CS211005B1 - Aluminium alloy for manufacture of pressed profiles treated by hardening with ultimate and tensile strength greater than 300 mpa - Google Patents

Aluminium alloy for manufacture of pressed profiles treated by hardening with ultimate and tensile strength greater than 300 mpa Download PDF

Info

Publication number
CS211005B1
CS211005B1 CS4180A CS4180A CS211005B1 CS 211005 B1 CS211005 B1 CS 211005B1 CS 4180 A CS4180 A CS 4180A CS 4180 A CS4180 A CS 4180A CS 211005 B1 CS211005 B1 CS 211005B1
Authority
CS
Czechoslovakia
Prior art keywords
mpa
tensile strength
ultimate
hardening
manufacture
Prior art date
Application number
CS4180A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Stefan Cempa
Vladimir Repcak
Jozef Bognar
Jozef Krcmar
Bretislav Voldan
Original Assignee
Stefan Cempa
Vladimir Repcak
Jozef Bognar
Jozef Krcmar
Bretislav Voldan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stefan Cempa, Vladimir Repcak, Jozef Bognar, Jozef Krcmar, Bretislav Voldan filed Critical Stefan Cempa
Priority to CS4180A priority Critical patent/CS211005B1/en
Publication of CS211005B1 publication Critical patent/CS211005B1/en

Links

Landscapes

  • Extrusion Of Metal (AREA)

Description

Vynález sa týká hliníkovej zliatiny pre výrobu lisovaných profilov spracovaných vytvrdzovaním s medzou pevnosti v' tahu vyššou ako 300' MPa. Zliatina obsahuje legujúce přísady - hořčík, křemík, chróm a titan.The invention relates to an aluminum alloy for the production of cured extruded profiles having a tensile strength greater than 300 MPa. The alloy contains alloying additives - magnesium, silicon, chromium and titanium.

V súčasnosti sa používajú na vyrobil poloCovarov hliníkové zliatiny o hmotnostnom zložení 0,7 až 1,2 Z horčíka, 0,7 až 1,2 Z kremíka, 0K4 až 1 Z mangánu s medzou pevnosti v tahu 280 MPa, ktoré majú zlé vlastnosti lisovacie a eloxačné a zliatiny o hmotnostnom obsahu 0,4 až 0,9 Z horčíka, 0,3 až 0,7 Z kremíka, 0,05 až 0,2 titanu s medzou pevnosti 210 MPa, ktoré majú dobré lisovacie a eloxačné vlastnosti. Něvýhodou prvých zliatin sú zlé lisovacie vlastnosti, čo je spojené so zničováním lisovacej fýchlosti. Zároveň sú tieto zliatiny velmi tažko , eloxovatelné. Druhý typ zliatin má dobré lisovacie vlastnosti, sú dobré eloxovatelné, ale \ majú velmi nízku pevnost v tahu.At present, aluminum alloys having a mass composition of 0.7 to 1.2 Z magnesium, 0.7 to 1.2 Z silicon, 0 K 4 to 1 Z manganese with a tensile strength of 280 MPa, having poor pressing and anodizing properties and alloys with a weight content of 0.4 to 0.9 Z of magnesium, 0.3 to 0.7 Z of silicon, 0.05 to 0.2 titanium with a breaking strength of 210 MPa, which have good pressing and anodizing properties . The disadvantage of the first alloys is the poor compression properties associated with the destruction of the compression speed. At the same time, these alloys are very difficult to anodize. The second type of alloys has good compression properties, they are good anodizable, but they have very low tensile strength.

!!

Vyššie uvedené nedostatky sú odstraněné hliníkovou zliatinou pre výrobu lisovaných profilov spracovávaných vytvrdzovaním s medzou pevnosti v tahu vyššou ako 300 MPa podlá vynálezu, ktorej podstata spočívá v tom, že obsahuje hmptnostnú koncentráciu 0,5 až 0,7 Z horčíka, 0,7 aš 0,9 % kremíka, 0,2 až 0,4 Z chrómu, 0,1 až<0,2 Z titanu, pričom obsah kremíka je 1,3-ffásobkom obsahu horčíka a obsah železa je nižší^ ako obsah chrómu. Bez legujúcich přísad horčíka, kremíka, chrómu a titanu nie je možné zlíatinu s uvedenou medzou pevnosti v tahu vyrobit.The above-mentioned drawbacks are eliminated by an aluminum alloy for the production of cured extruded profiles with a tensile strength higher than 300 MPa according to the invention, characterized in that it contains a mass concentration of 0.5 to 0.7 from magnesium, 0.7 to 0 9% of silicon, 0.2 to 0.4 of chromium, 0.1 to < 0.2 of titanium, the silicon content being 1.3 times the magnesium content and the iron content being less than the chromium content. Without alloying additives of magnesium, silicon, chromium and titanium, it is not possible to produce an alloy with the stated tensile strength.

Novou zliatinou sa docieli toho, že sa zvýši medza pevnosti v tahu na, viac. ako 300 MPa.With the new alloy, the tensile strength is increased to more. as 300 MPa.

Zvýšenie medze pevnosti má za následok úsporu hliníka a tým ekonomický přínos. Ďalej sa zliatina vyznačuje velmi dobrou lisovatelnostou a eloxovatelnostou.Increasing the breaking strength results in aluminum savings and thus economic benefits. Furthermore, the alloy is characterized by very good compressibility and anodization.

Prehlad závislosti pevnosti jednotlivých zliatin od obsahu horčíka je uvedený na pripojenom obrázku. Zliatina 1 odpovedá skoro čistému hliníku, 2 zliatina typu dva, 3 je zliatinaAn overview of the strength dependence of the individual alloys on the magnesium content is given in the attached figure. Alloy 1 corresponds to almost pure aluminum, 2 alloy type two, 3 alloy

typu jedna type one a 4 and 4 je nove navrhovaná is newly proposed zliatina. alloy. Pre skúšky For trials lisovania sa připravili následovně The molding was prepared as follows ί zliatiny: ί alloys: přiklad 1: Example 1: 0,58 0.58 Z horčíka, 0,74 Z Magnesium, 0,74 kremíka, silicon, 0,21 0.21 7 7 chrómu, chromium, 0,12 0.12 7 7 titanu titanium přiklad 2: Example 2: 0,64 0.64 Z horčíka, 0,87 Z Magnesium, 0,87 kremíka, silicon, 0,23 0.23 7 7 chrómu, chromium, 0, 1 5 0, 1 5 7 7 titanu titanium pr íklad 3 : Example 3: 0,66 0.66 Z horčíka, 0,86 Z Magnesium, 0,86 kremíka, silicon, 0,34 0.34 7 7 chrómu, chromium, 0,16 0.16 7 7 titanu titanium

Teplota výliskov na výstupe z 1Í9U bola 520 °C. Lisovaný profil sa intenzívně chladil tak, že za 20 sekund sa teplota znížila na 100 °C. Vyrobené výlisky sa potom tahom vyrovnali a tepelne spracovali. Tepelné spracovanie pozostavalo zo starnutia pri teplote 170 °C po dobu 8 hodin., Pevnost v tahu u zliatiny příklad 1 bola 316 MPa, u příkladu 2 315 MPa a příkladu 3 317 MPa. Eloxácia sa prevádzala rovnakým postupom, ako u zliatin 2 hmotnostného zloženia 0,4 až 0,9 Z horčíka, 0,3 až 0,7 Z kremíka, 0,05 až 0,2 Z titanu, ktoré sa v súčasnosti lisujú a výsledky bolí rovnaké. Zároveň tieto zliatiny slúžili pre ďalšie porovnanie. Skúšky ukázali, že u zliatiny 3 pri rovnakých lisovacích a eloxačných vlastnostiach sa zvýši pevnost v tahu oproti uvedenej zliatine 2 o 30 Z. Porovnanie pevnostných vlastností používaných zliatin a zliatiny navrhovanej je vidiet aj z připojeného obrázku.The temperature of the moldings at the outlet of 19U was 520 ° C. The extruded profile was cooled vigorously so that the temperature dropped to 100 ° C in 20 seconds. The moldings produced were then tensioned and heat treated. The heat treatment consisted of aging at 170 ° C for 8 hours. The tensile strength of the alloy of Example 1 was 316 MPa, for Example 2 315 MPa and Example 3 317 MPa. The anodization was carried out in the same manner as for the alloys 2 weight composition 0.4-0.9 Z magnesium, 0.3-0.7 Z silicon, 0.05-0.2 Z titanium, which are currently pressed and the results hurt same. At the same time, these alloys served for further comparison. Tests have shown that for alloy 3 with the same compression and anodizing properties, the tensile strength will be increased by 30 Z compared to said alloy 2.

Claims (2)

Hliníková zliatina pre výrobu lisovaných profilov spracovávaných vytvrdzovaním s raedzou pevnosti v tahu vyššou ako 300 MPa vyznačujúca sa tým, že obsahuje v hmotnostnej koncentrácíi 0,5 až 0,7 % horčíka, 0,7 až 0,9 Z kremíka, 0,2 až 0,4 Z chrómu, 0,1 až 0,2 Z titanu, pričom obsah kremíka převyšuje 1,3krát obsah horčíka a obsah železa je nižší ako obsah chrómu.Aluminum alloy for the production of cured extruded profiles with a tensile strength reduction of more than 300 MPa, characterized in that it contains 0.5 to 0.7% by weight of magnesium, 0.7 to 0.9% of silicon, 0.2 to 0.7% by weight 0.4 of chromium, 0.1 to 0.2 of titanium, the silicon content exceeding 1.3 times the magnesium content and the iron content lower than the chromium content.
CS4180A 1980-01-02 1980-01-02 Aluminium alloy for manufacture of pressed profiles treated by hardening with ultimate and tensile strength greater than 300 mpa CS211005B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS4180A CS211005B1 (en) 1980-01-02 1980-01-02 Aluminium alloy for manufacture of pressed profiles treated by hardening with ultimate and tensile strength greater than 300 mpa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS4180A CS211005B1 (en) 1980-01-02 1980-01-02 Aluminium alloy for manufacture of pressed profiles treated by hardening with ultimate and tensile strength greater than 300 mpa

Publications (1)

Publication Number Publication Date
CS211005B1 true CS211005B1 (en) 1982-01-29

Family

ID=5331909

Family Applications (1)

Application Number Title Priority Date Filing Date
CS4180A CS211005B1 (en) 1980-01-02 1980-01-02 Aluminium alloy for manufacture of pressed profiles treated by hardening with ultimate and tensile strength greater than 300 mpa

Country Status (1)

Country Link
CS (1) CS211005B1 (en)

Similar Documents

Publication Publication Date Title
US4305763A (en) Method of producing an aluminum alloy product
US3642542A (en) A process for preparing aluminum base alloys
WO1995027091A1 (en) Method of producing aluminum alloy extrusions
KR102061771B1 (en) Aluminum alloy composition with improved elevated temperature mechanical properties
WO2011078080A1 (en) Aluminum alloy for anodization and aluminum alloy component
JP7679295B2 (en) Aluminum Extrusion Alloy
DE3883087D1 (en) ALUMINUM COMPOSITE ALLOYS.
HU220128B (en) Aluminium alloy for a structural unit made by pressure die casting
US20090047172A1 (en) Extrudable Al-Mg-Si alloys
CA2152402A1 (en) Aluminium-silicon-magnesium alloy having improved ductility and deep-drawing properties, and method for producing same
RU2453622C2 (en) Aluminium alloy and use of same in methods of die casting
JPS57198237A (en) Sliding member made of aluminum alloy and its manufacture
CA2279308C (en) Al-mg-si alloy with good extrusion properties
CS211005B1 (en) Aluminium alloy for manufacture of pressed profiles treated by hardening with ultimate and tensile strength greater than 300 mpa
JPS60208443A (en) Aluminum alloy material
ATE195557T1 (en) CONNECTING ELEMENT
US4067733A (en) High strength aluminum alloy
EP0968315B1 (en) Al-Mg-Si ALLOY WITH GOOD EXTRUSION PROPERTIES
JPS6283444A (en) Heat and wear resistant aluminum alloy
US1910861A (en) Aluminum alloy
KR100750964B1 (en) Aluminum-copper-zinc mixed powder, method for producing small alloy product using the same, and small alloy product manufactured using the same
US1911080A (en) Aluminum alloy
Fedorov The Use of Aluminum Alloy Waste as a Material of Construction
KR20210091443A (en) Aluminum alloy extrudate having excellent formability and its production method
CN108048714A (en) A kind of electronic product structural component aluminium alloy and preparation method thereof