CS205490B1 - Thermooxidative stable polyethylene mixture suitable especially for cable making purposes and method of manufacture of the said mixture - Google Patents

Thermooxidative stable polyethylene mixture suitable especially for cable making purposes and method of manufacture of the said mixture Download PDF

Info

Publication number
CS205490B1
CS205490B1 CS795273A CS527379A CS205490B1 CS 205490 B1 CS205490 B1 CS 205490B1 CS 795273 A CS795273 A CS 795273A CS 527379 A CS527379 A CS 527379A CS 205490 B1 CS205490 B1 CS 205490B1
Authority
CS
Czechoslovakia
Prior art keywords
polyethylene
parts
weight
proportion
antioxidant
Prior art date
Application number
CS795273A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Dagmar Simunkova
Rudolf Rado
Egon Gal
Richard Reya
Original Assignee
Dagmar Simunkova
Rudolf Rado
Egon Gal
Richard Reya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dagmar Simunkova, Rudolf Rado, Egon Gal, Richard Reya filed Critical Dagmar Simunkova
Priority to CS795273A priority Critical patent/CS205490B1/en
Publication of CS205490B1 publication Critical patent/CS205490B1/en
Priority to CS622088A priority patent/CS273080B3/en

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The invention can be used in the electro-technical industry, for production of inner cables. This resolves the reduction of migration of antioxidant from polyethylene granules, which results in an increased of the thermo-oxidative stability of the polyethylene and prolonging of the service life of cables with polyethylene insulation. The essence of the invention is that multicore phenolic antioxidant is bound in the presence of a peroxide initiator to low-density polyethylene, whose melted flow index in between 1.7 g/10 min to 2.5 g/10 min and the interval of polydispersion is 5.5 to 9.5.

Description

Vynález sa týká antioxidantmi fenolického - typu stabilizovartého ' mattriálu na·' báze po^6^1^^ ktorý je vhodný najm^ pre kábelárske a e^ktrotechnícW účely. Óčelom ri.eáenia je umooniť efektOvym a nenákladným spdsobom výrobu a uplatněna takého to mateiálu u kterého nedochádza k migrácii a^tLoxidantu - a dosahuje sa dlhodobá, zvýšená termooxidačná stabilita při jeho použití v praxi.The invention relates to phenolic antioxidant - type stabilizovartého 'mattriálu · the' base of the ^ 6 ^ ^^ 1 which is H | Ný Najm ^ p re s Bel and the RSKE e ^ y ktrotechnícW purpose. The purpose of this invention is to make the effect and the inexpensive production and use of such a material free of migration and oxidant - and to achieve long-term, increased thermo-oxidative stability when used in practice.

Polyolefíny sú značné náchylné na oxidáciu ui vzhTadom na svoju uhlovodíková átruktúru, a preto ich spracovanie a aplikácia vyiadujú vhodnú termooxidačnú stabilizáciu. Táto_sa v súčasnooti dosahuje rozličnými ochrannými přísadami, z ktorých- najčastejSie sa - používájú stéricky tienené aromatické aminy a fenoly vo funkci! takzvaných terminátorov reťazca. VzhTadom na značnú štruktúinu odlišnost od polymérnej maarice tieto látky sú však- v polyetyléne vjšeobecne zle robustné. Pri zvýšenej teplote, například 288 °C možno u tr^i^í^-22mety1-4-hydroχy-5-terc.butylfeiyl/ butánu pozorovali ui po niekoTkých hodinách skoro 20 percentný úbytok, u 4,4'- tio-bis-/6-eecc.žuty--m-kreiolž/ úbytok výše 50 percent a 2,6-diterc·butyl-4-metyl-fenol dokonca za - takúto krátku -dobu vyprchá . Áplne. Táto - skutočnosť-sa velmi - meškán tne - prejavuje aj při niiší^ch teploch v prtpafc 4>4z-tio-bit-/6-teIc·bžtyl m-krezolu/ východis^vé 10“* ^otnostný^ ^e^v, poklesne napr^].^ pri bežnej oo^i^É^t^^θ<j teplote za ^ekolko rokov na hodnotu radové 10-4 tomonostnýtó (die^v. Uvedeným Údajem odpovedá aj atabilizačný účinok tohto tntioxidtitu posudzovaný podlá indukčnej peri205 490Polyolefins are highly susceptible to oxidation due to their hydrocarbon structure and therefore their processing and application require suitable thermo-oxidative stabilization. This is currently achieved by various preservatives, the most common of which are the use of sterically shielded aromatic amines and phenols in function. so-called string terminators. However, due to their considerable structure, the difference from the polymer matrix is generally poorly robust in polyethylene. At elevated temperature, for example288 ° C possible22-methyl-4-hydroxy-5-tert-butylphenyl / butane showed a decrease of almost 20 percent in a few hours, in the case of 4,4 ' 2,6-di-tert-butyl-4-methylphenol even evaporates in the short term. APLN. This - fact-sa very- delayed tne- also manifests when niiwiths^ ch teplaboutitCh in prtpafc 4> 4from-Tiobit-/6-teIc ·bžtyl m-cresol / starting material10“* ^ Turnable ^ ^ e ^ v,pwill drop eg ^]. ^ atbefromnej oo ^andThe temperature has been over the last few years athaboutDnotu raDs10-4 tomonostnýtó (die ^ v.UinDThe data also corresponds to the stabilizing effect of this antioxidant assessed by induction peri

205 490 ódy oxidácie při - teplote 200 0C, už po uplynuti 72 hodin od přípravy - vzorky možno zaznamenat pokles na polovičnú'hodnotu.205,490 ode oxidation at - a temperature of 200 0 C, after only seven hours of preparation 2 - the sample to be recorded fall polovičnú'hodnotu.

Určité zlepšenie sa dosahuje použitím antioxidantov s vyššou molekulovou - hmotnosťou, teda přísad so zníženou difúznou schopnoatou a úmmerne a ňou aj s obmedzenou migráciou týchto z polyméru. Hoci prchavosť týchto zlúčenín z polyetylénu je už nižšia, pře ich zvýšenú neznádanlivosť s polymérom sa nedosahuje taký - stabilizačný účinok ako v případe použitia nízkomolekulových antioxidantov. ĎaTéou nevýhodou je aj obmedzený výběr stabilizátorov uvedeného - typu, ich - poi^u^ilterno^’!?, ako aj ich vy^ía cena.Some improvement is achieved by the use of higher molecular weight antioxidants, i.e., additives with reduced diffusion capability and proportionally and with limited migration of these from the polymer. Although the volatility of these polyethylene compounds is already lower, despite their increased polymer non-polymerization, such a stabilizing effect as in the case of the use of low molecular weight antioxidants is not achieved. A further disadvantage is the limited choice of stabilizers of said type, their type, as well as their higher cost.

Nevýhody doterajšieho stavu odstraňuje riešenie podl’a vynálezu, podl'a ktorého termooxidačne stabilízovená polyetylénová zmea, vhodná najmá pre kábelárske účely, kde stabblizátorom je fenolický antioxidant, táto zmes obsahuje v pomere na 100 hmoonostných dielov polyetylénu poddel 0,05-1,00 hmotnoatných dielov nízkomolekulového trtitxiitrtu typu viacjademého fenolu s terciárym alkylsžbstižuentom, výhodné 4,4-tit-bis/6-teгc.bžtyl m-krezolu/, alebo tria-2-metyl-4- hУlгooχ-5-tteá♦búžylfenol/ butánu, ktorý je na polyetyléne fixovaný chemickou vázbou, vytvořenou rozpadem peroxidu. Koorkáeiiiciou je tu alternativa, kde v pomere na 100 hmoonostných dielov polyetylénu v zmesi táto obsahuje aj podiel 1-100 hmoonostných dielov plniva na báze uhLičitanov, kremčitanov alebo sadzi. Obrněnou daného-. - riešenia je SlaSia alternativa, podl'a ktorej poddel nízkorolekulového ^ti^oxidantu typu viacjadrovéht fenolu s terciárnym alk^^le^ubst^iLueeiio^m v zmmei je v pomere hmoonostných dielov 1:10-10:1 kombinovaný a antioxidimtom typu esterov kyseliny ditioprtpitrtvej, výhodné dilaurylesteáž. Vhodným výrobným postupem, ktorým ва realizuje áieierie podfa vynálezu je spčs^ charakteritovarý tým, že do polymrnej ^veniny sa pri ^plota 11°-130 0C disperguje ako zmesný poddel nízkomolekulový antioxidant typu-viacjaderného fenolu s terciárnym alkylsubstižuentom, výhodné 4,4*-tit-bis/6-teáč.bžtyl m-kkáeio/, a^to tris - /2-metyl4-tydrotχ-5-ttrá.bužylfenrl/ bután v moostve 0,05 - 1,00 hmoonostných dielov na 100 hmoonostných dielov polyetylénu, ako aj podiel suba^um)varného terciárneho alky^eroxidu, výhodné dikumypprosidu, v molárnom pomere 1:10-50:1 k min o štvu antitxiiantu a zmeané iltžky včítane případného podielu aj plniva sa potom ithrievajú po dobu 0,1-80 minút pri teplote -150-400 0C.Disadvantages of the prior art are eliminated by the solution according to the invention, in which the thermo-oxidatively stabilized polyethylene composition, suitable in particular for cable use, wherein the stabilizer is a phenolic antioxidant, contains in a proportion of 100 parts by weight of polyethylene, 0.05 to 1.00 parts by weight. parts of low molecular weight phenol viacjademého trtitxiitrtu type of tertiary alkylsžbstižuentom, preferably 4,4-bis-sub / 6-m-cresol teгc.bžtyl / or trio-2-methyl-4- hУl гo oχ-5-tteá ♦ búžylfenol / butane, which is fixed to the polyethylene by a chemical bond formed by the breakdown of peroxide. Correlation is an alternative where, in proportion to 100 parts by weight of polyethylene in the mixture, it also contains a proportion of 1-100 parts by weight of a carbonate, silicate or carbon black filler. Armored-given. - the solution is a weaker alternative, according to which the low molecular weight phenol of a multinucleate phenol with tertiary alkali is mixed in a ratio of 1: 10-10: 1 by weight and an antioxidant of the acid ester type ditioprtpitrtvej, preferred dilaurylesážáž. A suitable manufacturing process, which ва carried áieierie the invention is SPCS ^ chara the teritovarý the z e the poly m rnej ^ Venina at ^ fence 11 ° - 1 30 0 C is dispersed as mixed to give in a low molecular weight type antioxidant-multinucleated phenol tertiary al the ylsubstižuentom, preferably 4,4 - b it-bis- / 6-m-teáč.bžtyl kkáei a /, ^, and a t r i a - /2-metyl4-tydrotχ-5-ttrá.bužylfenrl/ butane in moostve 0 , 05-1.00 parts by weight per 100 parts by weight of polyethylene, as well as a proportion of the submerged boiling tertiary alkyl eroxide, preferably dicumypproside, in a molar ratio of 1: 10-50: 1 to min of antitxiiant sieve and mildness of the ingredients, including optional Both the filler and filler are then heated for 0.1-80 minutes at -150-400 ° C.

Pozitivny účinok riešenia podTa ' vynálezu je ddsledkom takého - átxuikturálneho usporiadaniá zložiek v maaeeiáii, kde anlmidant je na polyetylénových reťazcoch naátepený s vytvořením stálej - eheauckej vazby, ktorou sa fixuje ochranná - přísada na polymri a zabraňuje sa jej úbytku pri aplikácii i po aplikácii zmesi. Rozpad peroxidy prd daných podmenkach výroby substitučnou reakciou vytvára radikály - polyetylénu aj artdtxiiartu, ktoré vzájemnou rekombbnáciou posVtujú trvalé chemické vazby s konečným efektom naátepenia an-t^xi— dantu - na polymer. Takto naviazaný antioxidant je už z polyméru neextrahovateTný a prejavuje sa výrazné zvýšeným účinkoom txvalej termooxidačnej stability mateei&u. Daný výrobný postup je výhodný aj tým, že pri pouužtí vfčáieho mnostva peroxidu sa s nastepením aitioxidantu na polyetylén súčasne dosahuje i iosieeerie polymeru, - spojené so zvýšením jeho eeraomeshetn.ekej odoOnotSi. Calšou výhodou je tu motnrtSL plrenit polyméru do pomerne vy3The positive effect of the present invention is due to such an xuiktural arrangement of the components in the maize, where the antimidant is cleaved on the polyethylene chains to form a stable eheactive bond, which fixes the protective additive to the polymer and prevents application loss when applied. The disintegration of peroxides given by the substitution reaction forms radicals, both polyethylene and artdtartii, which, by mutual recombination, provide permanent chemical bonds with the ultimate effect of an antioxidant cleavage to the polymer. The antioxidant thus bonded is no longer extractable from the polymer and exhibits a markedly enhanced effect of the thermooxidative stability of the material. The production process is also advantageous in that, when a larger amount of peroxide is used, at the same time, the polymerization of the polymer is achieved by the addition of the aitioxidant to the polyethylene, which is associated with an increase in its elasticity. A further advantage here is the motnrtSL to bring the polymer to a relatively high 3

205 490 so^<ého etupňa, t.j. až 100 hmotnostech dielov plniva na 100 hmotnostech dielov polyetylénu v zmeei.205 490 of the second stage, i. up to 100 parts by weight of filler per 100 parts by weight of polyethylene in the mixture.

U itabiliovvaného materiálu a výrobkov, získaných uplatněním riešenia podl'a vynálezu, neprejavujú ia obvyklé nepriaznivé vplyvy, spojené a degradáciou póvodrných fyzikairych vlastností v porovnaní i neitabilíovanem Riešenie umoOňuje technicky a ekonomicky velmi výhodem spSsobom výrobu produktov aj dlhodobe vyataveech vyšším teplotm a obzviašť aj v takých prípadoch, keá ia okrem nárokov na termooxidačnú stabilitu vyžaduje aj zvýšena termomeehanicka odolnoot.The itabiliated material and products obtained by the application of the invention do not exhibit the usual adverse effects associated with the degradation of the original physical properties compared to the non-stabilized solution. This solution provides a technically and economically very advantageous way of producing products even at long-term higher temperatures and particularly at such temperatures. in cases where, in addition to the requirements for thermo-oxidative stability, it also requires increased thermo-thermal resistance.

h Vyuuiiie vynálezu prichadza do úvahy hlavně při výrobe nízkonapěťových a vysokonapaťových kablov a izolozvaných vodičov, kde ia dosiahne zvýšenie životnosti ai o 15 rokov v porovnaní i doteraj.ším itavom resp. aj v iný^ch odboroch, například při výrobe rúr na rozvod teplej vody pre najrozličnejšie účely pouuítia. Pri produkcii takýchto výrobkov kontinuálnou technologiou vyOlačovania, nie je přitom ani potřebné před 8pracovaním.maatriaiu zviašť připravovat zmes obsahujúcu funkčně prýsady, stabilizator i peroxidom, ale tieto možno priamo davkovať do spracovatelského extrúdera kontinuálryrm navaiovaním.The use of the invention can be used mainly in the production of low-voltage and high-voltage cables and insulated conductors, where ia achieves an increase in the service life of up to 15 years compared to the current ITV resp. also in other fields, for example in the production of hot water distribution pipes for a wide variety of applications. In the production of such products by a continuous extrusion process, it is not even necessary to prepare a mixture containing functional additives, a stabilizer and peroxide, but it can be directly fed into the processing extruder by continuous rolling.

Koonkreizácia ri^ešenia podlá vynálezu je dand v příkladech, ktoré ia uvádzajú v dalšom. Příklad 1The co-creping of the solution according to the invention is dand in the examples which are set forth below. Example 1

Po roztavení 100 hmot, dielov polyetylénu i hustotou 0,92 a indexom toku taveniny g/10 rnnút v miešacej komoře Bratendero^o plastograíu ia pri tepote 125 °C pri.dalo do taveniny polymSru 0,1 hmoOnnotech dielov 4,4 * -tio-bis-Ze terc^^y! m-kkezolu/ a 0,2 hmotnostech dielov dikumypeeroxidu. Zmes sa pri uvedenej teplote miešala 5 · minút * a po jej tvarovaní na dostihu, sa táto v li.se pod ^akom 30 ДОа zohrievala 20 rnnút pri ^plote 175 °C. Za týchto podmienok sa 8 hodinovou sMtou extratoie iz^ropylalkoholom pri ^plo^ 70 °C zlatilo UV spektroskopiou 78% naviazanie antioxidantu na polyetylén. Indukčné perioda oxidáeie, meraná na tejto vzorke a^sorpci.ou kyslýka pri 180 °C, vylcazovala ^airái.té po jej príprove hodnotu 620 minút a t^o sa nezmePla ani po 9° dňovom ^stavení ^pote 70 °C, kým u polyméru stabilioovaného týmto m^ožstvom antioxidantu, avšak bez spolupf aobenia peroxidu, došlo po vystavení vzorky rovnakým podmienkam k poklesu tejto hodnoty na 65 minút. Obdobné nedošlo tu ani k zmenúm elektrických a dielektr^kych vlastnootí zmesi, ktora vykazovala hodnoty straOového činitele 3·10”\ peermiiivity 2,3 a elektrictoj pevnooti 35 kV/mm. ^mes sa aplikovala na izoia^u vysokofrekvenčech vodičov.After melting of 100 wt. Parts of the polyethylene density of 0.92 and a melt index of g / 10 àñòü in the mixing chamber of the plastograíu Bratendero ^ p i r i a temperature between approximately 12 5 DEG C to melt ri.dalo polymSru hmoOnnotech 0.1 parts of 4, 4 * -thio-bis-Ze tert -butyl; and 0.2 parts by weight of dicumypeeroxide. The mixture was stirred at the same temperature for 5 min · *, and after forming the race, in this clip li.se ^ 30 to which heated ДОа 20 àñòü p r i ^ fence 175 ° C. In those circumstances, the 8-hour SMTO extratoie referred ropylalkoholom p ^ r ^ i ^ Flat 7 0 C gilded UV spectroscopy, 78% of the binding of an anti-oxidant to polyethylene. Oxidáeie induction period, measured in this model of e and ^ yk sorpci.ou of YSL and at 180 DEG C., vylcazovala ^ airái.té after príprove h alue 620 minutes at O is an IP nezmePla the 9-day ^ ° ^ houses sweat 7 0 ° C, while in polymer stabilioovaného this m ^ ožstvom antioxidant, but without spolupf aobenia peroxide, occurred after exposure of the sample to the same conditions to decrease this value to 65 minutes. A similar there are also no zmenúm of Electrical and Dielectric ^ kych vlastnootí composition, which showed a value of y straOov eh factor 3 · 10 "\ peer ivity and y 2, p 3 and elektrictoj evnooti 35 kV / mm. It was applied to the isolation of high-frequency conductors.

Prýklad 2Example 2

Pri prýprave vzoriek a ich skúSaní sa použili rovnaké suroviny a rovnOcý postup ako v prýklade 1, len s tým rozdielom, že 4,4 *-eio-bls-/6eeri.butyl m-krezoiu sa do polyetylénu přidalo 0,2 hmoOnnotech dielov na 100 hmotnotteih dielov polymru. ' Určen obsah an^ox^antu nav^zen^o na polyetyn bol 80 % a kd^M periOda oxidacie pri 180 °C, ktora sa ani po 90 dňovej sxjpooíííí pri ^plote 70 °C nezmenHa, ’ mmla hodnotu 950 · minút. Taktiež nedošlo k zmene pdvodnej charakteristiky u elektrickej pevncoii, straOového činitetela a perrniiivity.The same raw materials and the same procedure as in Example 1 were used in the preparation and testing of the samples, except that 4,4% -eio-bls / 6-butylbutyl m-cresol was added to polyethylene 0.2 parts by weight per sample. 100 parts by weight of polymer. 'DETERMINATION n ^ ox ^ antu nav ^ zen ^ of the p olyety treatment n b ol, 80% and K ^ M p er iodine and sulfur, and the CIE L T and 180 DEG C., the tor, and is not p 90 day sxjpooíííí the fence 7 ^ 0 C nezmenHa, "mmla alue h 0 · 95 min. Bars of no changes in electrical characteristics pdvodnej pevncoii, straOového činitetela and perrniiivity.

Prýklad3Prýklad3

205 490205 490

I tu ca použili rovnaké suroviny a rovnaký postup ako v příklade 1, avšak do polyetylénu aa přidalo 0/25 hmotnostuních dielov antioxidantu a 1,85 hmotnootiných dielov peroxidu ná 100 hmo^o^ch dielov polymru· Zistené množivo antioxidantu naviazaného na polyetylén bolo 89% a indukčná perioda oxiWcie při 190°C vykazovala hodnotu 340 minút· Stálost stabilizačného účinku a^iti^oxidantu za týchto podmcnok sáčasného eieťovania polytóru dokažme akutočnosť, ie východisková ťainosť polyetylénu 520% a elektrické a dielektrioké charakteristiky sa ^akUcty nezmenši ani po 40 dňovom namtturní pri teplot 15° °C· Tieto vzorky vykazovali aj zvýšeni! t^e^imom^c^liíu^i.ckú odolnost, ktorá sa prejavila iba 60% deformáciou - sk^obných tcliesok zatažený^ 20 N/cm^ při teplote 200 °C· Zmas- ca apHlcovala na izoláciu silových káblov 22 kV.Here again the same raw materials and the same procedure as in Example 1 were used, but 0/25 parts by weight of antioxidant and 1.85 parts by weight of peroxide per 100 parts by weight of polymer were added to polyethylene aa. % and induction, and the period oxiWcie at 19 0 C showed h alue 340 minutes · Stability stabilizing effect and ^ iti ^ oxidant to compare podmcnok sáčasného eieťovania polytóru Let us prove akutočnosť, ie the starting Elongation polyethylene 520%, and the electrical and dielectric characteristics of the ^ akUcty neither reduce p 0 of 4-day namtturní at temperatures 15 ° C · These samples showed also increase! t ^ e ^ c ^ ^ imom Liia ^ i.ckú resistance could be detected with only 60% strain - en obných ^ ^ tclieso load is 20 N / cm ^ of that of L Lote 200 ° C · Zmas- CA apHlcovala to isolate the power 22 kV cables.

Příklad 4Example 4

Do polyetylénu s indexom toku taveniny 0,1 g/10 mnút aa prirnešalo 0,65 hmoOnootných diclov 2t 2'-tio 2dictylbis-£3-2/3l5-ditcrc.buty1242hiydroxyfenrl/2propionátuji 1,1’ hmOnostných dielov 1l4-diterc·butyPpeto:yr-di-Zoюrtppylonbenzéou na 100 hmoOnnotiných diclov polyméru a rovneký— postupom ako v prcdchádzajúcich príkladoch sa připravili a testovali ckúšobné vzorky· V tomto případe sa zistili následovně charakteristiky’ stability polyméru: nev^azame antioxidantu na polymr 65%, východisková indukčná perioda oxidácie při l80 °C 730 mnút a . po 90 tóovom pteobení teploty 70 °C 680 mnút· U vzoriek vystavených 40, dfovému pósobeniu tepoty -. 150 °C ta^os^ e^atoty Čin^el’, pemntivita a elektrická pcvnoeť- si zachovali pdvodnd hodnotu, obdobné ako . v predchádzajúcom příklade·Příklad 5Add the polyethylene having a melt index 0.1 g / 10 minutes to complete aa prirnešalo 0.65 hmoOnootných dicle 2 t 2 "thio 2dictyl Bis- £ 3 2 / 3l5- d itcrc. Tue 1242 h y d roxy iy f a y rl / r a 2propionátu 1,1' hmOnostných parts · 1l4-di-tert butyPpeto: yr-di-Zoюrtppylonbenzéou 100 hmoOnnotiných dicle polymer rovneký- prcdchádzajúcich to that in the Examples were prepared and tested ckúšobné sample · In this case, the following characteristics have found the stability of the polymer: nev ^ Azam antioxidant to the polymerization of 65%, initial induction period of the oxidation of l 80 C 73 0 and a softening. p 90 To's pteobení temperature of 70 ° C 680 Softening · The pattern and exposed to the e 40, DFOV action of temperature between approximately -. 1 50 ° C the person ^ ^ e ^ Atoto Cin ^ el ', pemntivita e l EC Trická pcvnoeť- maintain pdvodnd value, similar to that. in the previous example · Example 5

Polymr a peroxid sa použili roanakími c^i^iral^lterifi^tk^imi a v rovnakom mcoitve ako v predchádzajjúcom příklade, pričom ako eotioxidaot tu vystupoval trss//2-metyl-4-tydroxy-5-texc«butylfenyl/bután v mnoitva 0,4 hmot^c^stitych dielov na 100 hmoonnotných dielov polyetylénu· V tomto případe došlo k 73% oaviezeoiu αntisxideotu na polymr, ktorý vykazov^ induWnú period oxidácic pri 180 °C 420 mnút· Táto charatteristita sa po 90 dňovom ^stavení tcplotc 70 °C v prípade spolupósobenia peroxidu ^a^icky zactavtú.a na východickovej hodnotě a obdobné sa zachovali aj východiskové hodnoty elektrických a dielektrických οΙμοτΖ^^ΙοΗ^The polymer and the peroxide were used in the same manner as in the previous example, with trss / 2-methyl-4-thyroxy-5-tert-butylphenyl / butane as the eotioxidaot. 0.4 w ^ C ^ plate parts per 100 parts of polyethylene hmoonnotných · In this case, there was a 73% oaviezeoiu αntisxideotu to the polymerization of exhibiting ^ induWnú period dioxide; Acic at 180 ° C 4 20 m · the nut charatteristita after 90 days ovom building tcplotc 7 ^ 0 C at p D e peroxide interaction of N, N-icky zactavtú.a the východickovej value and the like to preserve the initial values of the electrical and dielectric οΙμοτΖ ^^ ^ ΙοΗ

Příklad 6Example 6

Na přípravu skúšojbpích vzorick sa na 100 hmoonootních dielov polyetylénu s indexom toku taveniny 20 g/10 mnút použilo 50 hmoOnootných dielov povrchovo upravcnej kriedy s priamcrnou vclkosťou častíc 6^Ra, 0,5 hmoOnoottných dielov tris-^-metyl^-tydroxy^tcrc.butylfenyl/buténu, 1,0 hmOnoo^ttoých dielov dileuryltOodipropiooátu a 2,4 hmoonosných diclov dikumrlperoxidu· U skúšobných vzorek připravených z tcjto zmsi nevykazovala východisková ťainosť 500% pri jcj kontrole po - 10 dňovom stárnutí vo vzdušnom termostate pri 150 °C iia^dnu zm^i^u kým u iných sta^l^ovaných vzorick ťatoosť ui po 2 dňoch takého to namáisana jc prakticky - nulová· Taktici sa nczmnóla východisková hodnota stratového či^tc!^ ktorá má ▼ tomto prípadc ho<inotu 2·10“\ hodnota ^rmtivity o velkostiFor the preparation of the test specimens, 50 parts by weight of the surface-treatment chalk with a direct particle size of 6 Ra, 0.5 parts by weight of tris-4-methyl-4-thyroxy-t-trieth were used per 100 parts by weight of polyethylene with a melt index of 20 g / 10 min. butylphenyl / butene, 1.0 parts by hmOnoo ^ ttoých dileuryltOodipropiooátu, 2.4 hmoonosných dicle dikumrlperoxidu · the test sample prepared from the starting tcjto zmsi Elongation showed 500% control of the jcj - 10-day aging in air thermostat at 5 1 0 C II a ^ d not change ^ i ^ u while at the other hundred ^ l ^ ated vzorick tatoos ui p about 2 days, such that namáisana jc virtually - zero · Taktici the nczmnóla baseline Forgotten him or ^ tc! ^ kt or á m á ▼ If p and the d c h a <INOTEL 2 · 10 "\ ^ value of the size rmtivity

205 490 3)2 a elektrickéj pevnosti o hodnotě 35 kV/mm. Přítomnost peroxidu vo v&čáom množstvo zabezpečila iba naviac tejto zmesi aj termomechanickú odolnost nad teplotou tavenia polyméru, charakterizovaná iba 80% deformáciou skúáobných teliesok, zatažených při teplote 200°C 2205 490 3) 2 and electrical strength of 35 kV / mm. The presence of peroxide in large quantities only provided, in addition to this mixture, a thermo-mechanical resistance above the melting point of the polymer, characterized by only 80% deformation of the test bodies, loaded at 200 ° C.

N/cm · Zmes sa aplikovala na silové káble 1 kV·N / cm · The mixture was applied to 1 kV power cables ·

Příklad 7Example 7

V tomto případe sa ako plnivo polyetylénu s indexom toku taveniny 20 g/10 minút použili vodivé retortové sadze, z ktorých sa 25 hmotnostních dielov přidalo do 100 hmotnostních dielov polyméru po jeho roztavení na dvojválci· Táto zmes sa pri teplote 125 °C homogenizovala a 0,5 hmotnostními dielmi 4,4*-tio-bis- /б-terc.butyl m-krezolu/ a 2,5 hmotnostními dielmi dikumylperoxidu. Skúáobné telieska připravené řovnako ako v predchádzajúcich prípadoch vykazovali nasledovné charakteristiky: měrný vnútorný odpor pri teplote 23 °C 5 ohm • cm, indukčná perioda oxidácie pri 180 °C po 100 dňovej expozícii pri teplote 70°C zachovala 8i východisková hodnotu 810 minút a ťažnosť 380 %· Tieto hodnoty ako aj dielektrická a elektrické vlastnosti sa po 10 dňovom stárnutí pri 150 °C nezměnili· Materiál sa aplikoval na výrobu polovodivých zmesi pre elektrotechnické účely·In this case, conductive retort carbon black was used as a polyethylene filler with a melt index of 20 g / 10 minutes, of which 25 parts by weight were added to 100 parts by weight of polymer after melting on a twin cylinder. 5 parts by weight of 4,4 &apos; -thio-bis- (t-butyl m-cresol) and 2.5 parts by weight of dicumyl peroxide. The test specimens prepared as in the previous cases exhibited the following characteristics: specific resistivity at 23 ° C 5 ohm • cm, induction period of oxidation at 180 ° C after 100 days exposure at 70 ° C maintained the initial value of 810 minutes and elongation 380 % · These values as well as the dielectric and electrical properties did not change after 10 days of aging at 150 ° C · The material was applied to the production of semiconducting mixtures for electrotechnical purposes ·

Claims (3)

1· Termooxidačne stabilizovaná polyetylénová zmes, vhodná najmá pre kábelárske účely, kde stabilizátorom je fenolický antioxidant, vyznačujúca sa tým, že zmes obsahuje v pomere na 100 hmotnostních dielov polyetylénu podiel 0,05 - 1,00 hmotnostních dielov nízkomolekulového antioxidantu typu viacjadrového fenolu s terčiámym alkylsubstituentom, výhodné 4,4*-tio-bis-/6-terč.butyl m-krezolu/, alebo tris-/2-metyl-4-hydroxy-5-terc..butylfenyl/ butánu, ktorý je na polyetyléne fixovaný chemickou vázbou vytvořenou rozpadom peroxidu·1 · Thermo-oxidized stabilized polyethylene blend, especially suitable for cable use, wherein the stabilizer is a phenolic antioxidant, characterized in that the blend contains, in proportion to 100 parts by weight of polyethylene, a proportion of 0.05-1.00 parts by weight of a low molecular weight multi-core phenol antioxidant. an alkyl substituent, preferably 4,4'-thio-bis- (6-tert-butyl m-cresol), or tris- (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, which is chemically fixed on polyethylene Peroxide decay bond · 2. Termooxidačne stabilizovaná polyetylénová zmes podTa bodu 1, vyznačujúca sa tým, že v pomere na 100 hmotnostních dielov polyetylénu v zmesi obsahuje aj podiel 1 - 100 hmotnostních dielov plniva na báze uhličitanov, kremičitanov alebo sadzí·2. The thermo-oxidized stabilized polyethylene composition of claim 1, wherein, in proportion to 100 parts by weight of the polyethylene in the mixture, it also contains a proportion of 1 to 100 parts by weight of a carbonate, silicate or carbon black filler. 3· SpOsob výroby termooxidačne stabilizovanej polyetylénovej zmesi podTa bodu 1, 2, vyznačujúci sa tým, že do polymérnej taveniny sa pri teplote 110 - 130 °C disperguje ako zmesný podiel nízkomolekulový antioxidant typu viacjadrového fenolu s terciámym alkyleubstituentom, výhodné 4,4r-tio-bis-/6-terc. butyl m-krezol/, alebo tris-/2-metyl-4-hydroxy5-terc<butylfenyl/ bután v množstva 0,05 - 1,00 hmotnostních dielov na 100 hmotnostních dielov polyetylénu, ako aj podiel substituovaného terciárneho alkylperoxidu, výhodné dikumylperoxidu v molárnom pomere 1:10 - 50:1 к množstvu antioxidantu, a zmesné zložky, včítane případného podielu aj plniva sa potom zohrievajú po dobu 0,1 - 80 minút pri teplote 150 - 400 °C.Process for the production of a thermo-oxidatively stabilized polyethylene composition according to item 1, 2, characterized in that a low molecular weight polynuclear phenol-type antioxidant with a tertiary alkyl substituent, preferably 4.4 r- thio, is dispersed into the polymer melt at 110-130 ° C. bis- / 6-t. butyl m-cresol] or tris- (2-methyl-4-hydroxy5-tert-butylphenyl) butane in an amount of 0.05-1.00 parts by weight per 100 parts by weight of polyethylene, as well as a proportion of substituted tertiary alkylperoxide, preferably dicumylperoxide in a molar ratio of 1:10 - 50: 1 to the amount of antioxidant, and the blending components, including any fraction and filler, are then heated for 0.1 - 80 minutes at 150 - 400 ° C.
CS795273A 1979-07-30 1979-07-30 Thermooxidative stable polyethylene mixture suitable especially for cable making purposes and method of manufacture of the said mixture CS205490B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CS795273A CS205490B1 (en) 1979-07-30 1979-07-30 Thermooxidative stable polyethylene mixture suitable especially for cable making purposes and method of manufacture of the said mixture
CS622088A CS273080B3 (en) 1979-07-30 1988-09-19 Thermooksidatively stabilized polyethylene mixture suitable especially for cabling purposes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CS795273A CS205490B1 (en) 1979-07-30 1979-07-30 Thermooxidative stable polyethylene mixture suitable especially for cable making purposes and method of manufacture of the said mixture
CS622088A CS273080B3 (en) 1979-07-30 1988-09-19 Thermooksidatively stabilized polyethylene mixture suitable especially for cabling purposes

Publications (1)

Publication Number Publication Date
CS205490B1 true CS205490B1 (en) 1981-05-29

Family

ID=37714668

Family Applications (2)

Application Number Title Priority Date Filing Date
CS795273A CS205490B1 (en) 1979-07-30 1979-07-30 Thermooxidative stable polyethylene mixture suitable especially for cable making purposes and method of manufacture of the said mixture
CS622088A CS273080B3 (en) 1979-07-30 1988-09-19 Thermooksidatively stabilized polyethylene mixture suitable especially for cabling purposes

Family Applications After (1)

Application Number Title Priority Date Filing Date
CS622088A CS273080B3 (en) 1979-07-30 1988-09-19 Thermooksidatively stabilized polyethylene mixture suitable especially for cabling purposes

Country Status (1)

Country Link
CS (2) CS205490B1 (en)

Also Published As

Publication number Publication date
CS622088A1 (en) 1990-07-12
CS273080B3 (en) 1991-03-12

Similar Documents

Publication Publication Date Title
KR102414614B1 (en) Crosslinkable polymeric compositions with diallyl isocyanurate crosslinking coagents, methods for making the same, and articles made therefrom
US6180706B1 (en) Crosslinkable high pressure low density polyethylene composition
KR102225077B1 (en) A new low MFR polymer composition, power cable insulation and power cable
KR20160119768A (en) A new crosslinked polymer composition, power cable insulation and power cable
KR102292950B1 (en) Crosslinkable polymeric compositions with diallylamide crosslinking coagents, methods for making the same, and articles made therefrom
US6187847B1 (en) Polyethylene crosslinkable composition
EP3728443A1 (en) Cable made from crosslinkable composition with antioxidant and beneficial methane formation
CN113861550A (en) B1-grade ultraviolet light crosslinking low-smoke halogen-free flame-retardant cable material and preparation method thereof
KR20230079443A (en) cable
CN105348620B (en) A kind of heat-resisting 105 DEG C of weather-proof processes for chemically crosslinked polyethylene Insulation Materials
US4221699A (en) Production of extruded polyolefin products
CS205490B1 (en) Thermooxidative stable polyethylene mixture suitable especially for cable making purposes and method of manufacture of the said mixture
JPS627933B2 (en)
KR102743783B1 (en) Genetically enhanced polyethylene formulation
EP0163819B1 (en) Polyolefin compounds having improved thermal stability and conductors coated therewith
CA1053840A (en) Stabilized propylene-based polymer compositions
CN110511512A (en) A New Anti-aging Flame Retardant Cable Material
CA2303580A1 (en) A crosslinkable polyethylene composition
KR20250002434A (en) submarine cable
JPH0269541A (en) Insulating composition
FR2502160A1 (en) FLAME RETARDANT POLYMER MATERIAL
CN110903530A (en) Chemical crosslinked polyethylene insulating material for silver gray aerial cable and preparation method thereof
KR102665698B1 (en) Flame retardant composition
CA1107024A (en) Production of extruded polyolefin products
KR910004922B1 (en) Poliolepin composite for high voltage insulator