CS211005B1 - Aluminium alloy for manufacture of pressed profiles treated by hardening with ultimate and tensile strength greater than 300 mpa - Google Patents
Aluminium alloy for manufacture of pressed profiles treated by hardening with ultimate and tensile strength greater than 300 mpa Download PDFInfo
- Publication number
- CS211005B1 CS211005B1 CS4180A CS4180A CS211005B1 CS 211005 B1 CS211005 B1 CS 211005B1 CS 4180 A CS4180 A CS 4180A CS 4180 A CS4180 A CS 4180A CS 211005 B1 CS211005 B1 CS 211005B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- mpa
- tensile strength
- ultimate
- hardening
- manufacture
- Prior art date
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 5
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 13
- 239000011777 magnesium Substances 0.000 claims description 13
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 description 19
- 239000000956 alloy Substances 0.000 description 19
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000007743 anodising Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000002048 anodisation reaction Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
Landscapes
- Extrusion Of Metal (AREA)
Description
Vynález sa týká hliníkovej zliatiny pre výrobu lisovaných profilov spracovaných vytvrdzovaním s medzou pevnosti v' tahu vyššou ako 300' MPa. Zliatina obsahuje legujúce přísady - hořčík, křemík, chróm a titan.The invention relates to an aluminum alloy for the production of cured extruded profiles having a tensile strength greater than 300 MPa. The alloy contains alloying additives - magnesium, silicon, chromium and titanium.
V súčasnosti sa používajú na vyrobil poloCovarov hliníkové zliatiny o hmotnostnom zložení 0,7 až 1,2 Z horčíka, 0,7 až 1,2 Z kremíka, 0K4 až 1 Z mangánu s medzou pevnosti v tahu 280 MPa, ktoré majú zlé vlastnosti lisovacie a eloxačné a zliatiny o hmotnostnom obsahu 0,4 až 0,9 Z horčíka, 0,3 až 0,7 Z kremíka, 0,05 až 0,2 titanu s medzou pevnosti 210 MPa, ktoré majú dobré lisovacie a eloxačné vlastnosti. Něvýhodou prvých zliatin sú zlé lisovacie vlastnosti, čo je spojené so zničováním lisovacej fýchlosti. Zároveň sú tieto zliatiny velmi tažko , eloxovatelné. Druhý typ zliatin má dobré lisovacie vlastnosti, sú dobré eloxovatelné, ale \ majú velmi nízku pevnost v tahu.At present, aluminum alloys having a mass composition of 0.7 to 1.2 Z magnesium, 0.7 to 1.2 Z silicon, 0 K 4 to 1 Z manganese with a tensile strength of 280 MPa, having poor pressing and anodizing properties and alloys with a weight content of 0.4 to 0.9 Z of magnesium, 0.3 to 0.7 Z of silicon, 0.05 to 0.2 titanium with a breaking strength of 210 MPa, which have good pressing and anodizing properties . The disadvantage of the first alloys is the poor compression properties associated with the destruction of the compression speed. At the same time, these alloys are very difficult to anodize. The second type of alloys has good compression properties, they are good anodizable, but they have very low tensile strength.
!!
Vyššie uvedené nedostatky sú odstraněné hliníkovou zliatinou pre výrobu lisovaných profilov spracovávaných vytvrdzovaním s medzou pevnosti v tahu vyššou ako 300 MPa podlá vynálezu, ktorej podstata spočívá v tom, že obsahuje hmptnostnú koncentráciu 0,5 až 0,7 Z horčíka, 0,7 aš 0,9 % kremíka, 0,2 až 0,4 Z chrómu, 0,1 až<0,2 Z titanu, pričom obsah kremíka je 1,3-ffásobkom obsahu horčíka a obsah železa je nižší^ ako obsah chrómu. Bez legujúcich přísad horčíka, kremíka, chrómu a titanu nie je možné zlíatinu s uvedenou medzou pevnosti v tahu vyrobit.The above-mentioned drawbacks are eliminated by an aluminum alloy for the production of cured extruded profiles with a tensile strength higher than 300 MPa according to the invention, characterized in that it contains a mass concentration of 0.5 to 0.7 from magnesium, 0.7 to 0 9% of silicon, 0.2 to 0.4 of chromium, 0.1 to < 0.2 of titanium, the silicon content being 1.3 times the magnesium content and the iron content being less than the chromium content. Without alloying additives of magnesium, silicon, chromium and titanium, it is not possible to produce an alloy with the stated tensile strength.
Novou zliatinou sa docieli toho, že sa zvýši medza pevnosti v tahu na, viac. ako 300 MPa.With the new alloy, the tensile strength is increased to more. as 300 MPa.
Zvýšenie medze pevnosti má za následok úsporu hliníka a tým ekonomický přínos. Ďalej sa zliatina vyznačuje velmi dobrou lisovatelnostou a eloxovatelnostou.Increasing the breaking strength results in aluminum savings and thus economic benefits. Furthermore, the alloy is characterized by very good compressibility and anodization.
Prehlad závislosti pevnosti jednotlivých zliatin od obsahu horčíka je uvedený na pripojenom obrázku. Zliatina 1 odpovedá skoro čistému hliníku, 2 zliatina typu dva, 3 je zliatinaAn overview of the strength dependence of the individual alloys on the magnesium content is given in the attached figure. Alloy 1 corresponds to almost pure aluminum, 2 alloy type two, 3 alloy
Teplota výliskov na výstupe z 1Í9U bola 520 °C. Lisovaný profil sa intenzívně chladil tak, že za 20 sekund sa teplota znížila na 100 °C. Vyrobené výlisky sa potom tahom vyrovnali a tepelne spracovali. Tepelné spracovanie pozostavalo zo starnutia pri teplote 170 °C po dobu 8 hodin., Pevnost v tahu u zliatiny příklad 1 bola 316 MPa, u příkladu 2 315 MPa a příkladu 3 317 MPa. Eloxácia sa prevádzala rovnakým postupom, ako u zliatin 2 hmotnostného zloženia 0,4 až 0,9 Z horčíka, 0,3 až 0,7 Z kremíka, 0,05 až 0,2 Z titanu, ktoré sa v súčasnosti lisujú a výsledky bolí rovnaké. Zároveň tieto zliatiny slúžili pre ďalšie porovnanie. Skúšky ukázali, že u zliatiny 3 pri rovnakých lisovacích a eloxačných vlastnostiach sa zvýši pevnost v tahu oproti uvedenej zliatine 2 o 30 Z. Porovnanie pevnostných vlastností používaných zliatin a zliatiny navrhovanej je vidiet aj z připojeného obrázku.The temperature of the moldings at the outlet of 19U was 520 ° C. The extruded profile was cooled vigorously so that the temperature dropped to 100 ° C in 20 seconds. The moldings produced were then tensioned and heat treated. The heat treatment consisted of aging at 170 ° C for 8 hours. The tensile strength of the alloy of Example 1 was 316 MPa, for Example 2 315 MPa and Example 3 317 MPa. The anodization was carried out in the same manner as for the alloys 2 weight composition 0.4-0.9 Z magnesium, 0.3-0.7 Z silicon, 0.05-0.2 Z titanium, which are currently pressed and the results hurt same. At the same time, these alloys served for further comparison. Tests have shown that for alloy 3 with the same compression and anodizing properties, the tensile strength will be increased by 30 Z compared to said alloy 2.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS4180A CS211005B1 (en) | 1980-01-02 | 1980-01-02 | Aluminium alloy for manufacture of pressed profiles treated by hardening with ultimate and tensile strength greater than 300 mpa |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS4180A CS211005B1 (en) | 1980-01-02 | 1980-01-02 | Aluminium alloy for manufacture of pressed profiles treated by hardening with ultimate and tensile strength greater than 300 mpa |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS211005B1 true CS211005B1 (en) | 1982-01-29 |
Family
ID=5331909
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS4180A CS211005B1 (en) | 1980-01-02 | 1980-01-02 | Aluminium alloy for manufacture of pressed profiles treated by hardening with ultimate and tensile strength greater than 300 mpa |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS211005B1 (en) |
-
1980
- 1980-01-02 CS CS4180A patent/CS211005B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4305763A (en) | Method of producing an aluminum alloy product | |
| US3642542A (en) | A process for preparing aluminum base alloys | |
| WO1995027091A1 (en) | Method of producing aluminum alloy extrusions | |
| KR102061771B1 (en) | Aluminum alloy composition with improved elevated temperature mechanical properties | |
| WO2011078080A1 (en) | Aluminum alloy for anodization and aluminum alloy component | |
| JP7679295B2 (en) | Aluminum Extrusion Alloy | |
| DE3883087D1 (en) | ALUMINUM COMPOSITE ALLOYS. | |
| HU220128B (en) | Aluminium alloy for a structural unit made by pressure die casting | |
| US20090047172A1 (en) | Extrudable Al-Mg-Si alloys | |
| CA2152402A1 (en) | Aluminium-silicon-magnesium alloy having improved ductility and deep-drawing properties, and method for producing same | |
| RU2453622C2 (en) | Aluminium alloy and use of same in methods of die casting | |
| JPS57198237A (en) | Sliding member made of aluminum alloy and its manufacture | |
| CA2279308C (en) | Al-mg-si alloy with good extrusion properties | |
| CS211005B1 (en) | Aluminium alloy for manufacture of pressed profiles treated by hardening with ultimate and tensile strength greater than 300 mpa | |
| JPS60208443A (en) | Aluminum alloy material | |
| ATE195557T1 (en) | CONNECTING ELEMENT | |
| US4067733A (en) | High strength aluminum alloy | |
| EP0968315B1 (en) | Al-Mg-Si ALLOY WITH GOOD EXTRUSION PROPERTIES | |
| JPS6283444A (en) | Heat and wear resistant aluminum alloy | |
| US1910861A (en) | Aluminum alloy | |
| KR100750964B1 (en) | Aluminum-copper-zinc mixed powder, method for producing small alloy product using the same, and small alloy product manufactured using the same | |
| US1911080A (en) | Aluminum alloy | |
| Fedorov | The Use of Aluminum Alloy Waste as a Material of Construction | |
| KR20210091443A (en) | Aluminum alloy extrudate having excellent formability and its production method | |
| CN108048714A (en) | A kind of electronic product structural component aluminium alloy and preparation method thereof |