JP2579493B2 - Insulator composition - Google Patents
Insulator compositionInfo
- Publication number
- JP2579493B2 JP2579493B2 JP62211717A JP21171787A JP2579493B2 JP 2579493 B2 JP2579493 B2 JP 2579493B2 JP 62211717 A JP62211717 A JP 62211717A JP 21171787 A JP21171787 A JP 21171787A JP 2579493 B2 JP2579493 B2 JP 2579493B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- parts
- water
- scorch
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Organic Insulating Materials (AREA)
Description
【発明の詳細な説明】 <産業上の利用分野> 本発明は、電線・ケーブルの接続部等に用いる絶縁体
組成物に係り、特に、モールド時の加熱による水トリー
の発生を抑制した絶縁体組成物に関するものである。Description: TECHNICAL FIELD The present invention relates to an insulator composition used for a connection portion of an electric wire or a cable, and more particularly to an insulator which suppresses generation of water trees due to heating during molding. It relates to a composition.
<従来の技術> 従来、電線・ケーブルの接続部を形成するには、架橋
ポリエチレンをモールド加熱して行っていた。そして、
この架橋ポリエチレンの架橋剤としては、一般にジクミ
ルパーオキサイド(以下、DCPという)が使用されてい
た。<Prior Art> Conventionally, in order to form a connection portion of an electric wire / cable, a cross-linked polyethylene is heated by molding. And
Dicumyl peroxide (hereinafter referred to as DCP) was generally used as a crosslinking agent for the crosslinked polyethylene.
<発明が解決しようとする問題点> ところが、このDCPの場合には、次のような問題があ
った。<Problems to be Solved by the Invention> However, this DCP has the following problems.
架橋度を向上させるため、DCPを多量に添加すると、
押出時にスコーチ(早期架橋)が生じ、接続部の絶縁体
中にアンバー(焼け樹脂)が発生し、絶縁性能を低下さ
せる恐れがあった。When DCP is added in large amounts to improve the degree of crosslinking,
During extrusion, scorch (early crosslinking) occurs, amber (burned resin) is generated in the insulator at the connection portion, and there is a possibility that insulation performance may be reduced.
DSPは、架橋時にクミルアルコール(以下、CAと略記
する)とアセトフェノン(APと略記する)とになり、こ
のCAは、モールド加熱時の熱により、分解して、α−メ
チルスチレン(以下、α−MSと略記する)と水になる。The DSP becomes cumyl alcohol (hereinafter abbreviated as CA) and acetophenone (abbreviated as AP) at the time of crosslinking, and this CA is decomposed by heat at the time of heating the mold to form α-methylstyrene (hereinafter abbreviated as “A”). α-MS) and water.
この水は、絶縁体中で凝集され、電線・ケーブルに電
場が掛けられると、水トリー発生の原因となる。この水
トリーは、絶縁体の絶縁破壊電圧の低下を招くと考えら
れている。This water is agglomerated in the insulator, and when an electric field is applied to the electric wire / cable, it causes water tree generation. This water tree is considered to cause a decrease in the dielectric breakdown voltage of the insulator.
本発明は、このような従来の実情に鑑みてなされたも
ので、ポリエチレンの架橋に当たって、DCPと共に、他
の添加材を添加して、上述した問題点を解決したもので
ある。The present invention has been made in view of such a conventional situation, and solves the above-mentioned problems by adding other additives together with DCP in crosslinking of polyethylene.
<問題点を解決するための手段及びその作用> かゝる本発明の特徴とする点は、端末炭素−炭素二重
結合が炭素数1000個当たり、0.7〜1.5個で、かつメルト
フローレシオ(M.F.R.)が0.5〜7.0である低密度ポリエ
チレン100重量部と、DCP0.5〜3.0重量部と、トリアリル
イソシアヌレート(以下、TAICと略記する)0.5〜1.0重
量部と、4,4′−チオビス(6−ターシャリー−ブチル
−3−メチルフェノール)(以下、4,4′−チオビスと
略記する)0.15〜0.6重量部とからなる電線・ケーブル
の接続部等に用いる絶縁体組成物にある。<Means for Solving the Problems and Their Functions> The feature of the present invention is that the number of terminal carbon-carbon double bonds is 0.7 to 1.5 per 1000 carbon atoms, and the melt flow ratio ( 100 parts by weight of low-density polyethylene having an MFR of 0.5 to 7.0, 0.5 to 3.0 parts by weight of DCP, 0.5 to 1.0 part by weight of triallyl isocyanurate (hereinafter abbreviated as TAIC), and 4,4'-thiobis 0.1-0.6 parts by weight of (6-tertiary-butyl-3-methylphenol) (hereinafter abbreviated as 4,4'-thiobis) in an insulator composition used for connection parts of electric wires and cables.
本発明で使用されるDCPの配合量を0.5〜3.0重量部と
したのは、0.5重量部未満では所望の架橋度が得られ
ず、3.0重量部を越えると多過ぎてスコーチが生じるか
らである。The amount of DCP used in the present invention is 0.5 to 3.0 parts by weight because a desired degree of crosslinking cannot be obtained if the amount is less than 0.5 part by weight, and if the amount exceeds 3.0 parts by weight, scorch is generated too much. .
また、本発明で使用されるTAICは、モールド加熱時の
水分の発生を抑制する働きを有するもので、その配合量
を0.5〜1.0重量部としたのは、0.5重量部未満では架橋
度が低く、かつ殆ど水分発生の抑制効果が得られないか
らであり、また1.0重量部を越えるとスコーチが生じる
からである。Further, the TAIC used in the present invention has a function of suppressing the generation of water at the time of heating the mold, and the compounding amount is set to 0.5 to 1.0 part by weight, when less than 0.5 part by weight, the degree of crosslinking is low. The reason is that almost no effect of suppressing the generation of water is obtained, and if it exceeds 1.0 part by weight, scorch is generated.
また、本発明で使用される4,4′−チオビスは、架橋
を抑制する働きを有し、酸化劣化を防ぐもので、その配
合量を0.15〜0.6重量部としたのは、0.15重量部未満で
は架橋抑制効果が小さくスコーチが生じるからであり、
また0.6重量部を越えると多過ぎて十分な架橋度が得ら
れないからである。In addition, 4,4′-thiobis used in the present invention has a function of suppressing cross-linking and prevents oxidative deterioration.The amount of 0.15 to 0.6 parts by weight is less than 0.15 parts by weight. This is because the effect of suppressing crosslinking is small and scorch occurs.
On the other hand, if it exceeds 0.6 parts by weight, the amount is too large and a sufficient degree of crosslinking cannot be obtained.
また、本発明で使用されるポリエチレンは、端末炭素
−炭素二重結合が炭素数1000個当たり、0.7〜1.5個で、
かつメルトフローレシオ(M.F.R.)が0.5〜7.0である低
密度ポリエチレンである。ここで、端末炭素−炭素二重
結合を炭素数1000個当たり0.7〜1.5個とし、かつ、メル
トフローレシオを0.5〜7.0としたのは、端末炭素−炭素
二重結合数値が0.7個未満では架橋度が低く、またこの
値が1.5個を越えるとスコーチが生じるからである。ま
た、メルトフローレシオが0.5未満ではスコーチが生じ
易く、これが7.0を越えるとモールド時に偏肉や垂れ落
ちが生じるからである。In addition, the polyethylene used in the present invention has terminal carbon-carbon double bonds per 1,000 carbon atoms, 0.7 to 1.5,
It is a low-density polyethylene having a melt flow ratio (MFR) of 0.5 to 7.0. Here, the number of terminal carbon-carbon double bonds is set to 0.7 to 1.5 per 1000 carbon atoms, and the melt flow ratio is set to 0.5 to 7.0. This is because the degree is low and if this value exceeds 1.5, scorch occurs. If the melt flow ratio is less than 0.5, scorch is likely to occur. If the melt flow ratio exceeds 7.0, uneven thickness and sagging occur during molding.
<実施例I> 次に、第1表に示した配合により、種々の本発明品
(実施例〜)と比較例品(比較例〜)とからな
る絶縁体組成物を作り、これらを電線.ケーブルの接続
部に当該接続部用の押出機で押出し、モールド加熱し
て、接続部を形成した。<Example I> Next, according to the formulations shown in Table 1, various insulator compositions composed of various products of the present invention (Examples 1 to 3) and comparative products (Comparative Examples 1 to 4) were prepared. The connection portion of the cable was extruded with an extruder for the connection portion and heated by molding to form a connection portion.
これらの各接続部について、その特性(スコーチタイ
ム、押出〜加熱後の水分の発生量)を調べた。なお、ス
コーチタイム測定試験、水分発生量測定試験は次のよう
にして行った。The characteristics (scorch time, amount of water generated after extrusion to heating) of each of these connection parts were examined. In addition, the scorch time measurement test and the water generation amount measurement test were performed as follows.
(1)スコーチタイム測定試験 ムーニー粘度計を用い、最低トルク値より、5ポイン
ト上昇するまでの時間をスコーチタイムとして測定を行
った。(1) Scorch time measurement test Using a Mooney viscometer, the measurement was performed using the time taken to increase 5 points from the minimum torque value as the scorch time.
(2)水分発生量測定試験 押出後、モールド加熱後と2段階に分けて、カールフ
ィッシャー法により行った。(2) Moisture generation measurement test The extrusion was performed by the Karl Fischer method in two stages after extrusion and after heating the mold.
上記第1表において、各実施例〜と比較例〜
とを比べた場合、組成物の分解残渣物中における水分量
は、押出機にあってはそれほど大きな差はないが、モー
ルド加熱を模擬した加熱後(160℃×4時間)にあって
は大きく異なる。つまり、実施例〜においては、CA
はあまり分解せず、押出機の水分量と同じ100ppm以下に
対して、比較例〜では、CAが分解して、α−MSと水
となり、その水分量は、例えば実施例と比較例を比
べると、約6倍以上にもなっている。 In the above Table 1, each of Examples and Comparative Examples
When compared with the above, the water content in the decomposition residue of the composition is not so large in the extruder, but is large after heating simulating mold heating (160 ° C. × 4 hours). different. In other words, in Examples to
Does not decompose very much, and for Comparative Example 1 to 100 ppm or less, which is the same as the water content of the extruder, CA decomposes to α-MS and water, and the water content is, for example, a comparison between Examples and Comparative Examples. It is about 6 times or more.
また、架橋特性の一つであるゲル分率とスコーチタイ
ムにおいて、各実施例〜と比較例〜とを比較し
た場合、実施例〜の組成物では架橋度が高く、なお
かつスコーチは比較例〜と同程度であることが判
る。In addition, in the gel fraction and scorch time, which are one of the cross-linking properties, when comparing each of the examples to the comparative example, the composition of the examples to have a high degree of cross-linking, and the scorch is the same as the comparative example to. It turns out that it is about the same.
<実施例II> 上記第1表の実施例と比較例の組成物を用いて、
66kv、1c×400mm2CVケーブルの接続部にモールドジョイ
ントを施し、70kv×6カ月の長期課通電を行い、その
後、水トリーの観察を行った。<Example II> Using the compositions of Examples and Comparative Examples in Table 1 above,
A molded joint was applied to the connection part of the 66kv, 1c × 400mm 2 CV cable, a long-term energization of 70kv × 6 months was performed, and then the water tree was observed.
その結果は、実施例の場合、水トリーの発生が極め
て少なく、比較例の場合には、水トリーが多発してい
ることが確認された。つまり、本発明品では水トリーの
発生が効果的に抑制されていることが判る。As a result, it was confirmed that in the case of the example, the occurrence of water trees was extremely small, and in the case of the comparative example, the occurrence of water trees occurred frequently. That is, it is understood that the occurrence of water trees is effectively suppressed in the product of the present invention.
<発明の効果> 以上の説明から明らかなように本発明によれば、電線
・ケーブルの接続部等を絶縁モールドするにおいて、高
い架橋度が得られ、またスコーチが発生し難くく、かつ
水トリーの発生のない、長期に亙って安定した性能を呈
する、優れた絶縁体組成物を提供することができる。<Effects of the Invention> As is apparent from the above description, according to the present invention, a high degree of cross-linking is obtained, and scorch is less likely to be generated in water-molding in the case of insulative molding of connection portions of wires and cables. It is possible to provide an excellent insulator composition which exhibits stable performance over a long period without generation of the slag.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹羽 利夫 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (56)参考文献 特開 昭58−89708(JP,A) 特開 昭51−136181(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Toshio Niwa 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Electric Wire Co., Ltd. (56) References JP-A-58-89708 (JP, A) JP-A-51 −136181 (JP, A)
Claims (1)
たり、0.7〜1.5個で、かつメルトフローレシオ(M.F.
R.)が0.5〜7.0である低密度ポリエチレン100重量部
と、ジクミルパーオキサイド0.5〜3.0重量部と、トリア
リルイソシアヌレート0.5〜1.0重量部と、4,4′−チオ
ビス(6−ターシャリー−ブチル−3−メチルフェノー
ル)0.15〜0.6重量部とからなる電線・ケーブルの接続
部等に用いる絶縁体組成物。(1) a carbon-carbon double bond having a terminal carbon-carbon double bond of 0.7 to 1.5 per 1000 carbon atoms, and a melt flow ratio (MF
R.) is 0.5 to 7.0 parts by weight, low-density polyethylene is 100 parts by weight, dicumyl peroxide is 0.5 to 3.0 parts by weight, triallyl isocyanurate is 0.5 to 1.0 parts by weight, and 4,4'-thiobis (6-tertiary) is used. -Butyl-3-methylphenol) in an amount of 0.15 to 0.6 parts by weight for use in connection parts of electric wires and cables.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62211717A JP2579493B2 (en) | 1987-08-26 | 1987-08-26 | Insulator composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62211717A JP2579493B2 (en) | 1987-08-26 | 1987-08-26 | Insulator composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6454605A JPS6454605A (en) | 1989-03-02 |
JP2579493B2 true JP2579493B2 (en) | 1997-02-05 |
Family
ID=16610432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62211717A Expired - Lifetime JP2579493B2 (en) | 1987-08-26 | 1987-08-26 | Insulator composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2579493B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5416046B2 (en) * | 2010-06-25 | 2014-02-12 | 株式会社ビスキャス | Method for manufacturing power cable or power cable connecting portion using liquid additive composition |
WO2014040237A1 (en) * | 2012-09-12 | 2014-03-20 | Dow Global Technologies Llc | Cross-linkable polymeric compositions, methods for making the same, and articles made therefrom |
RU2668929C1 (en) | 2013-12-19 | 2018-10-04 | Бореалис Аг | New crosslinked polymer composition, power cable insulation and power cable |
WO2015090641A1 (en) | 2013-12-19 | 2015-06-25 | Borealis Ag | A new low mfr polymer composition, power cable insulation and power cable |
PL3083798T3 (en) * | 2013-12-19 | 2020-02-28 | Borealis Ag | A new crosslinked low mfr polymer composition, power cable insulation and power cable |
CA2933234C (en) * | 2013-12-19 | 2022-03-01 | Borealis Ag | A polymer composition, power cable insulation and power cable |
CN107828116B (en) * | 2017-12-07 | 2021-02-05 | 江苏德威新材料股份有限公司 | Scorch-resistant insulating material for +/-500 kV direct-current cable and preparation method thereof |
CN108623877A (en) * | 2018-04-17 | 2018-10-09 | 全球能源互联网研究院有限公司 | A kind of high voltage direct current cable insulating materials and preparation method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51136181A (en) * | 1975-05-12 | 1976-11-25 | Furukawa Electric Co Ltd:The | Bridging use polyethylene insulating cable manufacturing method |
JPS5889708A (en) * | 1981-11-20 | 1983-05-28 | 三菱電線工業株式会社 | Waterproof crosslinked electrically insulator having excellent tree property |
-
1987
- 1987-08-26 JP JP62211717A patent/JP2579493B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6454605A (en) | 1989-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2579493B2 (en) | Insulator composition | |
JPS5930738B2 (en) | Mixture for heat-resistant and flame-retardant cross-linked polypropylene | |
JPH0269541A (en) | Insulating composition | |
JP2544916B2 (en) | Power cable | |
JP2701014B2 (en) | Rubber composition | |
JP2522966B2 (en) | Polyethylene composition | |
JP3289424B2 (en) | Polyolefin insulated wire | |
JP2000319464A (en) | Semi-conductive resin composition and crosslinked polyethylene-insulated electric power cable | |
JPS63190206A (en) | Insulating material composition for wire and cable | |
JP2592263B2 (en) | Electric wires and cables | |
JP3341593B2 (en) | Electrical insulating composition and electric wires and cables | |
JP2620960B2 (en) | Polyolefin composition | |
JP2001093332A (en) | Semiconductive resin admixture and manufacturing method of power cable | |
JPS586241B2 (en) | plastic insulated wire | |
JPH08127680A (en) | Ethylene-propylene rubber composition | |
JPS6112738A (en) | Mixture for semiconductive layer | |
JP2814715B2 (en) | Electric wires and cables | |
JPS5851415A (en) | Flame resistant insulated wire | |
JPH07105734A (en) | Electric insulating composition | |
JPS5956441A (en) | Semiconductive composition | |
JPH11297122A (en) | Semiconductive resin composition and wire/cable | |
JP2000003622A (en) | Polyolefin resin composition for power cable | |
JPH06295621A (en) | Electric insulation composite and electric wire/cable | |
JPS62253608A (en) | Polyolefin composition | |
JPH11288623A (en) | Electrical insulating composition and electric wire/cable |