CS232123B1 - Method of vaccination iniciation - Google Patents

Method of vaccination iniciation Download PDF

Info

Publication number
CS232123B1
CS232123B1 CS832680A CS268083A CS232123B1 CS 232123 B1 CS232123 B1 CS 232123B1 CS 832680 A CS832680 A CS 832680A CS 268083 A CS268083 A CS 268083A CS 232123 B1 CS232123 B1 CS 232123B1
Authority
CS
Czechoslovakia
Prior art keywords
acid
seeding
vinyl chloride
vaccination
monomer
Prior art date
Application number
CS832680A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS268083A1 (en
Inventor
Vendelin Macho
Jan Bartus
Jozef Baniska
Original Assignee
Vendelin Macho
Jan Bartus
Jozef Baniska
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vendelin Macho, Jan Bartus, Jozef Baniska filed Critical Vendelin Macho
Priority to CS832680A priority Critical patent/CS232123B1/en
Publication of CS268083A1 publication Critical patent/CS268083A1/en
Publication of CS232123B1 publication Critical patent/CS232123B1/en

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Description

Vynález sa týká spósobu iniciácie očkovania olefinicky nenasýteného monomeru alebo zmesi monomérov na makromolekulárny substrát za spolupósobenia technicky 1'ahko dostupných komponentov na báze organických zlúčenín.The present invention relates to a method of initiating seeding of an olefinically unsaturated monomer or monomer mixture onto a macromolecular substrate by the interaction of readily available organic compound components.

Je žínáme, že očkovanie monomérmi tuhých makromolekulových zlúčenín možno uskutočňovať v disperziách vo vhodnom roizpúšťadle, připadne v samotnom očkujúcom monomére za přítomnosti peroxidických iniciátorov. Tak například, vinylchlorid možno očkováť na polyetylén zahriatim zmesi polyetylénu a monoméru na teplotu 95 °C (frainc. pat. 1 445 350] alebo po rozpuštění v benzene a za spolupósobenia benzoylperoxidu ako iniciátora (V. Brit. paten číslo 814 393). Podobme možno očkovat vimylchloridom polyetylén rozpuštěný v monomére pri teplote 80 °C (belgický pat. 657 762), ako aj vinylchlorid na kopolymér etylén-vinylacetát [Macho V. a kol.: Chem. próm. 27, 131 (19'77); čs. aut. osvedčeinie 169 972;It is appreciated that seeding with monomers of solid macromolecular compounds can be carried out in dispersions in a suitable co-solvent, optionally in the inoculating monomer itself in the presence of peroxide initiators. For example, vinyl chloride can be seeded to polyethylene by heating a mixture of polyethylene and monomer to 95 ° C (frainc. Pat. 1,445,350) or after dissolution in benzene and with the involvement of benzoyl peroxide as the initiator (V. Brit. Paten number 814,393). polyethylene dissolved in monomer at 80 ° C (Belgian Pat. 657 762) as well as vinyl chloride to ethylene-vinyl acetate copolymer can be grafted with vimyl chloride [Macho V. et al., Chem., 27, 131 (19'77); automotive certification 169 972;

174 542). Nedostatkom je však potřeba previssť do roztoku očkovaný substrát a nie příliš vysoký stupeň očkovania.174,542). However, the disadvantage is that the inoculated substrate must be transferred to the solution and not a very high degree of inoculation.

Očkovanie monomérov na polymery použitím termomechanického pósobenia sa využívá iba zriedka. Týmto spósobom vyvolané reakcie očkovania sa dajú poměrně lahko uskutočniť, vedú však skór k vzniku „modifikovaných“ (hyhridných) kopolymérov. Takto možno v extrúdri kontinuálně očkovat zimes kyseliny akrylovej a butylakrylátu na polyetylén (belgický pat. číslo 864 187), pričom počet iniciačných centier možno zvýšit ešte použitím peroxidického iniciátora, ako je to v případe očkovania vinylacetátu na polyetylén [rumunský pat. 70 243). Výtažky očkovania nie sú však vysoké. V techinickej praxi sa využívajú radiačně metody, ale převažme len na modifikáciu povrchových vlastností, například vlákien a fólií [Polikarpov a i.: Vysokomoil. sojed. B21, 916 (1979); Kurilenko a i.: Vysokomol. sojed. A22, 1107 (1980); Lodesová a i.: Radiochem. Radioanal. Lett. 32, 327 (1978) ], čím sa zvýši ich vyfarbitelnosť, hydrofllnosť ap. Takéto očkovanie si však vyžaduje viac energie a účinnost v relácii so spotřebou energie je poměrně nízká.Seeding monomers into polymers using thermomechanical action is rarely used. Vaccination-induced reactions in this manner are relatively easy to carry out, but lead to the formation of "modified" (hydride) copolymers. Thus, in the extruder, zimes of acrylic acid and butyl acrylate can be continuously grafted onto polyethylene (Belgian Pat. No. 864 187), and the number of initiation centers can be further increased by using a peroxide initiator, as is the case with vinyl acetate grafting on polyethylene. 70 243). However, vaccination yields are not high. Radiation methods are used in techinical practice, but predominantly only to modify surface properties, such as fibers and foils [Polikarpov et al .: Vysokomoil. sojed. B21,916 (1979); Kurilenko et al .: Vysokomol. sojed. A22,1107 (1980); Lodes et al .: Radiochem. Radioanal. Lett. 32, 327 (1978)], thereby increasing their colorability, hydrophilicity, and the like. However, such vaccination requires more energy and efficiency in relation to energy consumption is relatively low.

Použitie redox-systému na iniciáciu homopolymerizácie a kopolymerizácie je tiež známe [Vanderberg a i.: Ind. Eng. Chem. 40, 932 (1948); USA pat. 4 261 870; 4 269 960; NSR pat. 2 929 485], ale chýbajú výsledky aplikácie na očkovanie, resp. štiepenie polymérov. V tomto smere sa však významný pokrok dosiahol použitím anorganiCko-organického redox-systému na iniciáciu očkovania polypropylénu i dalších polymérov monomérmi pri teplotách do 30 °C [Citovický P., Mikulášová D., Ohrastová V.: Europ. Polym. J. 12, 627 (1976); Citovický a kol.: Chem. zvěsti 36, 231 (1982); Ooll. Czeoh. Chem. Comm. 45, 2319 (1980)]. Nevýhodou je však použitie solí kovov přechodného mocemstva vo vysokých koncentráciách, ktoré sa ťažko z produktov odstraňujú a znižujú ich stabilitu. Tento nedostatok sice rieši sčasti použitie polyetylénamínov, ako aktivátorov rozpadu polymérnych hydroperoxidov [Natta a i.: J. Polym. Sci. 34, 685 (1959)], ale sa dosahujú len nízké 'konverzie. Tieto a ďalšie technické problémy však rieši spósob podlá tohto vynálezu.The use of a redox system to initiate homopolymerization and copolymerization is also known [Vanderberg et al., Ind. Eng. Chem. 40, 932 (1948); US Pat. 4,261,870; 4,269,960; NSR pat. No. 2,929,485], but the results of the vaccination or resp. cleavage of polymers. However, significant progress has been made in this regard by using an inorganic-organic redox system to initiate grafting of polypropylene and other polymers with monomers at temperatures up to 30 ° C [Citovický P., Mikulášová D., Ohrastová V .: Europ. Polym. J. 12, 627 (1976); Citovický et al .: Chem. rumors 36, 231 (1982); Ooll. Czeoh. Chem. Comm. 45, 2319 (1980)]. However, the disadvantage is the use of transition metal salts in high concentrations, which are difficult to remove from the products and reduce their stability. Although this deficiency is partly addressed by the use of polyethylene amines as activators of the breakdown of polymeric hydroperoxides [Natta et al., J. Polym. Sci. 34, 685 (1959)], but only low conversions are achieved. However, these and other technical problems are solved by the method of the present invention.

Podlá tohto vynálezu sa spósob iniciácie očkovania olefinicky nenasýteným monomérom alebo zmesou monomérov na makromolekulárny substrát vystavený před očkováním pósobeiniu žiarenia a/alebo kyslřka a/alebo oligomérov kyslíka spravidla za přítomnosti pomocných látok uskutočňuje tak, že komponentmi iniciačného systému v prostředí očkovania je aspoň jedna dusíkatá látka spomedzi zlúčenín: amoniak, hydroxid amómny, hydrouhličitan amóniny, alifatické diamíny až polyamíny, hexametyléntetramín, cyklické aminy, heterocyklické dusíkaté zlúčeniny, alkoholamíny, zmesi alkoholamínov v množstve 0,1 až 35. % hmot., počítané na očkovací monomer alebo monoméry a/alebo aspoň jedna organická redukujúca látka spomedzi zlúčenín: redukujúce cukry, dienoly, aldehydoalkoholy, alifatické aldehydy, hydroxykyseliny a připadne ako pomocná látka aspoň jedna zlúčenina rnedl v množstve 1.10-5 až 1.10_1 % hmot.According to the present invention, the method of initiating seeding with an olefinically unsaturated monomer or monomer mixture onto a macromolecular substrate exposed to radiation and / or oxygen and / or oxygen oligomers prior to seeding is generally carried out in the presence of adjuvants in the presence of at least one nitrogenous substance among the compounds: ammonia, ammonium hydroxide, ammonium bicarbonate, aliphatic diamines to polyamines, hexamethylenetetramine, cyclic amines, heterocyclic nitrogen compounds, alkoholamines, mixtures of alkolamines in an amount of 0.1 to 35% by weight, calculated on the grafting monomer or monomers and / or at least one organic reducing agent of the compounds: reducing sugars, dienols, aldehyde alcohols, aliphatic aldehydes, hydroxy acids, and optionally at least one compound rnedl in an amount of 1.10 -5 to 1.10 -1 % by weight;

Výhodou spósobu iniciácie očkovania podlá tohto vynálezu je široká surovinová a technická dostupnost organických komponentov iniciačného systému, jeho vysoká očkovacia a přitom nízká homopolymerizačná účinnosť. Ďalej jednoduchost uskutočnenia spósobu v akomkolvek meradle, 1'ahké odstránenie zvyškov iniciačného systému zo surových produktov očkovania a tým aj vysoká stabilita získaných produktov a finálnych výrobkov na ich báze.The advantage of the vaccination initiation method of the present invention is the wide raw material and technical availability of the organic components of the initiator system, its high inoculation and low homopolymerization efficiency. Furthermore, the ease of carrying out the process on any scale, the easy removal of the initiation system residues from the crude inoculation products, and thus the high stability of the products obtained and the finished products based thereon.

V neposlednom radě, možnost uskutočňovať proces očkovania v širokom rozsahu teplót a na běžných polymerizačných zariadeniach.Last but not least, the possibility of carrying out the inoculation process over a wide range of temperatures and on conventional polymerization equipment.

Iniciácia očkovania podlá tohto vynálezu sa uskutočňuje pri teplotách 0 až 200 C‘C v bloku, v roztoku, v suspenzi! alebo v emulzii, dokonca i v tavenine, kontinuálně, polokontinuálne alebo pretržite. Přitom olefinicky nenasýteným monomérom alebo zmesou monomérov sú všeobecne známe vinylové (vinylchlorid, vinylidénchlorid, styrén, akrylonitril, vinylacetát ap.), akrylové (alkylakryláty, akrylamid a i.), metakrylové a ďalšie monoméry a komonoméry, vrátane olefínov a diénov.The vaccination initiation according to the invention is carried out at temperatures of 0 to 200 ° C in block, in solution, in suspension. or in an emulsion, even in the melt, continuously, semi-continuously or continuously. Vinyl (vinyl chloride, vinylidene chloride, styrene, acrylonitrile, vinyl acetate, etc.), acrylic (alkyl acrylates, acrylamide, etc.), methacrylic and other monomers and comonomers, including olefins and dienes, are generally known to be olefinically unsaturated monomer or monomer mixture.

Očkovaný makromolekulový substrát tvoří syntetický homopolyméir, kopolymér, produkty polyadície a kondenzácie, ako aj přírodně polymery, ako je škrob, celulóza a jej deriváty, mleté dřevo, prírodné vlákniny ap.The grafted macromolecular substrate comprises a synthetic homopolymer, copolymer, polyaddition and condensation products, as well as natural polymers such as starch, cellulose and its derivatives, ground wood, natural fibers, and the like.

Na celý očkovaný makromolekulový sub232123 strát alebo jeho časť sa před očkováním působí žiarením, hlavně žiarením gama-lúčmi, ultrafialovými lúč.mi, nízkoieplotnou plazmou ap., za přítomnosti vzduchu alebo kyslíku, resp. kyslíkobsahujúcim plynom, zvlášť s atomovým kyslíkom a najma jeho oligomérmi (O2, O3, O4 atd.). Z technicko ekonomického hfadiska k najvhodnejším spósobom patří ozónizácia substrátu vzduchom obsahujúclm ozón.All or part of the inoculated macromolecular sub232123 losses are treated with radiation, in particular gamma-rays, ultraviolet rays, low-intensity plasma, etc., prior to vaccination, in the presence of air or oxygen, respectively. an oxygen-containing gas, in particular atomic oxygen and in particular its oligomers (O2, O3, O4, etc.). From a technical-economic point of view, the most suitable methods are ozonization of the substrate with air containing ozone.

K dusíkatým látkám podlá tohto vynálezu patria: organické dusíkaté látky, ako etyléndiamín. diety]éintriamín a ďalšie alifatické diamíny až polyamíny, cyklické aminy, ako cyklohexylamín, ďalej heterocykPcké dusíkaté zlúčeniny, ako pyridin a alkylpyridíny, alkoholaminy, azíny ap. Sem patří aj amoniak ako taký, ale aj vo formě vodného roztoku, teda hydroxid amó,nny a uhličitan i hydrouhličitan amónny.The nitrogen compounds of the present invention include: organic nitrogen compounds such as ethylenediamine. diethylenetriamine and other aliphatic diamines to polyamines, cyclic amines such as cyclohexylamine, heterocyclic nitrogen compounds such as pyridine and alkylpyridines, alkoholamines, aziines and the like. This includes ammonia as such, but also in the form of an aqueous solution, i.e., ammonium hydroxide and ammonium carbonate and bicarbonate.

K organickým redukujúcim zložkám patria organické dienoly ('kyselina askorbevá, kyselina dihydroxymaleinová ap.j, ďalej aldehydoalkoholy, aldehydokyseliny, zvlášť redukujúce cukry, glykoláldehyd, alifatické aldehydy, viacsýtme organické hydroxykyseliny ap.Organic reducing components include organic dienols (ascorbic acid, dihydroxymaleinic acid and the like), aldehyde alcohols, aldehyde acids, especially reducing sugars, glycoldehyde, aliphatic aldehydes, polyhydric organic hydroxy acids and the like.

Do tejto skupiny rednkujúcich látok patří aj ihyďrazín a jeho deriváty, najma vsak produkty jeho adície s vodou a kyselinami, ako aj organické polyamíny.This group of reducing agents also includes irazadine and its derivatives, in particular the products of its addition with water and acids as well as organic polyamines.

Dusíkatou alebo redhkuiúcou látkou může byť dokonca očkujúci monomer alebo komonomér.The nitrogenous or reducing agent may even be a seeding monomer or comonomer.

K pomocným látkám patria, okrem zlúčenín médi v množstve 1.10-5 až 1.10-1 % hmot, počítané na monomér, rozpúšťadlá, voda, regulátory molekulovej hmotnosti, regulátory pH, povrchovoaktívne látky, hlavně emulgátory, dispergátory, ďalej farbivá, pigmenty, plnidlá ap.Excipients include, in addition to the compounds, medium in an amount of 1.10 -5 to 1.10 -1 % by weight, calculated on the monomer, solvents, water, molecular weight regulators, pH regulators, surfactants, especially emulsifiers, dispersants, colorants, pigments, fillers and .

Dalšie podrobnosti sposobu, ako aj ďalšie výhody sú zřejmé z piríkladov, ktoré však sposob podfa tohto vynálezu neobmedzujú.Further details of the process as well as other advantages are apparent from the examples, which, however, do not limit the method according to the invention.

Příklad 1Example 1

Do hrubostennej sklenenej skúmavky o objeme .0,125 dm3 vloženej do puzdra z nehrdzavejúcej ocele s mosadzným uzávěrem sa dávkuje po 50 g destilovanej vody, 0,25 g emulgátora na báze sódnej soli alkylsulfónových 'kyselin (Mersolat Hj vo formě vodného roztoku o koncentrácii 1 % hmot., ďalej 10,0 g oxidovaného práškového polyetylénu o tavnom indexe 7 g/10 min. a hustotě 919 kg.ran3 (typu RA-7-23/P3) s obsahom peroxidických skupin 6,0.10“5 mol/kg polyetylénu; k tomu 0,3 g glukózy ako redukčného činidla a 1,0 g hydroxidu amonného o konc. 28 % hmot.' (t. j. 0,28 g NH3). Po 3 min. prefúkaní dusíkom sa nadávkuje 20,0 g vinylchloridu. Skúmavka sa vloží do otočného rámu, nachádzajúceho sa vo vodnom kúpeli, vytemperovanom na teplotu 50 + 0,5 °'C. Rýchlosť otáčania je 35 min“1. Po 20 h polymerizácie sa skúmavka schladí v studenej vodě, nespolymerizovaný vinylchlorid sa odplyní a reakčný produkt sa prenesie na filtračný kelímok, kde sa premyje destilovanou vodou. Získaný surový produkt napriek přítomnosti i homopolyméru prakticky nepozostáva v emulzie. Odfiltrovaná voda je takmer čistá, napriek použitiu emulgátora, získaný surový produkt je vzhíadove podobný polyméru připravenému typickou suspenzinou polymerizáciou alebo kopolymerizáciou. Konverzia vinylchloridu sa vypočítává po vysušení produktu v sušiarni pri teplote 60 °C a dosahuje 76,7 %. Na zistenie výtažku očkovania, resp. podielu naočkovaného vinylchloridu z celkového spolymerlzovaného množstva sa robí extrakcia v cyklohexanóne počas 30 h pri laboratórnej teplote. Získaný výťažok očkovania dosahuje 74,4 %. Za nepřítomnosti glukózy ako redukčného činidla je konverzia vinyichloiridu po 15 h polymerizácie 0,5 % a ak sa nepoužije ani amoniak, resp. hydroxid amonný, konverzia je iba 0,1 °/o.A 50 g distilled water, 0.25 g of an alkylsulfonic acid sodium salt emulsifier (Mersolat Hj in the form of an aqueous solution at a concentration of 1%) was charged into a 0.125 dm 3 thick-walled glass tube placed in a stainless steel housing with a brass cap. 10.0 g of oxidized powdered polyethylene with a melt index of 7 g / 10 min and a density of 919 kg.ran 3 (type RA-7-23 / P3) with a content of peroxide groups of 6,10.10 5 mol / kg polyethylene In addition, 0.3 g of glucose as a reducing agent and 1.0 g of 28% by weight ammonium hydroxide (i.e. 0.28 g of NH3) were charged with 20.0 g of vinyl chloride after 3 minutes of nitrogen purge. is placed in a swivel frame in a water bath at 50 ± 0.5 ° C. Rotation speed is 35 min -1 After 20 hours of polymerization, the tube is cooled in cold water, the non-polymerized vinyl chloride is degassed and the reaction product is transferred to a filter crucible where it is Despite the presence of the homopolymer, the crude product obtained practically does not remain in the emulsion. The filtered water is almost pure, despite the use of an emulsifier, the crude product obtained is visually similar to the polymer prepared by a typical suspension by polymerization or copolymerization. The conversion of vinyl chloride is calculated after drying the product in an oven at 60 ° C to reach 76.7%. To determine the vaccination extract, respectively. A portion of the grafted vinyl chloride from the total co-polymerized amount is extracted in cyclohexanone for 30 h at room temperature. The vaccination yield obtained was 74.4%. In the absence of glucose as a reducing agent, the conversion of vinyichloiride after 15 hours of polymerization is 0.5%, and if neither ammonia nor ammonia is used. ammonium hydroxide, conversion is only 0.1%.

Příklady 2 až 14Examples 2 to 14

Postupom podfa příkladu 1 sa uskutoční očkovanie vinylchloridu na oxidovaný práškový polyetylén za inak podobných podmienok, ale s použitím iných redukčných činidiel. Získané výsledky sú prehfadne zhrnuté v tabulke 1.The procedure of Example 1 is followed to inoculate vinyl chloride to oxidized powdered polyethylene under otherwise similar conditions but using other reducing agents. The results obtained are summarized in Table 1.

Tabulka 1Table 1

Příklad Example Redukčně činidlo Reducing agent Množstvo stabilizátora (g) number stabilizer (G) Doba polymerizácie (h) Polymerization time (H) Konverzia vinylchloridu (%] Vinyl Chloride Conversion (%) Výťažok očkovania (%) yield vaccinations (%) 2 2 kyselina askorbová ascorbic acid 0,25 0.25 20 20 78,0 78.0 65,4 65.4 3 3 galaktóza galactose 0,25 0.25 20 20 78,5 78.5 70,5 70.5 4 4 kyselina citrónová citric acid 0,25 0.25 17 17 20,8 20.8 41,8 41.8 5 5 fruktóza fructose 0,25 0.25 20 20 74,0 74.0 59,7 59.7 6 6 kyselina dihydroxymaleinová dihydroxymaleinic acid 0,25 0.25 20 20 66,4 66.4 66,9 66.9 7 7 tokoferol tocopherol 0,25 0.25 22 22 39,4 39.4 88,0 88.0 8 8 dietyléintriamín dietyléintriamín 0,25 0.25 17 17 78,8 78.8 51,6 51.6 9 9 trietyléntetramín triethylenetetramine 0,25 0.25 20 20 48,2 48.2 40,7 40.7 10 10 hexametyléntetramín hexamethylenetetramine 0,25 0.25 20 20 18,6 18.6 55,7 55.7 11 11 hydírazínsulfát hydírazínsulfát 0,25 0.25 17 17 20,1 20.1 50,8 50.8 12 12 hydrazínhydrát hydrazine hydrate 0,25 0.25 20 20 19,6 19.6 55,0 55.0 13 13 benzoín benzoin 0,25 0.25 20 20 25,1 25.1 74,7 74.7 14 14 acetaldehyd acetaldehyde 0,25 0.25 22 22 21,9 21.9 67,8 67.8

Příklady 15 až 18Examples 15 to 18

Postupuje sa podobné ako v příklade 1, ale namiesto polyetylénu sa ako makromolekulárne substráty použijú ozónizovainé syntetické polyméry a kopolyméry vo formě práškov. V tabufke 2 sú uvedené jednak druhy makromolekulových substrátov, ako aj obsah peroxidických skupin v nich, dosiahnutá konveirzia vinylchloridu a výťažok naočkovaného vinyilohloridu z celtoove konvertovaného.The procedure is similar to that in Example 1, but instead of polyethylene, ozonated synthetic polymers and copolymers in the form of powders are used as macromolecular substrates. Table 2 shows both the types of macromolecular substrates, as well as the content of peroxide groups therein, the vinyl chloride conversion achieved and the yield of grafted vinyl chloride from celto-converted.

Tabulka 2Table 2

Příklad Example Makromolekulový substrát Macromolecular substrate Obsah peroxidických skupin v substráte .IQ3 (mol .kg-1)Peroxide groups content in substrate .IQ 3 (mol. Kg -1 ) Konverzia vinylchloridu (%) Conversion of vinyl chloride (%) Výťažok očkovania (%) Vaccination yield (%) 15 15 suspenzný póly vinylchlorid o K 70 suspension poles vinyl chloride o K 70 35,2 35.2 89,9 89.9 74,3 74.3 16 16 polypropylén polypropylene 16,2 16.2 29,3 29.3 75,7 75.7 17 17 suspenzný kopolymér vinylchlorid-propylén o K hodnotě 58 a obsah zakopolymerizovaného propylénu 3,6 % hmot. a vinyl chloride-propylene slurry copolymer having a K value of 58 and a copolymerized propylene content of 3.6 wt. 53,8 53.8 87,9 87.9 74,0 74.0 18 18 suspenzný kopolymér vinyl- vinyl-suspension suspension copolymer 25,7 25.7 13,8 13.8 77,2 77.2

chlorid-vinylacetát s obsahom 15 °/o zakopolymerizovaného vinylacetátuchloride-vinyl acetate containing 15% of copolymerized vinyl acetate

Příklad 19Example 19

Postupuje sa podobné ako v příklade 1, ale oxidovaný polyetylén sa očkuje vinylchloridom s použitím iných dusíkatých báz než amoniaku alebo hydroxidu amonného. Tak použitím 1 g etyléndiamínu počas 20 h sa dosiahne konverzia vinylchloridu 92,6 % a výťažok očkovania 84,5 °/o. S pyridínom (1 gram) sa dosiahne za podobných podmienok konverzia vinylchloridu 11,8 % a výťažok očkovania 61,8 %.The procedure is similar to Example 1, but the oxidized polyethylene is grafted with vinyl chloride using nitrogen bases other than ammonia or ammonium hydroxide. Thus, using 1 g of ethylenediamine for 20 h results in a conversion of vinyl chloride of 92.6% and a seeding yield of 84.5%. With pyridine (1 gram) a conversion of vinyl chloride of 11.8% and a seeding yield of 61.8% was achieved under similar conditions.

P r i k 1 a d 20Example 20

Sleduje sa vplyv množstva amoniaku na očkovania ozónizovaného polyetylénu (10 gj, pri použití kyseliny askorbovej ako redukčného činidla (0,3 g) v emulzii vytvorenej z 50 g vodného· roztoku Mersolatu H o konc. 0,5 % hmot. a 20 g vinylchloridu. Po 4 h kopolymerizácie, resp. očkovania sa dosiahnú v závislosti od množstva amoniaku výsledky zihrnuté v tabufke 3.The effect of the amount of ammonia on the inoculation of ozonated polyethylene (10 g, using ascorbic acid as a reducing agent (0.3 g) in an emulsion formed from 50 g of an aqueous solution of Mersolat H of 0.5% by weight and 20 g of vinyl chloride is monitored. After 4 hours of copolymerization or seeding, the results summarized in Table 3 are obtained, depending on the amount of ammonia.

0,0013 0,078 0,260.0013 0.078 0.26

Tabulka: 3Table: 3

Množstvo přidaného NH3 (ako 0Amount of NH3 added (as 0

100%-ný j (g)____________________ pH vodnej fázy 7,4100% j (g) ____________________ pH of the aqueous phase 7.4

Konverzia vinylchloridu (% j 7,5Conversion of vinyl chloride (% j 7.5

Výťažok očkovania ( %) 23,2Vaccination yield (%) 23.2

Příklad 21Example 21

Postupuje sa podobné ako v příklade 21, ale množstvo použitého amoniaku je 1,3 g a doba polymerizácie, resp. očkovania je 20 h. Vodná fáza má pH 11,8; dosahuje sa konverzia vinylchloridu 78,4 '% a výťažok očkovania 72,2.The procedure is similar to that of Example 21, but the amount of ammonia used is 1.3 g and the polymerization time, respectively. vaccination is 20 h. The aqueous phase has a pH of 11.8; a vinyl chloride conversion of 78.4% and a seeding yield of 72.2 were achieved.

Z uvedeného je zřejmý kladný vplyv zvýšeného množstva amoniaku, resp. hydroxidu amonného na konverziu, ako aj výťažok očkovania.From this is evident positive effect of increased amount of ammonia, respectively. ammonium hydroxide for conversion as well as seeding yield.

Příklad 22Example 22

Postupuje sa podobné ako v příklade 1, ale zloženie násady je odlišné, resp. uskutočňuje sa suspenzná polymerlzácla a očkovanie. Miesto emulgátorov sa aplikujú aj typické dispergátory. Použitím metylhydroxypropylcelulózy (Metocel 50 Fj v množstve 0,5 g/10 g naoxidovaného polyetylénu, 0,3 g kyseliny askorbovej, 0,26 g amoniaku (ako 100 %-ný), 50 g vody a 20 g vinylchloridu sa pri teplote 50 °C počas 20 h dosiahne konverzia vinylchloridu 67,7 % a výťažok očkovania 48,2 %.The procedure is similar to Example 1, but the composition of the batch is different, respectively. suspension polymerization and seeding are performed. Typical dispersants are also used instead of emulsifiers. Using methylhydroxypropylcellulose (Metocel 50 Fj in an amount of 0.5 g / 10 g of oxidized polyethylene, 0.3 g of ascorbic acid, 0.26 g of ammonia (as 100%), 50 g of water and 20 g of vinyl chloride at 50 ° C over 20 h the conversion of vinyl chloride reached 67.7% and the seeding yield 48.2%.

Použitím 0,25 g produktu polyadície cetylalkoholu s 20 mólmi etylénoxidu miesto metylhydroxypropylcelulózy sa za podobných podmienok dosiahne konverzia 33,9 % a výťažok očkovania 54,9 %.Using 0.25 g of cetyl alcohol polyaddition product with 20 moles of ethylene oxide instead of methylhydroxypropylcellulose under similar conditions yielded a conversion of 33.9% and a seeding yield of 54.9%.

Zasa použitím 0,25 g produktu polyadície lanrylalkoholu so 4 mólmi etylénoxidu sa dosiahne konverzia 23,3 % a výťažok očkovania 44,6 %.Again, using a 0.25 g of a polyaddition product of lanrylalcohol with 4 moles of ethylene oxide, a conversion of 23.3% and a seeding yield of 44.6% was achieved.

Příklad 23Example 23

Postupuje sa podobné ako v příklade 1, ale na oxidovaný polyetylén sa očkuje miesto vinylchloridu styrén. Použité .množstvo emulgátora je 0,1 g, hmotnost naozónizovaného polyetylénu 5,0 g a styrénu 5,0 g. Množstvo glukózy 0,3 g a amoniaku je (přepočítané na 100 %) 0,26.g. Po 17 h polymerizácie pri teplote 50 °C sa izoluje tuhá fáza odsátím na sklenenom filtračnom kelímku. V získanom produkte je 33,9 % skonvertovaného styrénu. Extrakciou v benzéne sa zisťuje 59,0 % zo skonvertovaného styrénu naviazaného na polyetylén.The procedure is similar to that of Example 1, but styrene is inoculated for oxidized polyethylene instead of vinyl chloride. The amount of emulsifier used was 0.1 g, the weight of ozoneized polyethylene 5.0 g and styrene 5.0 g. The amount of glucose 0.3 g and ammonia is (calculated to 100%) 0.26 g. After 17 hours of polymerization at 50 ° C, the solid phase is isolated by suction on a glass filter crucible. The product obtained contained 33.9% of converted styrene. Extraction in benzene revealed 59.0% of the converted styrene bound to polyethylene.

Příklad 24Example 24

Použitý Iniciačný systém umožňuje tiežThe initiation system used also allows

10,8 10.8 11,3 11.3 11,5 11.5 5,8 5.8 19,1 19.1 24,2 24.2 22,4 22.4 64,5 64.5 66,0 66.0 očkovanie inoculation metylmetakrylátu methyl methacrylate na peroxidizo- Peroxidizo-

váné polyméry. Podlá příkladu 1 sa do sklenenej skúmavky dávkuje 0,1 g emulgátora, 10,0 g oxidovaného suspenzného polyvinylchloridu o K hodnotě 70 (Slovinyl S-701), pričom obsah peroxidických skupin je 15,0 . . 10-3 mOi _ kg“1 polyvinylchloridu. Ďalej 10,0 g metylmetakrylátu; glukóza a amoniak, resp. hydroxid amónny ako v příklade 1. Po 17 h polymerizácii sa izoluje tuhá fáza s obsahom 38,4 % skonvertovaného .metylmetakrylátu. Extrakciou v benzéne sa zlstí, že 91,9 % zo skonvertovaného metylmetakrylátu je naviazané na polyvinylchlorid. Příklad 25polymers. According to Example 1, 0.1 g of an emulsifier, 10.0 g of an oxidized suspension polyvinyl chloride having a K value of 70 (Slovinyl S-701) was metered into a glass tube, the peroxide content being 15.0. . 10-3 Mo i _ kg "1 PVC. Furthermore, 10.0 g of methyl methacrylate; glucose and ammonia, respectively. ammonium hydroxide as in Example 1. After 17 hours of polymerization, a solid phase containing 38.4% converted methyl methacrylate is isolated. Extraction in benzene shows that 91.9% of the converted methyl methacrylate is bound to polyvinyl chloride. Example 25

Postupuje sa podobné ako v příklade 1, ale miesto polyetylénového substrátu, připraveného ozónizáciou sa použije polymer připravený ožiarovaním polyetylénového prášku χ-lúčami za přítomnosti vzduchu. Takto připravený práškový polyetylén má obsah peroxidických skupin 1,5 .10-3 mol. . kg“1. Jeho použitím podobné ako v příklade 1 sa dosiahne za 20 h konverzia vinylchlcridu 16,2 % a výťažok očkovania 83,9 percenta.The procedure is similar to that in Example 1, but instead of the polyethylene substrate prepared by ozonization, a polymer prepared by irradiating the polyethylene powder with χ-rays in the presence of air is used. The polyethylene powder thus prepared has a peroxide group content of 1.5-10 -3 mol. . kg ' 1 . Using it similar to Example 1, a conversion of vinyl chloride of 16.2% and a seeding yield of 83.9 percent is achieved in 20 h.

Příklad 26Example 26

Postupuje sa podobné ako v příkladu 1, ale miesto samotného vinylchloridu sa použije zmes pozostávajúca z 10 g vinylidénchloridu a 10 g vinylchloridu, ďalej 10 g ozónizovaného polyetylénu, 50 g vody, 0,26 gramov amoniaku, 0,3 g kyseliny askorbovej a 0,25 g Merzolátu. Pri teplote očkovania 50 + 0,5 °C počas 20 h sa dosiahne konverzia zmesi monomérov 91,0 % a z tohto množstva sa naviaže na polyetylén 71,3 %. Příklad 27The procedure is similar to that of Example 1, but instead of vinyl chloride alone, a mixture consisting of 10 g vinylidene chloride and 10 g vinyl chloride, 10 g ozonized polyethylene, 50 g water, 0.26 g ammonia, 0.3 g ascorbic acid and 0.1 g is used. 25 g Merzolate. At a seeding temperature of 50 + 0.5 ° C for 20 h, the conversion of the monomer mixture was 91.0% and from this amount it was bound to polyethylene 71.3%. Example 27

Postupuje sa podobné ako v příklade 1, ale miesto sklenenej skúmavky s kovovým puzdrom, opatrenej mosadzným uzáveirom sa použije kyveta z nehrdzavejúcej ocele o objeme 390 cm3. Vsádku tvoří 10 g ozónizovaného polyetylénu (typ RA 7-23), 100 g vodného roztoku Mersolatu H o konc. 0,2 % hmot. Ďalej 0,6 g glukózy a 0,52 g amoniaku (ako 100 %-ný) vo formě vodného roztoku o konc. 33 % hmot. a připadne přísad hydratovaného síranu meďnatého. Po uzavretí a odstráneni vzduchu sa nadávkuje g vinylchloridu a polymeriauje počas 20 hodin pri teplote 50 + 0,1 °C. Dosiahnuté výsledky konverzie vinylchloridu a výtažku očkovania polyetylénu vinylchloridom sú uvedené v tabulke 4.The procedure is similar to that of Example 1, but a 390 cm 3 stainless steel cuvette is used instead of a metal tube with a brass cap. The batch consists of 10 g of ozonated polyethylene (type RA 7-23), 100 g of an aqueous solution of Mersolat H with conc. 0.2 wt. Furthermore, 0.6 g of glucose and 0.52 g of ammonia (as 100%) in the form of an aqueous solution with conc. 33% wt. and optionally adding hydrated copper sulfate. After sealing and removing air, g of vinyl chloride is metered in and polymerized for 20 hours at 50 + 0.1 ° C. The results obtained for the conversion of vinyl chloride and the vinyl acetate seeding yield of vinyl chloride are shown in Table 4.

Tabulka 4Table 4

Množstvo CuSOá. 5HzO (g) Quantity CuSOá. 5HzO (g) Konverzia vinylchloridu (%) Vinyl Chloride Conversion (%) Výťažok očkovania (%) Vaccination yield (%) 0,0000 0.0000 n,i n, i 18,5 18.5 0,0005 0.0005 32,2 32.2 53, q 53, q 0,0051 0.0051 57,6 57.6 67,2 67.2 0,0163 0,0163 74,5 74.5 66,9 66.9 Příklady 28 až 33 Examples 28 to 33 rozdielom, že the difference that sa použijú iné dusíkaté látky other nitrogenous substances are used

alebo organické redukujúce činidlá. Dosiah-or organic reducing agents. Dosiah-

Postupuje The procedure sa ako v příkladu as in the example 1, len s 1, p tým nuté forcing it výsledky sú the results are uvedené v listed in tabulke 5. Table 5. Tabulka table 5 5 Příklad Example Dusíkatá látka druh množstvo (g) Crude protein species quantity (G) Organická redukujúca zlúčenina druh množstvo (g) Organic reducing compound kind of quantity (G) Konverzia vinylchlo- ridu (%) conversion of vinyl chloride (%) Výťažok očkovania (%) yield vaccinations (%) 28 28 uhličitá amonný ammonium carbonic acid 0,5 0.5 glukóza glucose 0,3 0.3 76,0 76.0 69,2 69.2 29 29 hydroxid amonný ammonium hydroxide 0,3 0.3 kyselina vinna. acid guilty. 0,3 0.3 78,2 78.2 70,1 70.1 30 30 cyklohexylamín + amoniak cyclohexylamine + ammonia 0,3 0,2 0.3 0.2 galaktóza galactose 0,3 0.3 72,5 72.5 68,5 68.5 31 31 hydrouhličitan amónny bicarbonate ammonium 0,4 0.4 fruktóza fructose 0,4 0.4 77,3 77.3 65,8 65.8 32 32 monoetanol- amín monoethanol amine 0,4 0.4 glukóza glucose 0,3 0.3 57,3 57.3 62,3 62.3 33 33 zmes dietanolamínu s butanolamínom mixture of diethanolamine with butanolamine 0,5 0.5 glukóza glucose 0,5 0.5 59,8 59.8 67,9 67.9

PREDMETSUBJECT

Claims (2)

1. Spósob iniciácie očkovania olefinicky nenasýteným monomérom alebo zmesou monomérov na makromolekulárny substrát vystavený před očkováním pósobeniu žiarenia a/alebo kyslíka a/alebo oligomérov kyslíka spravidla za přítomnosti pomocných látok, vyznačujúci sa tým, že komponeintml iniciačného systému v prostředí očkovania je aspoň jedna dusíkatá látka spomedzi žlučením amoniak, hydroxid amonný, hydrouhličitan amónny, alifatické diamíny až polyamíny, hexametyléntetramín, cyklické aminy, heterocyklické dusíkaté zlúčeniny, alkoholamíny, zmesi alkoholamínov v množstveA method of initiating seeding with an olefinically unsaturated monomer or monomer mixture onto a macromolecular substrate exposed to radiation and / or oxygen and / or oxygen oligomers prior to vaccination as a rule in the presence of adjuvants, characterized in that the component of the initiation system in the seeding environment is at least one nitrogenous substance Ammonia, ammonium hydroxide, ammonium bicarbonate, aliphatic diamines to polyamines, hexamethylenetetramine, cyclic amines, heterocyclic nitrogen compounds, alkoholamines, mixtures of alkoholamines in amounts VYNALEZUWe claim: 0,1 až 35 % hmot., počítané na očkovací monomér alebo monoméry a/alebo aspoň jedna organická redukujúca látka spomeidzi zlúčenín: redukujúce cukry, dienoly, aldehydoalkoholy, alifatické aldehydy, hydroxykyseliny a připadne ako pomocná látka aspoň jedna zlúčenina médi v množstve 1.0.1 to 35% by weight, based on the inoculum monomer or monomers and / or at least one organic reducing agent spomeidii of the compounds: reducing sugars, dienols, aldehyde alcohols, aliphatic aldehydes, hydroxy acids and optionally at least one medium compound in an amount of 1. . 10~5 až 1.10_1 % hmot.. 10 ~ 5 to 1.10 _1 wt. 2. Spósob iniciácie pódia bodu 1, vyznačujúci sa tým, že organickou redukujúcou látkou je dienol, s výhodou kyselina askorbová, kyselina dihydroxymaleinová a/alebo hydroxykyselina, s výhodou kyselina citrónová a kyselina vinna.2. A method according to claim 1, wherein the organic reducing agent is dienol, preferably ascorbic acid, dihydroxymaleic acid and / or hydroxy acid, preferably citric acid and tartaric acid.
CS832680A 1983-04-14 1983-04-14 Method of vaccination iniciation CS232123B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS832680A CS232123B1 (en) 1983-04-14 1983-04-14 Method of vaccination iniciation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS832680A CS232123B1 (en) 1983-04-14 1983-04-14 Method of vaccination iniciation

Publications (2)

Publication Number Publication Date
CS268083A1 CS268083A1 (en) 1984-05-14
CS232123B1 true CS232123B1 (en) 1985-01-16

Family

ID=5364588

Family Applications (1)

Application Number Title Priority Date Filing Date
CS832680A CS232123B1 (en) 1983-04-14 1983-04-14 Method of vaccination iniciation

Country Status (1)

Country Link
CS (1) CS232123B1 (en)

Also Published As

Publication number Publication date
CS268083A1 (en) 1984-05-14

Similar Documents

Publication Publication Date Title
US4612358A (en) UV-absorbing monomer and polymers thereof
EP0275081B1 (en) Copolymers of vinyl alcohol and acrylates
NO793966L (en) SOLVENT POLYMERIZATION OF CARBOXYL containing MONOMERS
US3476727A (en) Process for the low-temperature homopolymerization and copolymerization of vinyl chloride
KR100345911B1 (en) Method of Making Acrylic Polymers
US4948857A (en) Copolymers of vinyl acetate and acrylates
CA1038986A (en) Process for producing water-soluble polymers
EP0402710A2 (en) Interpolymers for barium sulphate inbihition
JP2004513996A (en) (Co) polymerization of vinyl chloride in the presence of a stable nitroxyl radical
TW438843B (en) Bipopulated latex of vinyl chloride copolymers, process for the manufacture thereof and applications thereof
RU2320675C2 (en) Method for preparing block-copolymers
CN1267459C (en) Method for preparing dialkyl ester percarbonate solution
CS232123B1 (en) Method of vaccination iniciation
US2847405A (en) Continuous process for the polymerization of acrylonitrile
EP0275900A2 (en) Copolymers of vinyl acetate and acrylates
EP1689790B1 (en) Process for producing polymers
Bayazeed et al. Graft Polymerization of Acrylamide onto Starch Using Ferrous‐Starch Thiocarbonate‐Persulphate Redox System
EP0774471B1 (en) Process in suspension for preparing acrylic polymers
TAGHI et al. Kinetics and mechanism of heterogeneous graft polymerization of acrylonitrile onto polyvinyl alcohol initiated with ceric ammonium nitrate
Citovický et al. The copolymerization of styrene and maleic anhydride initiated by peroxides of isotactic polypropylene
US5082910A (en) Polymerization process using tertiary-amylperoxy pivalate as the free radical initiator
SU1747681A1 (en) Reagent for suppressing activity of sulfate-reducing bacteria in flooded oil formation
JPS645046B2 (en)
CA1129149A (en) Stabilizer systems and vinyl halide resin compositions containing same
US3457241A (en) Method for producing vinyl chloride polymers