of methanol to give a second crystalline portion of D-mannose (7 g, i.e. 12.5% yield). Example 2

Zmes 100 g L-arabinózy, 1 g kyseliny mo-lybdénovej a 500 ml vody sa zahrieva po-čas 3 h pri teplote 95 °C. Roztok sa zahustí,sirupovitý zvyšok sa rozpustí v 200 ml me-tanolu a nechá kryštalizovať pri teplote 23stupňov Celzia počas 24 h. Krystalická L--arabinóza (60 g) sa odfiltruje, materskýroztok zahustí, destilačný zvyšok rozpustív 40 ml zmesi 96 % hmot. etanolu a vodyv hmotnostnom pomere 7:1a přidá 15 mlanilínu. Zmes sa nechá stáť pri teplote 23stupňov Celzia počas 24 h, Kryštalický N--fenyl-L-ribozylamín (32 g, t. j. 21,5 %-nývýťažok L-ribózy vo formě N-fenyl-L-ribo-zýlamínu vztahované na východisková L-a-rabinózu, resp. 53,5 %-ný výťažok zohťad-nením regenerovanej L-arabinózyJ sa odfil-truje. Získaný N-fenyl-L-ribozylamín obsahuje 1,5 mg molybdénu v oxidačnom stupni VI.Do 250 ml vody sa přidá 32 g N-fenyl-L-ri-bozylamínu, 13 mg monohydrátu kyselinycitrónovej (mólový poměr kyseliny citróno-vej k molybdénu v oxidačnom stupni VI je4 : 1) a zmes sa hydrolyzuje technikou pre-háňania vodnou parou, až sa do předlohynadestiluje 350 ml zmesi vody a anilínu.Roztok obsahujáci L-ribózu sa přečistí ak-tívnym uhlím a filtrát zahustí do sucha, čímsa získá 20 g chromatograficky čistej L-ri-bózy. Kryštalická L-ribóza sa získá kryšta-lizáciou zo 100 % hmot. etanolu.A mixture of 100 g of L-arabinose, 1 g of molybdic acid and 500 ml of water was heated at 95 ° C for 3 h. The solution is concentrated, the syrupy residue is dissolved in 200 ml of methanol and allowed to crystallize at 23 degrees Celsius for 24 h. Crystalline L-arabinose (60 g) is filtered off, the mother liquor is concentrated, the solvent residue is 40 ml of a 96 wt. of ethanol and water in a 7: 1 weight ratio and 15 mlaniline is added. The mixture is allowed to stand at 23 degrees Celsius for 24 h, Crystalline N-phenyl-L-ribozylamine (32 g, ie 21.5% L-ribose yield as N-phenyl-L-ribosylamine referring to starting La -Brabinose or 53.5% yield by incorporating regenerated L-arabinose is filtered off, and the N-phenyl-L-ribozylamine obtained contains 1.5 mg of molybdenum in oxidation step VI. g of N-phenyl-L-ri-butylamine, 13 mg of citric acid monohydrate (molar ratio of citric acid to molybdenum in oxidation stage VI is 4: 1) and the mixture is hydrolysed by a water vapor rinsing technique until 350 ml of the mixture is distilled into the mixture. The L-ribose-containing solution is purified with charcoal and the filtrate is concentrated to dryness to give 20 g of chromatographically pure L-bromose, and crystalline L-ribose is obtained by crystallization from 100% ethanol.

Epimerizácia je inhibovaná aj pri pod- statné nižších teplotách ako pri uvedenom spósobe hydrolýzy technikou preháňania vodnou parou například pri zahušťovaníEpimerization is also inhibited at substantial lower temperatures than the aforementioned water vapor cross-linking hydrolysis method, e.g.

Claims (1)

PREDMETSUBJECT Spósob přípravy aldóz z odpovedajúcich N-fenylglykozylamínov vyznačujúci sa tým, že k N-fenylglykozylamínu, vodě a/alebo etanolu a molybdénanovej zlúčenine sa přidá kyselina citrónová v mólovom pomereProcess for the preparation of aldoses from the corresponding N-phenylglycosylamines, characterized in that to the N-phenylglycosylamine, water and / or ethanol and the molybdenum compound, a molar ratio of citric acid is added. VYNALEZU molybdénu s oxidačným stupňom VI ku kyselině citrónovej 1 : aspoň 4 a reakčná zmes sa hydrolyzuje technikou preháňania vodnou parou.INVENTION molybdenum having an oxidation degree of VI to citric acid of 1: at least 4 and the reaction mixture is hydrolyzed by a steam-jet technique.
CS874656A 1987-06-23 1987-06-23 Method of preparation of aldoses CS260397B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS874656A CS260397B1 (en) 1987-06-23 1987-06-23 Method of preparation of aldoses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS874656A CS260397B1 (en) 1987-06-23 1987-06-23 Method of preparation of aldoses

Publications (2)

Publication Number Publication Date
CS465687A1 CS465687A1 (en) 1988-05-16
CS260397B1 true CS260397B1 (en) 1988-12-15

Family

ID=5389824

Family Applications (1)

Application Number Title Priority Date Filing Date
CS874656A CS260397B1 (en) 1987-06-23 1987-06-23 Method of preparation of aldoses

Country Status (1)

Country Link
CS (1) CS260397B1 (en)

Also Published As

Publication number Publication date
CS465687A1 (en) 1988-05-16

Similar Documents

Publication Publication Date Title
US5015296A (en) Continuous epimerization of sugars, in particular D-arabinose to D-ribose
WO2000034221A1 (en) Nitric acid removal from oxidation products
Carson The Reaction of Fructose with Isopropylamine and Cyclohexylamine2
US4138547A (en) Process for preparing 1,2,4-triazole nucleosides
US4339585A (en) Method for the production of 2-hydroxymethyl-3,4,5-trihydroxy piperidine and the corresponding N-methyl derivative
US5218098A (en) 5-(α-D-glucopyranosyloxymethyl)-furan-2-carboxaldehyde
Hodge et al. Preparation and Properties of Dialditylamines1
Beélik et al. Some new reactions and derivatives of kojic acid
CS260397B1 (en) Method of preparation of aldoses
US4178437A (en) 1-N-Kanamycin derivatives
US2384102A (en) Aromatic amine-n-pentapyranosides and process for the manufacture of same
US2922783A (en) Preparation of sugar derivatives
DE68915067T2 (en) Process for the preparation of 2'-deoxy-beta-adenosine.
CS260398B1 (en) A method of preparing aldoses
US4159990A (en) Reduction of 2,5-diketogluconic acid
JPH0558438B2 (en)
Baer et al. Reactions of nitro sugars. X. Novel furanoside synthesis. Conversion of methyl 6-deoxy-6-nitro-. alpha.-D-glucopyranoside into methyl 3-deoxy-3-nitro-. beta.-L-ribo-and-arabinofuranosides and corresponding amino sugars
JP2006516148A (en) Method for extracting 2-keto-L-gulonic acid (KGA) from a polar, preferably aqueous solvent
KR810001104B1 (en) Process for preparation of n-methyl moranoline
CS260393B1 (en) A method of preparing aldoses
Gibbs et al. Some further reactions of carbohydrates epimines
US4230880A (en) 2,5-Diketogluconic acid esters
EP0601897A1 (en) Method for the preparation of glycosylamines from reducing sugars
JPH0432833B2 (en)
US2921063A (en) Streptomycin purification