JPH0269541A - Insulating composition - Google Patents

Insulating composition

Info

Publication number
JPH0269541A
JPH0269541A JP22023888A JP22023888A JPH0269541A JP H0269541 A JPH0269541 A JP H0269541A JP 22023888 A JP22023888 A JP 22023888A JP 22023888 A JP22023888 A JP 22023888A JP H0269541 A JPH0269541 A JP H0269541A
Authority
JP
Japan
Prior art keywords
mixture
oxidative deterioration
polyethylene
insulating composition
butyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22023888A
Other languages
Japanese (ja)
Inventor
Atsushi Suzuki
淳 鈴木
Susumu Takahashi
享 高橋
Kenji Nagai
健二 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP22023888A priority Critical patent/JPH0269541A/en
Publication of JPH0269541A publication Critical patent/JPH0269541A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an insulating composition, capable of providing a high crosslinking degree and suitably usable as electric wires, cables, etc., with hardly any occurrence of scorch and water tree by blending polyethylene with a mixture of specific crosslinking agents and mixture of specified oxidative deterioration inhibitors. CONSTITUTION:An insulating composition obtained by blending (A) 100 pts.wt. polyethylene, preferably low-density polyethylene having 0.7-1.5 terminal C=C bonds based on 1000 carbon atoms and 0.5-4 melt flow rate with (B) 1-3 pts.wt. mixture consisting of (B1) dicumyl peroxide and (B2) triallyl isocyanate at (4:1)-(1:1) ratio of the components (B1):(B2) and (C) 0.1-0.4 pt.wt. mixture of (C1) a phenolic oxidative deterioration inhibitor [e.g., 4,4'-thiobis(6-tert-butyl-3- methylphenol)] with (C2) an amine-based oxidative deterioration inhibitor (e.g., 2,6-di-tert-butyl-alpha-dimethylamino-p-cresol).

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電線・ケーブル、特に電カケープルまたはこ
れらの接続部に用いて有用な絶縁組成物に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an insulating composition useful for electric wires and cables, particularly electric cables or their connections.

〈従来の技術〉 従来、電線・ケーブルの絶縁体またはこれらの接続部を
形成するには、架橋ポリエチレンを加熱架橋させていた
。そして、この架橋ポリエチレンの架橋剤としては、一
般にジクミルパーオキサイド(以下、DCPという)が
使用されている。
<Prior Art> Conventionally, in order to form insulators for electric wires and cables or connection parts thereof, crosslinked polyethylene was crosslinked by heating. Dicumyl peroxide (hereinafter referred to as DCP) is generally used as a crosslinking agent for this crosslinked polyethylene.

〈発明が解決しようとする課題〉 ところが、このDCPの場合には、次のようにな問題が
あった。
<Problems to be Solved by the Invention> However, this DCP has the following problems.

(1)架橋度を向上させるため、DCPを多量に添加す
ると、押出時にスコーチ(早期架橋)が生じ、電線・ケ
ーブルあるいは接続部の絶縁体中にアンバー(焼は樹脂
)が発生し、絶縁性能を低下させる恐れがあった。
(1) If a large amount of DCP is added to improve the degree of crosslinking, scorch (early crosslinking) will occur during extrusion, and amber (burnt resin) will be generated in the insulator of electric wires/cables or connections, resulting in poor insulation performance. There was a risk that it would reduce the

(2) D CPは、架橋時にクミルアルコール(以下
、CAという)とアセトフェノン(以下、APという)
とになり、このCAは、絶縁体のモールド時の熱により
、分解して、α−メチルスチレン(以下、α−MSとい
う)と水になる。
(2) D CP combines cumyl alcohol (hereinafter referred to as CA) and acetophenone (hereinafter referred to as AP) during crosslinking.
This CA is decomposed by the heat generated during molding of the insulator and becomes α-methylstyrene (hereinafter referred to as α-MS) and water.

この水は、絶縁体中で凝集され、電線・ケーブルに電場
が掛けられると、水トリー発生の原因となる。この水ト
リーは、絶縁体の絶縁破壊電圧の低下を招くと考えられ
ている。
This water condenses in the insulator and causes water tree formation when an electric field is applied to the wire or cable. This water tree is thought to cause a decrease in the dielectric breakdown voltage of the insulator.

そこで、本発明者等は、このDCPの使用量を相対的に
抑えるべ(、他の架橋剤(トリアリルイソシアネート、
以下、TAICという)や、特定の酸化劣化防止剤等を
混合して、ベースポリマーであるポリエチレンに添加し
たところ、水トリーの発生が良好に抑制されることを見
出した。
Therefore, the present inventors proposed that the amount of DCP used should be relatively suppressed (and other crosslinking agents (triallyl isocyanate,
It has been found that when a mixture of TAIC (hereinafter referred to as TAIC), a specific oxidative deterioration inhibitor, etc. is added to polyethylene as a base polymer, the occurrence of water trees can be effectively suppressed.

本発明は、このような事実に基づいてなされたものであ
る。
The present invention has been made based on these facts.

〈課題を解決するための手段及びその作用〉か\る本発
明は、ポリエチレン100重量部と、DCPとTA I
 Cとの混合物1. 0〜3.0重量部と、フェノール
系酸化劣化防止剤とアミン系酸化劣化防止剤との混合物
0.10〜0.40重量部とからなる絶縁組成物にある
<Means for solving the problems and their effects> The present invention consists of 100 parts by weight of polyethylene, DCP and TA I.
Mixture with C1. 0 to 3.0 parts by weight, and 0.10 to 0.40 parts by weight of a mixture of a phenolic oxidative deterioration inhibitor and an amine oxidative deterioration inhibitor.

本発明において、TA I CはDCPに対して、架橋
助剤として働きをするためのもので、DCPとの混合割
合は、DCP:TAIC=4 : 1〜1:1程度が好
ましく、そして、その混合合計量は1.0〜3.0重量
部とする。なぜなら、1゜0重量部未満では所望の架橋
度が得られず、逆に3.0重量部を越えるとスコーチが
生じるようになるからである。
In the present invention, TAIC acts as a crosslinking aid for DCP, and the mixing ratio with DCP is preferably about 4:1 to 1:1; The total amount of the mixture is 1.0 to 3.0 parts by weight. This is because if it is less than 1.0 parts by weight, the desired degree of crosslinking cannot be obtained, and if it exceeds 3.0 parts by weight, scorch will occur.

また、本発明で使用されるフェノール系酸化劣化防止剤
としては、4,4′−チオビス(6−t−ブチル−3−
メチルフェノール)(以下、44′−チオビスという)
、ビス〔2−メチル−4−(3−n−アルキル(C22
またはC14)チオプロピオニルオキシ)−5−1−ブ
チルフェニル〕スルフィド、1,3.5−トリス(3’
、5−ジ−ターシャリ−−ブチル−4−ヒドロキンベン
ゾイル)イソシアヌレ−1−(以下、1.35−トリス
という)、ビス(3,5−ジ−ターシャリー−7’チル
−°4−ヒドロキシベンジル)スルフィド(以下、3,
5−スルフィドという)等が挙げられる。また、アミン
系酸化劣化防止剤としては、2.4−ビス−(n−オチ
ルチオ)−6−(4−ヒドロキシ−3,5−ジーも一ブ
チルアニリノ)−1,3,5−トリアジン(以下、2.
4−ビス−1,3,5−)リアジンという)、N。
In addition, as the phenolic antioxidant used in the present invention, 4,4'-thiobis(6-t-butyl-3-
methylphenol) (hereinafter referred to as 44'-thiobis)
, bis[2-methyl-4-(3-n-alkyl (C22
or C14) thiopropionyloxy)-5-1-butylphenyl] sulfide, 1,3,5-tris(3'
, 5-di-tert-butyl-4-hydroquinebenzoyl) isocyanure-1- (hereinafter referred to as 1.35-tris), bis(3,5-di-tert-7'thyl-°4-hydroxy benzyl) sulfide (hereinafter referred to as 3,
5-sulfide), etc. In addition, as an amine-based oxidative deterioration inhibitor, 2,4-bis-(n-ocylthio)-6-(4-hydroxy-3,5-di-butylanilino)-1,3,5-triazine (hereinafter referred to as 2.
4-bis-1,3,5-)riazine), N.

N″−へキサメチレンビス(3,5−ジーも一ブチルヒ
ドロキシーヒドロシンナマミド(以下、N。
N″-hexamethylenebis(3,5-di-butylhydroxy-hydrocinnamamide (hereinafter referred to as N).

N′−へキサメチレンビスという)、2.6−ジタージ
ャジー−ブチル−α−ジメチルアミノP−クレゾール(
以下、2.6−P−クレゾールという)等が挙げられる
N'-hexamethylenebis), 2,6-diterjadi-butyl-α-dimethylamino P-cresol (referred to as
(hereinafter referred to as 2,6-P-cresol).

そして、これらのフェノール系とアミン系の酸化劣防止
剤の混合合計量は、0.10〜0.40重量部とする。
The total amount of these phenol-based and amine-based oxidation inhibitors mixed is 0.10 to 0.40 parts by weight.

なぜなら、0.10重量部未満では熱老化特性が悪く、
十分な改善が図られず、また0、40重量部を越えると
今度は架橋度が低下するからである。そして、さらにこ
れらのフェノール系とアミン系の酸化劣化止剤自体の配
合割合は、DCPの添加量との関係で、種々変えるもの
とする。
This is because if it is less than 0.10 parts by weight, the heat aging properties will be poor.
This is because sufficient improvement cannot be achieved, and if the amount exceeds 0.40 parts by weight, the degree of crosslinking will decrease. Furthermore, the blending ratio of these phenol-based and amine-based oxidative deterioration inhibitors themselves shall be varied depending on the amount of DCP added.

また、本発明で用いられるポ・リエチレンは、特に限定
されないが、低密度ポリエチレンが好ましく、そして、
さらにその端末炭素−炭素二重結合が炭素数1000個
当たり0.7〜1. 5個、メルトフローレシオ(M、
F、R,)が0.5〜4゜0であることが望ましい。な
ぜらな、端末炭素−炭素二重結合数値が0.7個未満で
は架橋度が低く、またこの数が1.5個を越えるとスコ
ーチが生じ易いからである。また、メルトフローレシオ
が0,5未満ではスコーチが生じ易く、これが4゜0を
越えると偏肉や垂れ落ちが生じるからである。
Further, the polyethylene used in the present invention is not particularly limited, but low density polyethylene is preferable, and
Furthermore, the terminal carbon-carbon double bond is 0.7 to 1 per 1000 carbon atoms. 5 pieces, melt flow ratio (M,
F, R,) is preferably 0.5 to 4°0. This is because if the number of terminal carbon-carbon double bonds is less than 0.7, the degree of crosslinking is low, and if this number exceeds 1.5, scorch is likely to occur. Further, if the melt flow ratio is less than 0.5, scorch is likely to occur, and if it exceeds 4.0, uneven thickness or dripping will occur.

〈実施例■〉 第1表に示した配合により、本発明に係る絶縁組成物(
実施例■〜■)と本発明の条件を満たさない絶縁組成物
(比較例■〜■)とを作り、ケーブルの絶縁体およびケ
ーブル接続部の絶縁体を形成した。
<Example ■> The insulating composition according to the present invention (
Examples 1 to 2) and insulating compositions that did not meet the conditions of the present invention (Comparative Examples 1 to 2) were prepared to form cable insulators and cable connection insulators.

そして、これらの各絶縁組成物について、その特性(ス
コーチタイム、押出〜加熱後の水分の発生量)を調べた
。なお、スコーチタイム測定試験、水分発生量測定試験
は次のようにして行った。
The properties (scorch time, amount of moisture generated after extrusion and heating) of each of these insulating compositions were investigated. The scorch time measurement test and the water generation amount measurement test were conducted as follows.

(1)スコーチタイム測定試験 ムーニー粘度計を用い、最低トルク値より、5ポイント
上昇するまでの時間をスコーチタイムとして測定した。
(1) Scorch time measurement test Using a Mooney viscometer, the time required for the torque to increase by 5 points from the lowest torque value was measured as the scorch time.

(2)水分発生量測定試験 押出後、モールドを模擬した加熱後と2段階に分けて1
.カールフィッシャー法により行った。
(2) Moisture generation amount measurement test After extrusion, after heating to simulate the mold, and 1
.. This was carried out using the Karl Fischer method.

上記第1表において、各実施例■〜■と比較例■〜■と
を比べた場合、組成物の分解残漬物中における水分量は
、押出後にあってはそれほど大きな差はないが、モール
ド加熱を模擬した加熱後(160°CX4時間)にあっ
ては大きく異なる。
In Table 1 above, when comparing each of Examples ■ to ■ and Comparative Examples ■ to ■, the water content in the decomposition residue of the composition does not differ much after extrusion, but After heating (160°C for 4 hours), which simulates

つまり、実施例■〜■においては、CAはあまり分解せ
ず、押出後の水分量と同じ1100pp以下に対して、
比較例■〜■では、CAが分解して、α−MSと水とな
り、その水分量は、例えば実施例■と比較例■を比べる
と、約6倍以上にもなっている。
In other words, in Examples ■ to ■, CA did not decompose much, and when the moisture content after extrusion was 1100 pp or less,
In Comparative Examples (2) to (2), CA decomposes into α-MS and water, and the water content is about six times or more, for example, when comparing Example (2) and Comparative Example (2).

また、架橋特性の一つであるゲル分率とスコーチタイム
において、各実施例■〜■と比較例■〜■とを比較した
場合、実施例■〜■の組成物では架橋度が高く、なおか
つスコーチは比較例■〜■と同程度であることが判る。
In addition, in terms of gel fraction and scorch time, which are one of the crosslinking properties, when comparing Examples ■ to ■ and Comparative Examples ■ to ■, it was found that the compositions of Examples ■ to ■ had a high degree of crosslinking, and It can be seen that the scorch is at the same level as Comparative Examples ■ to ■.

〈実施例■〉 上記第1表の実施例■は比較例■の組成物を用いて、6
6kV、1cX400mm2CVケーフルの接続部にモ
ールドジヨイントを施し、70に■6カ月の長期課電通
を行い、その後、水トリーの観察を行った。
<Example ■> Example ■ in Table 1 above uses the composition of Comparative Example ■.
A mold joint was applied to the connection part of a 6 kV, 1 c x 400 mm 2 CV cable, and the 70 was subjected to long-term energization for 6 months, after which the water tree was observed.

その結果は、実施例■の場合、水トリーの発生は極めて
少なく、比較例■の場合には、水トリーが多発している
ことが確認された。つまり、本発明品では水トリーの発
生が効果的に抑制されていることが判る。
The results showed that in the case of Example (2), the occurrence of water trees was extremely small, and in the case of Comparative Example (2), it was confirmed that water trees occurred frequently. In other words, it can be seen that the product of the present invention effectively suppresses the occurrence of water trees.

〈発明の効果〉 以上の説明から明らかなように本発明によれば、電線・
ケーブルの絶縁体およびそれらの接続部を形成するにお
いて、高い架橋度が得られ、またスコーチが発生しにに
くかつ水トリーの発生数のない、長期に亙って安定した
性能を呈する、優れた絶縁組成物を提供することができ
る。
<Effects of the Invention> As is clear from the above explanation, according to the present invention, electric wires and
An excellent product that has a high degree of cross-linking, is resistant to scorch, has no water trees, and exhibits stable performance over a long period of time when forming cable insulation and their connections. An insulating composition can be provided.

特許出願人  藤倉電線株式会社Patent applicant: Fujikura Electric Wire Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] ポリエチレン100重量部と、ジクミルパーオキサイド
とトリアリルイソシアネートとの混合物1.0〜3.0
重量部と、フェノール系酸化劣化防止剤とアミン系酸化
劣化防止剤との混合物0.10〜0.40重量部とから
なる絶縁組成物。
100 parts by weight of polyethylene, a mixture of dicumyl peroxide and triallyl isocyanate 1.0 to 3.0 parts by weight
parts by weight, and 0.10 to 0.40 parts by weight of a mixture of a phenolic oxidative deterioration inhibitor and an amine oxidative deterioration inhibitor.
JP22023888A 1988-09-02 1988-09-02 Insulating composition Pending JPH0269541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22023888A JPH0269541A (en) 1988-09-02 1988-09-02 Insulating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22023888A JPH0269541A (en) 1988-09-02 1988-09-02 Insulating composition

Publications (1)

Publication Number Publication Date
JPH0269541A true JPH0269541A (en) 1990-03-08

Family

ID=16748055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22023888A Pending JPH0269541A (en) 1988-09-02 1988-09-02 Insulating composition

Country Status (1)

Country Link
JP (1) JPH0269541A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007111A (en) * 2010-06-25 2012-01-12 Viscas Corp Liquid additive composition, and method for producing power cable or power cable joint
JP2016503101A (en) * 2012-12-29 2016-02-01 ダウ グローバル テクノロジーズ エルエルシー Crosslinkable polymer composition, method of making the same, and article made therefrom
KR20160119073A (en) * 2013-12-19 2016-10-12 보레알리스 아게 A new polymer composition, power cable insulation and power cable
KR20160119072A (en) * 2013-12-19 2016-10-12 보레알리스 아게 A new low MFR polymer composition, power cable insulation and power cable
JP2017500413A (en) * 2013-12-19 2017-01-05 ボレアリス エージー Novel cross-linked polymer composition, power cable insulation and power cable
JP2017501271A (en) * 2013-12-19 2017-01-12 ボレアリス エージー Novel cross-linked low MFR polymer composition, power cable insulation and power cable
JP2017222852A (en) * 2017-06-07 2017-12-21 ダウ グローバル テクノロジーズ エルエルシー Crosslinkable polymer composition and method for producing the same, and article produced from the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007111A (en) * 2010-06-25 2012-01-12 Viscas Corp Liquid additive composition, and method for producing power cable or power cable joint
JP2016503101A (en) * 2012-12-29 2016-02-01 ダウ グローバル テクノロジーズ エルエルシー Crosslinkable polymer composition, method of making the same, and article made therefrom
JP2017503048A (en) * 2013-12-19 2017-01-26 ボレアリス エージー Novel low MFR polymer composition, power cable insulation and power cable
KR20160119072A (en) * 2013-12-19 2016-10-12 보레알리스 아게 A new low MFR polymer composition, power cable insulation and power cable
JP2017500413A (en) * 2013-12-19 2017-01-05 ボレアリス エージー Novel cross-linked polymer composition, power cable insulation and power cable
JP2017501271A (en) * 2013-12-19 2017-01-12 ボレアリス エージー Novel cross-linked low MFR polymer composition, power cable insulation and power cable
KR20160119073A (en) * 2013-12-19 2016-10-12 보레알리스 아게 A new polymer composition, power cable insulation and power cable
JP2017503050A (en) * 2013-12-19 2017-01-26 ボレアリス エージー Novel polymer composition, power cable insulation and power cable
US10221300B2 (en) 2013-12-19 2019-03-05 Borealis Ag Crosslinked polymer composition, power cable insulation and power cable
US10347390B2 (en) 2013-12-19 2019-07-09 Borealis Ag Polymer composition, power cable insulation and power cable
EP3083795B1 (en) 2013-12-19 2019-10-02 Borealis AG A new polymer composition, power cable insulation and power cable
EP3569648B1 (en) 2013-12-19 2020-09-30 Borealis AG Power cable
US11355260B2 (en) 2013-12-19 2022-06-07 Borealis Ag Low MFR polymer composition, power cable insulation and power cable
JP2017222852A (en) * 2017-06-07 2017-12-21 ダウ グローバル テクノロジーズ エルエルシー Crosslinkable polymer composition and method for producing the same, and article produced from the same

Similar Documents

Publication Publication Date Title
AU784703B2 (en) Stabilized medium and high voltage cable insulation composition
US5420185A (en) Wire on cable coated with a bow-tie tree resistant electrical insulating composition
US4876147A (en) Cable insulation based on ethylene polymers having high resistance to the formation of water trees
JPH0269541A (en) Insulating composition
KR20010052091A (en) Composition for electric cables
EP1095381B1 (en) Composition for electric cables
JP2579493B2 (en) Insulator composition
JPH0216137A (en) Stabilization of crosslinked vldpe
US4129616A (en) Polymeric compositions containing brominated flame retardants
JP2544916B2 (en) Power cable
JPS63190206A (en) Insulating material composition for wire and cable
CA1190985A (en) Antioxidant system for use in the simultaneous injection of a liquid organic peroxide cross-linking agent for the production of cross-linked polyolefin products
JPH0198643A (en) Polyethylene composition
CA1107024A (en) Production of extruded polyolefin products
JP2592263B2 (en) Electric wires and cables
JP3341593B2 (en) Electrical insulating composition and electric wires and cables
JPS63289715A (en) Composition for wire-cable insulator
JPH01113446A (en) Polyolefin composition
JPH0273839A (en) Polyolefin composition
JPH0376736A (en) Water running-preventive composition and water running-preventive cable manufactured therewith
JPH10269855A (en) Crosslinking polyethylene insulating wire or cable
JPS6397647A (en) Heat-resistant electrical insulating composition
JPH07105734A (en) Electric insulating composition
JPH0114931B2 (en)
GB1588485A (en) Polymeric compositions containing brominated flame retardants