CS232011B1 - Manufacturing process shortchannel mos tranzistor - Google Patents
Manufacturing process shortchannel mos tranzistor Download PDFInfo
- Publication number
- CS232011B1 CS232011B1 CS82645A CS64582A CS232011B1 CS 232011 B1 CS232011 B1 CS 232011B1 CS 82645 A CS82645 A CS 82645A CS 64582 A CS64582 A CS 64582A CS 232011 B1 CS232011 B1 CS 232011B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- gate
- polycrystalline
- polycrystalline silicon
- photoresist
- layer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 21
- 229920002120 photoresistant polymer Polymers 0.000 claims description 11
- 230000003647 oxidation Effects 0.000 claims description 9
- 238000007254 oxidation reaction Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- 239000002019 doping agent Substances 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 claims 1
- 230000003628 erosive effect Effects 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 description 8
- 238000005530 etching Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 229910007991 Si-N Inorganic materials 0.000 description 2
- 229910006294 Si—N Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018173 Al—Al Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000011272 standard treatment Methods 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Bipolar Transistors (AREA)
- Electrodes Of Semiconductors (AREA)
Description
232 011232 011
Vynález rieši spdsob výroby krátkokanálového MOS tranzisto-ra s hradlom z polykryštalického kremíka - Sálej "poly-Si”, resp.s hradí om kombinovaným z poly-Si a kovu·The present invention provides a method for producing a short-channel MOS transistor with a polycrystalline silicon gate - Salyi " poly-Si "
Doposial’ známe spdsoby výroby MOS tranzistor® využívajúproces termickéj oxidácie, termickej difúzi®, chemickej depozí-eie z plynné j fáze. - Sálej CVD, iónovej implantácie a Standard-ně j fotolitografie s kontaktnými maskami. Nevýhodou týchto sp6-sobov je nemožnost použitia štandardnej fotolitografie v procesevýroby krátkokanálového MOS tranzistore, nakoTko táto nevykreslíreprodukovateTne rozměr pod 4 až 5 ^im.So far known MOS transistor® processes use the thermal oxidation process, thermal diffusion®, chemical deposition from the gaseous phase. - CVD saline, ion implantation and Standard contact photolithography. A disadvantage of these methods is the inability to use standard photolithography in the production process of the short-channel MOS transistor, since this does not produce a reproducible dimension below 4 to 5 µm.
Hoře uvedené nedostatky odstraňuje spdsob výroby krétkoka-nálového MOS tranzistore s hradlom z polykryštalického kremíkaresp. s hradlom z polykryštalického kremíka a kovu, využívajúcisamozákrytovú implantačnú techniku, ktorého podstatou je, žepolykryštalické hradlo sa vytvaruje selektívnym plazmochemickýmpodleptaním polykryštalického kremíka voči fotorezistu a selek-tívnou termickou oxidáciou vytvarovanej štruktúry polykryštalic-kého hradla. Počas termickej oxidácie je povrch polykryštalické-ho kremíka chráněný vrstvou nitridu kremíka vyleptaného konform-ně so Strukturou polykryštalického kremíka. Sučasne pdsobenímvysokej teploty a oxidácie do samozákrytu voči fotorezistu implan-továnu příměs přednostně difundujeme po rozhraní medzi rastenýmtermickým oxidom a substrátom do oblasti hradla. Výsledkom celé-ho tohto procesu je samozákrytové polykryštalické hradlo. Výhodou spósobu výroby krátkokanálového MOS tranzistora jepoužiti® štandardnej fotolitografie s kontaktnými maskami, pri-čom je možné dostáhnut vysokopresný reprodukovateTný rozměr číž-ky hradla, čo umožňuje znížit parazitné kapacity tranzistora,skrátit dížku kanála a tým zvýšit pracovné frekvencie tranzisto- ra. 232 011The aforementioned drawbacks are obviated by the method for producing a polycrystalline silicon dioxide gate gate MOS transistor. with a polycrystalline silicon and metal gate, employing an intramuscular implant technique, the core of which is a polycrystalline gate is formed by selective plasma chemical adhesion of the polycrystalline silicon to the photoresist and by selective thermal oxidation of the formed polycrystalline gate structure. During thermal oxidation, the surface of the polycrystalline silicon is protected by a layer of silicon nitride etched in conformance with the structure of the polycrystalline silicon. At present, the high temperature and oxidation to the self-imparting photoresist impregnated admixture preferentially diffuse across the interface between the plant-oxide and the substrate into the gate region. The result of this whole process is a self-enclosed polycrystalline gate. The advantage of the method of making the short-channel MOS transistor is to use standard contact mask photolithography, while achieving a high-precision reproducible size of the gate pin, which reduces the transistor's parasitic capacities, shortens the channel length and thereby increases transistor operating frequencies. 232 011
- ÍJ- ÍJ
Na připojených výkreaoch je znázorněný charakteristickýpostup pri spdsobe výroby krátkokanálového MOS tranzistores poly-Si hradlom, resp. s hradlom kombinovaným z poly-Si akovu podlá vynálezu» Na obr. 1 je rez Si doskou s termicky na-rasteným hrubým oxidom, ktorý je vytvarovaný fotolitografioupodlá prvej masky a s urobenou difúziou kolektore a emitora.A characteristic process for the production of the short-channel MOS transistor poly-Si gate, respectively, is shown in the attached drawings. FIG. 1 is a sectional view of a thermally-grown coarse oxide Si plate which is formed by a photolithograph of a first mask and a collector and emitter diffusion is made.
Na obr. 2 je rez Si-doskou po člalších technologických operá-ciách ako sú : tvarovanie hrubého oxidu podl’a druhej masky, na-rastenie hradlového oxidu, depozícia poly-Si, difúzia do poly-Si,depozícia Si^N^, fotolitografické tvarovanie fotorezistu podlátřete j masky. Na obr. 3 je rez Si-doskou po čfalších technologic-kých operáciách, ako sú : zleptanie Si^N^ vrstvy na fotorezistomnenamaskovaných plochách, plazmochemické leptanie poly-Si na fo-torezistom nenamaskovaných plochách s jeho následným homogénnympodleptaním voči fotorezistu na požadovaný rozměr poly-Si, lemo-vé implantácia příměsi. Na obr. 4 je rez Si-doskou po dalšíchtechnologických operáciách, ako sú : odstránenie fotorezistu, ter-mická oxidácia hrubého oxidu, bezmaskové zleptanie Si^N^ vrstvy.Na obr. 5 je rez Si-doskou po Salších technologických operáciáchako sú : vyleptánie kontaktných otvorov podlá štvrtej masky, na-pařeni e kovověj Al-vrstvy, vytvarovanie Al-vrstvy podlá piatejmasky. * Spdsob výroby krátkokanálového MOS tranzistora podlá vynále-zu sa urobí tak, že na základnú vysokoodporovú, monokryštalickúdaného typu vodivosti, Si-dosku 1 sa narastie termickou oxidáciouvrstva hrubého oxidu 2, ktorý sa fotolitograficky vytvaruje podláprvej masky. Ďalej sa urobí termická difúzia příměsi 3 opačnéhotypu ako má základná Si-doska 1. Stav po týchto operáciách jena obr. 1. Ďalej sa vytvaruje hrubý oxid 2 podlá druhej masky,potom termickou oxidáciou narastie vrstva hradlového oxidu 4 aCVD'metodou sa nanesie vrstva poly-Si 5., ktorého vodivost sazvýši termickou difúziou příměsi. Ďalej následuje nanesenie, CVDmetodou, Si^N^ vrstvy 6. Sálej následuje nanesenie a fotolitogra-fické vytvarovanie fotorezistu podlá třetej masky. Stav po tých-to operáciách je na obr. 2. Ďalej následuje plazmochemické lep-tanie Si^N^ vrstvy 6 a poly-Si vrstvy 5 na fotorezistom nezakry-tých plochách. Pri leptaní poly-Si vrstvy 5 sa táto podleptá vo-či fotorezistu 7 na požadovaný rozměr poly-Si XI. Ďalej následu-je iónová implantácia příměsi 8 rovnakého typu vodivosti ako typ 232 011 - 3 - difúzie příměsi Stav po týchto operáciách Je na obr. 3. Sá-lej následuje odstránenie fotorezistu a termická, lokálna oxi-dácia hrubého oxidu 9 a poly-Si 5, počas ktorej ddjde k rozdi-fundovaniu implantovanej příměsi 8, ktorá spolu s termickoudifúziou £ vytvoří oblast kolektore a emitora 10. V procesetermické j. lokálněj oxidácie hrubého oxidu 9 dochádza k značnémupnutiu, danému teplotou, medzi hrubým oxidom 9 a Si-doskou 1v oblasti přechodu hrubého oxidu 9 do hradlového oxidu 4, a tými tvorbě poruch v tejto oblasti, pozdíž ktorých je difúzia im-plantovanej příměsi vSčšia. Tento Jav vedie k dosiahnutiu samo-zékrytu hradla MQS tranzistora. Sálej následuje bezmaskové zlep-tanie SijřT^ vrstvy 6. Stav po týchto operáciách je na obr. 4.Sálej následuje vyleptanie kontaktných otvorov kolektora a emi-tora podTa štvrtej masky, naparenie Al-vrstvy, ktorá sa vytva-ruje podl’a piatej masky, čím sa vytvoria kontakty 11. Stav potejto operécii je na obr* 5·Fig. 2 is a sectional view of the Si-plate after more technological operations such as: forming a coarse oxide according to a second mask, growing the gaseous oxide, deposition of poly-Si, diffusion into poly-Si, deposition of Si-N 2, photolithographic shaping of photoresist under mask. Fig. 3 is a sectional view of the Si-plate after other technological operations such as: etching of the Si-N-layer on photoresist-unmasked surfaces; plasma-chemical etching of poly-Si on foamer-unmasked surfaces with its subsequent homogeneous adhesion to the photoresist to the desired poly dimension; -Si, implanting hem implants. Fig. 4 is a sectional view of the Si-plate after further technological operations such as: photoresist removal, thermal oxidation of the coarse oxide, maskless etching of the SiO 2 layer. In Fig. 5, the Si-plate section after other technological operations such as: etching contact holes according to the fourth mask, steaming the metallic Al-layer, forming the Al-layer according to the fifth mask. The method for producing the short-channel MOS transistor according to the invention is made by increasing the basic high-resistance, monocrystalline type conductivity, Si-plate 1 by thermal oxidation of the coarse oxide layer 2, which is photolithographically formed by a parquet mask. Furthermore, a thermal diffusion of the admixture 3 is carried out in the opposite direction to that of the base Si-plate 1. The state after these operations is only shown in FIG. -Si 5, whose conductivity is enhanced by thermal diffusion of the additive. Next, the deposition is carried out by the CVD method, the SiN4 layer 6. The deposition and photolithographic formation of the photoresist according to the third mask follows. The state after these operations is shown in Fig. 2. Next, the plasmachemical bonding of the SiO2 ^ 6 layer and the poly-Si layer 5 on photoresist uncovered surfaces follows. In etching the poly-Si layer 5, this is etched in the photoresist 7 to the desired size poly-Si XI. The following is an ionic implantation of admixture 8 of the same conductivity type as type 232 011-3 - admixture diffusion Condition after these operations Figure 3 is followed by removal of the photoresist and thermal, local oxidation of coarse oxide 9 and poly-Si 5, during which the implanted admixture 8, which, together with the thermo-diffusion, forms the collector and emitter region 10, is disintegrated. In the process-local local oxidation of the coarse oxide 9, there is a temperature-induced sag between coarse oxide 9 and Si-plate 1v the transition region of the coarse oxide 9 to the gate oxide 4, and those formation disorders in this region, of which the diffusion of the impregnated dopant is greater. This Java leads to the self-concealment of the MQS gate of the transistor. Next, the mask-free improvement of the Sulfur layer 6 is followed. The condition after these operations is shown in FIG. 4. The etching of the collector contact holes and the fourth mask emitter followed by vaporization of the Al layer, which is formed according to the fifth mask, follows. to create contacts 11. The status of this operation is in Figure * 5 ·
Tento spósob výroby krétkokanálového MOS tranzistora jemožné využit v návrhu integrovaných obvodov i diskrétnych tran-zistorov. Pri jeho použití v integrovaných obvodoch sa nešetříplocha čipu, ale umožňuje značné, avšak reprodukovatelné skrá-tenie kanála MOS tranzistora, čo umožňuje zvýšenie operačnějrýchlosti integrovaného obvodu. Při jeho využití v návrhu dis-krétnych tranzistorov mdže byt zábranou nedostatočná vodivostpoly-Si hradla. Tuto překážku odstránime tým, že celé poly-Sihradlo pokryjeme vrstvou. AI. Prekrytie AI voči kolektoru a emi-toru je už na hrubom oxide, teda parazitné kapacity sú dosta-točne malé. Sálej Al-vrstvu mdžeme tvarovat tou i stou maskouako poly-Si a Si^N^ vrstvu. lnou možnosťou zvýšenia vodivostipoly-Si hradla je naprášenie vrstvy tažkotavitelného kovu. Ží-háním takej to struktury vytvoříme vrstvu silicidu. Po zleptanínezreagováného kovu získáme strukturu pre ňalšie štandardnéspracovánie.This method of producing a C-channel MOS transistor can be used in the design of both integrated circuits and discrete transistors. When used in integrated circuits, the chip area is not treated, but allows for a considerable, but reproducible, shortening of the MOS transistor channel, allowing an increase in the operating speed of the integrated circuit. When used in the design of particular transistors, insufficient water conductivity of the Si gate can be prevented. We remove this obstacle by covering the entire poly-Sihradlo. AI. The overlap of Al against the collector and emitter is already on the coarse oxide, so the parasitic capacities are small enough. The Al-Al layer can be shaped with the same layer as the poly-Si and Si-N 2 layers. Another possibility of increasing the water conductivity of the Si-gate is by sputtering the layer of hardenable metal. By annealing such a structure, a layer of silicide is formed. After the electroporated metal, we obtain a structure for the next standard treatment.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS82645A CS232011B1 (en) | 1982-02-01 | 1982-02-01 | Manufacturing process shortchannel mos tranzistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS82645A CS232011B1 (en) | 1982-02-01 | 1982-02-01 | Manufacturing process shortchannel mos tranzistor |
Publications (2)
Publication Number | Publication Date |
---|---|
CS64582A1 CS64582A1 (en) | 1984-05-14 |
CS232011B1 true CS232011B1 (en) | 1985-01-16 |
Family
ID=5338924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS82645A CS232011B1 (en) | 1982-02-01 | 1982-02-01 | Manufacturing process shortchannel mos tranzistor |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS232011B1 (en) |
-
1982
- 1982-02-01 CS CS82645A patent/CS232011B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS64582A1 (en) | 1984-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2857006B2 (en) | Self-aligned cobalt silicide on MOS integrated circuits. | |
US4481706A (en) | Process for manufacturing integrated bi-polar transistors of very small dimensions | |
US4732871A (en) | Process for producing undercut dummy gate mask profiles for MESFETs | |
JPS622465B2 (en) | ||
US4560421A (en) | Semiconductor device and method of manufacturing the same | |
US6372563B1 (en) | Self-aligned SOI device with body contact and NiSi2 gate | |
US6348371B1 (en) | Method of forming self-aligned twin wells | |
JPS60113472A (en) | Manufacturing method of semiconductor device | |
CS232011B1 (en) | Manufacturing process shortchannel mos tranzistor | |
US5631177A (en) | Process for manufacturing integrated circuit with power field effect transistors | |
JPH05218417A (en) | Integrated circuit transistor structure and manufacture thereof | |
KR100649817B1 (en) | Manufacturing method of semiconductor device | |
KR100347149B1 (en) | Manufacturing method for semiconductor device | |
JPS61150377A (en) | Manufacture of mis type semiconductor device | |
JPS628028B2 (en) | ||
KR100514516B1 (en) | Method for fabricating dual gate insulator | |
KR100298870B1 (en) | Bipolar Transistor Manufacturing Method | |
KR20000004531A (en) | Method for manufacturing a gate insulator of semiconductor devices | |
JPS6092666A (en) | Manufacture of mis transistor | |
JP3142303B2 (en) | Manufacturing method of high-speed bipolar transistor | |
KR100244273B1 (en) | Method for manufacturing semiconductor device | |
KR20040029588A (en) | Method for forming the semiconductor device | |
WO2001013421A1 (en) | Method of simultaneously growing oxide layers with different ticknesses on a semiconductor body using selective implantations of oxygen and nitrogen | |
JPS5817657A (en) | semiconductor equipment | |
JPS60217667A (en) | Manufacture of semiconductor device |