CS215893B1 - A method of galvanic preparation of an aluminum-lead coating for plain bearings - Google Patents

A method of galvanic preparation of an aluminum-lead coating for plain bearings Download PDF

Info

Publication number
CS215893B1
CS215893B1 CS81581A CS81581A CS215893B1 CS 215893 B1 CS215893 B1 CS 215893B1 CS 81581 A CS81581 A CS 81581A CS 81581 A CS81581 A CS 81581A CS 215893 B1 CS215893 B1 CS 215893B1
Authority
CS
Czechoslovakia
Prior art keywords
aluminum
lead
galvanic
mol
electrolysis
Prior art date
Application number
CS81581A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Miriam Galova
Ladislav Lux
Original Assignee
Miriam Galova
Ladislav Lux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miriam Galova, Ladislav Lux filed Critical Miriam Galova
Priority to CS81581A priority Critical patent/CS215893B1/en
Publication of CS215893B1 publication Critical patent/CS215893B1/en

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

Vynález rieši technický problém získavania galvanického povlaku zliatiny hliníka β olovom, ktoré z vodného roztoku elektrolytu ni· Je možné realizovat, pretože dochádzá k prednostnému vylučovaniu vodíka. Dá sa však uskutočnít za použitia elektrolytov na báze organického rozpúštadla. Získanie galvanického polvaku zliatiny hliníka s olovom je umožněné použitím elektrolytu z ktorého sa nemůže uvoínovat pri elektrolýze vodík. Elektrolyt sa skládá z aromatického uhlovodíka, připadne zo zmesi aromatických uhlovodíkov, ktoré V slúžia ako rozpúštadlo a zo zmesi halogeniůov hliníka, alkalického kovu a olova, ktoré majú funkciu elektroaktívnych látok. Na uskutočnenie elektrolýzy nie je potřebné zvyšovanie teploty galvanického kúpela, je však třeba použit oehrannú inertnú atmosféru. Vynález mSše byt použitý v priemysle /klzné ložiská/ a v elektrotechnickom priemysle /akumulátory/.The invention solves the technical problem of obtaining a galvanic coating of an aluminum alloy β with lead, which is not possible to implement from an aqueous electrolyte solution, because it preferentially releases hydrogen. However, it can be carried out using electrolytes based on an organic solvent. Obtaining a galvanic coating of an aluminum alloy with lead is made possible by using an electrolyte from which hydrogen cannot be released during electrolysis. The electrolyte consists of an aromatic hydrocarbon, or a mixture of aromatic hydrocarbons, which serve as a solvent, and a mixture of aluminum, alkali metal and lead halides, which function as electroactive substances. To carry out the electrolysis, it is not necessary to increase the temperature of the galvanic bath, but it is necessary to use a protective inert atmosphere. The invention can be used in industry (sliding bearings) and in the electrical industry (accumulators).

Description

Vynález rieši galvanické nanášanie povlaku z materiálu hliník-olovo na kovový podkladový materiál.The invention provides a galvanic coating of an aluminum-lead material on a metal substrate.

V súčasnosti sa materiál hliník-olovo pre klzné ložiská vyhotovuje dvoma spBsobmi,At present, the aluminum-lead material for plain bearings is produced in two ways,

Po prvé pomocou práškovej metalurgie, t.j. zo zmiešaných práškov Al a Pb. Princip metody spočívá v tom, že po homogenizácii práškovej zmesi sa uskutoční lisovanie a spekanie. Takto připravený materiál sa v ďalšom technologickom postupe navlacovaním nanáša na ocelový kovový podklad. Nevýhodou tejto metody je vysoká spotřeba energie pri spekaní a, ďalej skutočnost, že už v procese homogenizácie.zmesi dochádza k oxidácii častíc hliníka, čoho d&sledkom je vznik nesúvislého skeletu tvořeného hliníkom. Dnes už málo používaný druhý sp3sob sa realizuje tak, že sa odleje doska z materiálu Al-Pb, ktorá sa vyválcuje na tenků foliu a táto sa nazalcováva na ocelový pás a vyšíha. Nevýhodou tohoto postupu je nízká rozpustnost olova v hliníku, takže olovo vypadává vo formě granuliek a jeho obsah v kíznej vrstvě nie je možné definovat.First, by powder metallurgy, i. mixed powders Al and Pb. The principle of the method is that after homogenization of the powder mixture, pressing and sintering takes place. The material prepared in this way is applied on a steel metal substrate by a rolling process. The disadvantage of this method is the high energy consumption in the sintering process, and the fact that already in the homogenization process, the aluminum particles are oxidized, resulting in an incoherent aluminum skeleton. The second method, which is no longer used, is realized by casting a sheet of Al-Pb, which is rolled into thin foils and rolled onto a steel strip and embroidered. The disadvantage of this process is the low solubility of lead in aluminum, so that the lead falls out in the form of granules and its content in the sliding layer cannot be defined.

Uvedené nedostatky oboch spffsobov odstraňuje postup elektrochemického nanášania vrstvy z materiálu hliníka s olovom podTa vynálezu, ktorý prebieha v organickom elektrolyte obsahujúcom bromid hlinitý v rozmedzí koncentrácií 1-3 mol/l, bromid draselný v rozmedzí koncentrácii 0,1 - 1,5 mól/l, bromid olovnatý v rozmedzí koncentrácií 0,1 - 0,3 mol/l. Ako rozpúštadlo sa použije benzén alebo jeho alkylderiváty e celkovým počtom uhlíkov Ογ - 0^2« Elektrolyt pracuje pri teplote okolia v ochrannéj atmosféře dusíka alebo argonu. Ako katoda slúži podkladový kov, na ktorý má byt zliatina nanesená, ako anoda slúži Čistý hliník. Obsah olova v elektrolyte sa doplňuje přidáváním bromidu olovnatého. Elektrolýza prebieha pri kontrolovanom konštantnom potenciál! katody -0,15 až .»0,50 V voči referentnej hllníkovej elektróde. Produktom je vrstva materiálu Al-Pb s obsahom 20 - 3o % Pb, vhodná pre klzné ložiská. Obsah Pb je možné měnit změnou zloženia elektrolytu. Prúdová hustoty sa pohybujú v rozmedzí 10 - 500 A/m .The above-mentioned drawbacks of both methods are eliminated by the process of electrochemical deposition of a layer of aluminum with lead according to the invention, which takes place in an organic electrolyte containing aluminum bromide in the concentration range 1-3 mol / l, potassium bromide in the concentration concentration 0.1-1.5 mol / l , lead bromide in the concentration range 0.1 - 0.3 mol / l. The solvent used is benzene or its alkyl derivatives with a total number of carbons of Ογ - 0 ^ 2. The base metal to which the alloy is to be applied serves as the cathode, and pure aluminum serves as the anode. The lead content of the electrolyte is supplemented by the addition of lead bromide. Electrolysis takes place at a controlled constant potential! cathodes -0.15 to 0.50 V relative to the reference electrode. The product is a layer of Al-Pb with a content of 20 - 30% Pb, suitable for plain bearings. The Pb content can be varied by varying the electrolyte composition. Current densities range from 10 - 500 A / m.

Elektrochemickým nanášaním vrstvy materiálu hliníka s olovom sg získá kvalitný povlak o kontrolovanéj hrúbke, neznečištěný oxidom hliníka. Súčasne sa zníži spotřeba energie a zjednoduší sa technologický postup přípravy vrstvy z materiálu Al-Pb.By electrochemical application of a layer of aluminum material with lead sg, it obtains a quality controlled-thickness coating not contaminated with aluminum oxide. At the same time, the energy consumption is reduced and the technological process of preparing the Al-Pb layer is simplified.

Vzniknutá vrstva z materiálu hliníka s olovom sa vyznačuje makkostou, dobrými klznými a protikoróznyml v].stnostami a je vhodná na použitie v klzných ložiskách ako výstielkový materiál.The resulting layer of aluminum-lead material is characterized by macaque, good sliding and anti-corrosion properties and is suitable for use in sliding bearings as lining material.

Postup IProcedure

Elektrolýza prebieha v elektrolyte o zložení 2,37 mol/l AlBr^, 0,21 mol/l KBr a 0,16 mól/l PbBr2 v xyléne v uzavretom elektrolyzéri pod atmosférou plynného dusíka. Na oceťovej katodě pri konšt.antnom potenciál! -0,15 V voči referentnej hliníkovéj elektróde sa po dvoch hodinách elektrolýzy vylúči 40^», hrubá vrstva o zložení 27 % Pb a 73 % Al. Anoda je 99 % hliník. Prúdová hustota sa pohybuje od 100 do 120 A/m^.The electrolysis is carried out in an electrolyte composed of 2.37 mol / L AlBr ^, 0.21 mol / l potassium bromide and 0.16 mol / L in xylene PbBr 2 in a closed electrolyzer under a nitrogen atmosphere. On the steel cathode at constant potential! -0.15 V relative to the reference aluminum electrode, after two hours of electrolysis, 40 [mu] L, a thick layer of 27% Pb and 73% Al, is deposited. The anode is 99% aluminum. The current density ranges from 100 to 120 A / m 2.

Postup IIProcedure II

Elektrolýzou roztoku o zložení 1,79 mól/l AlBr^, 0,15 mól/l KBr, 0,025 mól/l PbBr2 v xyléne vzniká po 2,2 hodinovej elektrolýze při konštantnom potenoiáli katody -0,50 V voči referentnej hliníkovej elektróde na tejto ocelověj katodě vrstva z materiálu Al-Pb, ktorej zloženie je 33 % Pb a 67 % Al. Elektrolýza prebieha pri teplote 23 až 27 °C v uzavretom systéme pod ochrannou •atmosférou plynného dusíka. Prúdová hustota sa pohybuje od 115 do 140 A/m2.Electrolysis of a solution of 1.79 mol / l AlBr4, 0.15 mol / l KBr, 0.025 mol / l PbBr 2 in xylene produces a 2.2 hour electrolysis with a constant cathode potenial of -0.50 V against a reference aluminum electrode at this steel cathode layer of Al-Pb having a composition of 33% Pb and 67% Al. The electrolysis is carried out at a temperature of 23 to 27 ° C in a closed system under a nitrogen atmosphere. The current density ranges from 115 to 140 A / m 2 .

Claims (1)

rej zloženie je 33 % Pb a 67 % AI. Elektrolýza prebieha pri teplote 23 až 27 °C v uzavretomsystéme pod ochrannou -atmosférou plynného dusíka. Prúdová hustota sa pohybuje od 115 do140 A/m2. P R E D Μ E T VYNÁLEZU Zposob galvanickéj přípravy povlaku z materiálu hliník-olovo pre klzné ložiska, vy-značený tým, že prebieha ako katodické vylucovanie z organického elektrolytu o zložení1-3 mól/1 bromidu hlinitého AlBr^, 0,1 - 1,5 mól/l bromidu draselného KBr a 0,1 - 0,3mól/l bromidu olovnatého PbBrg v benzéne alebo jeho alkylderiváte s celkovým počtom uhlí-kov Cy - 0^2 Prl teplotě okolia v ochrannéj atmosféře dusíka alebo argonu s anodou z čis-tého hliníka pri kontrolovanom potenciál! katody.the composition is 33% Pb and 67% AI. Electrolysis takes place at a temperature of 23 to 27 ° C in a closed system under a nitrogen gas shielding atmosphere. Current density ranges from 115 to 140 A / m2. BACKGROUND OF THE INVENTION The process of galvanic preparation of an aluminum-lead coating for plain bearings, characterized in that it takes place as cathodic deposition from an organic electrolyte of 1-3 mol / l aluminum bromide AlBr 2, 0.1-1.5 moles / l of potassium bromide KBr and 0.1 - 0.3 mol / l lead bromide PbBrg in benzene or its alkyl derivative with total carbon-metal Cy - 0 ^ 2 Prl ambient temperature under nitrogen or argon protective atmosphere with pure aluminum anode with controlled potential! cathode.
CS81581A 1981-02-04 1981-02-04 A method of galvanic preparation of an aluminum-lead coating for plain bearings CS215893B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS81581A CS215893B1 (en) 1981-02-04 1981-02-04 A method of galvanic preparation of an aluminum-lead coating for plain bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS81581A CS215893B1 (en) 1981-02-04 1981-02-04 A method of galvanic preparation of an aluminum-lead coating for plain bearings

Publications (1)

Publication Number Publication Date
CS215893B1 true CS215893B1 (en) 1982-09-15

Family

ID=5341005

Family Applications (1)

Application Number Title Priority Date Filing Date
CS81581A CS215893B1 (en) 1981-02-04 1981-02-04 A method of galvanic preparation of an aluminum-lead coating for plain bearings

Country Status (1)

Country Link
CS (1) CS215893B1 (en)

Similar Documents

Publication Publication Date Title
Kamavaram et al. Electrorefining of aluminum alloy in ionic liquids at low temperatures
Ebrahimifar et al. Influence of electrodeposition parameters on the characteristics of Mn–Co coatings on Crofer 22 APU ferritic stainless steel
KR20190099388A (en) Galvanic deposition of zinc and zinc alloy coatings from alkaline coating baths with reduced degradation of organic bath additives
Hrussanova et al. Anodic behaviour of the Pb–Co3O4 composite coating in copper electrowinning
Chatelut et al. Silver electrowinning from photographic fixing solutions using zirconium cathode
US3232853A (en) Corrosion resistant chromide coating
DE1207358B (en) Cathode for an alkali chloride electrolysis cell operating according to the diaphragm process
US4285784A (en) Process of electroplating a platinum-rhodium alloy coating
AU2018278343B2 (en) Methods and compositions for electrochemical deposition of metal rich layers in aqueous solutions
El Fazazi et al. Electrochemical deposition of Zinc on mild steel
EP0195791A1 (en) Protective coating
Machado et al. A novel procedure in the galvanic deposition of Zn alloys for the preparation of large area Ni and Ni-Co surfaces
Chen et al. Eco-Friendly Electrodeposition of Al-Zn Alloy from AlCl3-Urea Deep Eutectic Solvent
Ghosh et al. Electrochemical Investigation of Cathodic Deposition of Mo Coating from Oxofluoride Molten Salt and Characterization
CS215893B1 (en) A method of galvanic preparation of an aluminum-lead coating for plain bearings
Murase et al. Electrochemical alloying of copper substrate with tin using ionic liquid as an electrolyte at medium-low temperatures
Fukumoto et al. Effect of connected pores on the corrosion behavior of plasma sprayed alumina coatings
Cvetković et al. Electrodeposition of dendrite-free Zn on Au from deep eutectic system based on choline chloride
EP0328128B1 (en) Process concerning the adhesion between metallic materials and galvanic aluminium layers and the non-aqueous electrolyte used therein
US3489540A (en) Process for nickeliding,cobaltiding and ironiding base metal compositions
US3479159A (en) Process for titaniding base metals
Gardam Polarisation in the electrodeposition of metals
Topor et al. Molybdenum carbide coatings electrodeposited from molten fluoride bath: preparation of a coherent coating
Gollas et al. The electrodeposition of zinc-bismuth alloys
US3489536A (en) Process for scandiding metals