CS201783B1 - Process for producing polyestres, preferably polyester polyols - Google Patents
Process for producing polyestres, preferably polyester polyols Download PDFInfo
- Publication number
- CS201783B1 CS201783B1 CS581078A CS581078A CS201783B1 CS 201783 B1 CS201783 B1 CS 201783B1 CS 581078 A CS581078 A CS 581078A CS 581078 A CS581078 A CS 581078A CS 201783 B1 CS201783 B1 CS 201783B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- polyester polyols
- titanium
- reaction
- polyurethanes
- glycol
- Prior art date
Links
Landscapes
- Polyesters Or Polycarbonates (AREA)
Abstract
Vynález rieSi spdsob přípravy polyesterpolyolov polyesteriflkáoiou d±- a polykarbonovýoh kyselin s dvoj- a viaonásobnými alkoholml za katalytického ú8inku organokovovýoh zlúáenín oinu, antimonu, titánu, zirkonu, gennánia a olova a/alebo v kombináeii s teroiámym «unínom v hmotnostnom pomere 1 : 0,01 až 1 : 10, a výhodou 1 : 3 v celkovej navážko 0,001 až 2 fa hmot. na násadu surovin. Postup je zvláSť výhodný na přípravu polyesterpolyolov pre polyuretány, lebo přítomný esterifikaSný katalyzátor je súSasne silným katalyzátorom prs ehámiu polyuretánovThe invention relates to a method for preparing polyester polyols by polyesterification of di- and polycarboxylic acids with di- and polyhydric alcohols under the catalytic effect of organometallic compounds of iron, antimony, titanium, zirconium, genanium and lead and/or in combination with terephthalic acid in a weight ratio of 1:0.01 to 1:10, and preferably 1:3 in a total weight of 0.001 to 2 wt. per batch of raw materials. The process is particularly advantageous for preparing polyester polyols for polyurethanes, because the esterification catalyst present is also a strong catalyst for the synthesis of polyurethanes.
Description
\ntor \\»iili-zii STŘEŠINKA JOZEF ing. CSo., MALČOVSKÝ EUGEN ing.,\ ntor \\ »iili-zii STRESINKA JOZEF ing. CSo., MALČOVSKÝ EUGEN ing.,
MOKRÝ JOZEF ing., PRIEVIDZA a VALENT VOJTECH ing., TRNAVAWET JOZEF ing., PRIEVIDZA and VALENT VOJTECH ing., TRNAVA
Spdsob výroby polyestsrov, s výhodou polyesterpolyolovProcess for producing polyestres, preferably polyester polyols
Vynález rieSi spdsob přípravy polyesterpolyolov polyesteriflkáoiou d±a polykarbonovýoh kyselin s dvoj- a viaonásobnými alkoholml za katalytického ú8inku organokovovýoh zlúáenín oinu, antimonu, titánu, zirkonu, gennánia a olova a/alebo v kombináeii s teroiámym «unínom v hmotnostnom pomere 1 : 0,01 až 1 : 10, a výhodou 1 : 3 v celkovej navážko 0,001 až 2 fa hmot. na násadu surovin.The present invention relates to a process for the preparation of polyester polyols with polyester and polycarboxylic acids having two or more alcohols with the catalytic action of organometallic compounds of oine, antimony, titanium, zirconium, genium and lead and / or in combination with a termium of tannin: to 1: 10, and preferably 1: 3 in a total weight of 0.001 to 2 fa. for raw material feed.
Postup je zvláSť výhodný na přípravu polyesterpolyolov pre polyuretány, lebo přítomný esterifikaSný katalyzátor je súSasne silným katalyzátorom prs ehámiu polyure tánov.The process is particularly advantageous for the preparation of polyester polyols for polyurethanes since the esterified catalyst present is at the same time a strong catalyst for polyurethane.
201 78J201 78J
201 783 t201 783 t
Vynález popisuje postup výroby polyeeterov alebo polyesterpolyolov, vhodnýoh najme pre prlpravu polyuretánov.The present invention provides a process for the manufacture of polyethers or polyester polyols, particularly suitable for the preparation of polyurethanes.
Polyestery alebo polyeeterpolyoly aa vSeobeon· prlpravujú reakolou dikarbónovýoh alebo polykarbónovýoh kyselin alebo ioh anhydridov a dvoj- alebo viaonásobnými alkoholmi ktorýoh množstvo závisí od druhu použitých surovin požadovaného čísla kyslosti a obsahu volhýoh hydroxylovýoh skupin konečného produktu. Ako kyseliny sa mdžu použit* například kyselina oxálová, malónová, jantárová, glutArové, -adipová, pimelová, korková, azelainováThe polyesters or polyetherpolyols and in Seobeon are used to prepare dicarboxylic or polycarbonic acids or anhydrides and double or multiply alcohols depending on the type of raw materials used, the desired acid number and the free hydroxyl group content of the final product. As acids, for example, oxalic, malonic, succinic, glutaric, adipic, pimelic, cork, azelaic acids can be used.
-1,2,3-trikarbónovA a 1,4-oyklohexAndikarbónové kyselina. Z alkoholov sú vhodné viaoeýtne alifatické alebo aromatické alkoholy, najme etylénglykol, dietylénglykol, dipropylénglykol, trietylénglykol, tetraetylénglykol, trimetylénglykol, 1,2-propylénglykol, 1,4-tetramětylénglykol, 1,2-butylénglykol, 1,4-butAndiol, 1,3-penténdiol, 1,6-hexAndiol,-1,2,3-tricarbonesA and 1,4-oyclohexanedicarboxylic acid. Suitable alcohols are polyhydric aliphatic or aromatic alcohols, in particular ethylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tetraethylene glycol, trimethylene glycol, 1,2-propylene glycol, 1,4-tetramethylene glycol, 1,2-butylene glycol, 1,4-butanediol, 1,4-butanediol. -pentenediol, 1,6-hexAndiol,
1,7-heptAndiol, glyoerin, 1,1,1-trimetylolpropén, 1,1,1-trimetyloletén, neopentylglykol, 1,2,6-hexántriol, dibrómoneopentylglykol, 1,10-dekAndiol, pentaerytritol a 2,2-bis-/4-hydroxyoyfclohexyl/ propAn.1,7-heptAndiol, glyoerin, 1,1,1-trimethylolpropene, 1,1,1-trimethylolethene, neopentyl glycol, 1,2,6-hexanetriol, dibromoneopentyl glycol, 1,10-decanediol, pentaerythritol and 2,2-bis- (4-Hydroxyoyclohexyl) propAn.
Reakoia prebieha zvyčajne pri teplotáoh 130 až 240 °C. Reakčná zmes sa zahrieva tak, aby sa reakčná voda rýohle odstrAnila z reakčného prostredia. K tomu účelu ea používá dusík, kysličník uhličitý alebo uhl*ovodlky, například toluén, xylán, ktoré unážajú vodu vo formě azeotropiokej zmesi. Hooi reakoia prebieha rýohlo v prvej fáze i bez přítomnosti katalyzátore, je pre dosiahnutie nízkého čísla kyslosti v pomeme krAtkej době potřebné pracovat’ za přítomnosti katalyzátora. Jeho volta zAviei aj od epdsobu použitia polyesterov alebo polyesterpolyolov, pretože mnohé katalytické systémy podporujú pri aplikAoii priebeh nežiadúoioh vedl’ajéloh reakoii.The reaction is usually carried out at a temperature of 130 to 240 ° C. The reaction mixture is heated so that the reaction water is readily removed from the reaction medium. For this purpose ea uses nitrogen, carbon dioxide or hydrocarbons, for example toluene, xylan, which carry the water in the form of an azeotropic mixture. Hooi reakoia proceeds in the first stage even without the presence of the catalyst, it is necessary to work in the presence of the catalyst to achieve a low acid value in a relatively short time. Its volta is also based on the use of polyesters or polyester polyols since many catalytic systems support the application of undesirable side effects in the application.
Významnou skupinou katalyzátorov, ktoré podporujú reakoiu di- a polykarbónovýoh kyselin s di- a polyalkoholmi sú katalyzátory kyslej povahy, ako sú kyselina chlorovodíková, ortofosforečné, síran hlinitý, kyselina p-toluánsulfónovA, kyselina etyleirovA, kyselina fluorovodíková, fluorid boritý, apod. Ioh spoločnou nevýhodou je, že spdsobujú efarbenie produktu a třeba ioh používat’ pri nižžíoh teplotáoh, čo negativno ovplyvňuje rýohlosť polyeeterifikáoie, najmtt ak ea vyžaduje produkt e nízkým člelom kyslosti.An important group of catalysts that promote the reaction of di- and polycarbonic acids with di- and polyalcohols are acidic catalysts such as hydrochloric acid, orthophosphoric acid, aluminum sulfate, p-toluenesulfonic acid A, ethylleiric acid A, hydrofluoric acid, boron trifluoride and the like. A common disadvantage is that they cause product coloration and may even be used at lower temperatures, which negatively affects the fineness of the polyeeterification, especially if the product requires low acidic cells.
Polyeeterpolyoly obsahujúoe látky kyslej povahy majú zníženú reaktivitu, například pri reakoii e diizokyanátmi v ddeledku tvorby preohodnýoh zlúčenín s teroiáraymi amlnmi, používanými ako katalyzátor tvorby polyuretánov. Aj keď sa v niektorýéh prípadooh používá jú organioká kyseliny pre retardáoiu polyuretánovej reakoie, sú víeobeone kyseliny pre prlpravu polyesterpolyolov nevhodná.Polyetherpolyols containing substances of an acidic nature have reduced reactivity, for example in the reaction with diisocyanates due to the formation of pre-useful compounds with amine terarium salts used as catalysts for the formation of polyurethanes. Although in some cases organic acids are used for retarding polyurethane reactants, several acids are unsuitable for the preparation of polyester polyols.
Použitie eamotnýoh alkalioky reagujúoioh zlúčenín, ako eú hydroxidy, alkoholáty a alkalické uhličitany, ea neprojevuje zvýženlm katalytického účinku oproti nekatalytiokej polyeeterifikáoii. Z literatúry je ďalej známy oelý rad katalyzátorov, ako eú například kysličník zinočnatý, olovnatý, vápenatý a ioh zlúčeniny, ktoré možno použit* pri priThe use of ammonium alkali reacts with compounds such as hydroxides, alcoholates and alkali carbonates, and does not exhibit an enhanced catalytic effect over non-catalytic polyethererification. A wide variety of catalysts, such as zinc oxide, lead oxide, calcium oxide and other compounds, which can be used in
201 783 pravé polyesterov.201 783 genuine polyester.
Alkalicky reagujúoe zlúčeniny v polyeeterpolyolooh, používaných najmfi pra prlpravu polyuretánov, ovplyvňujú tvorbu vedl’ajšioh reakoii. Niektoré tieto látky eú výramýml katalyzátormi trimerlzáoie diizokyanátov a sú preto, ak sa použijú v katalytloky účinných koncentráoiáoh, pre prlpravu polyesterpolyolov nevhodné.The alkaline reacting compounds in the polyeeterpolyoloohols, used in particular for the preparation of polyurethanes, influence the formation of side reactions. Some of these substances are highly catalysts of trimeric diisocyanates and are therefore unsuitable for the preparation of polyester polyols when used in catalytic active concentrates.
Pre prlpravu polyesterov a polyesterpolyolov sa popisujú ako katalyzátory zlúSeniny cínu, například Sn-ftalát, Sn-oxalát /USA pat. spis 8. 3 194 791/» Sn/00CR/2, kde R je nasýtený alebo nenasýtený alifatloký reťazee m 7 až 17 atómami uhlika /USA pat. spis JS. 3 162 6l6/. Tieto sú však katalyticky menej účinné, najmfi v posledněj fáze polyesterifikáoie. Okrem toho dochádza k hydrolýze katalyzátore, za vzniku s vodou prohavýoh zlúčenín a tvorbě usadenln.For preparing polyesters and polyester polyols, tin compounds such as Sn phthalate, Sn oxalate / US Pat. No. 8,194,791 (Sn) 00CR / 2 , wherein R is a saturated or unsaturated aliphatic chain having 7 to 17 carbon atoms. JS file. 3,162 616 /. However, these are catalytically less effective, at least in the last phase of the polyesterification. In addition, the catalyst is hydrolyzed to form water-borne compounds and sediment formation.
Pre polykondenzaJSné reakoie sa Sálej navrhuje oelý rad katalyzátorov na báze titánu a zirkónia, napr. titántetrahalogenidy /V. Brit. pat. spis 8. 775 318/, lantántitanát /USA pat. spis 8. 2 916 474/, titanyloxalát kovov /franc. pat. spis 8. 1 369 810/, tetralkyltitanát /V. Brit. pat. spis 8. 793 111/, kvartéme, aminové a alkalické soli alebo soli alkallokýoh zemin titánalkoxidov /USA pat. spis 8. 2 727 881/. Anorganické zlú8eniny titánu majú ten nedostatok, že sú v reakčnej zmeai málo rozpustné, a tým katalyticky málo účinné. Organioké zlúčeniny titánu, napr. tetraslropropyltitanát /Offiolal Digest, Mareo 1963, str. 229/ eú však veTmi hygroskopioké. Ak sa použijú vo vyšších konoentráoiáoh, vznikajú usadeniny titánu v reaktore, potrubiaoh, a tým poruchy vo výrobě. Pri vyšších teplotách a konoentráoiáoh móžu katalyzovat* oyklizáoiu butándiolu za vzniku tetrahydrofuránu a vody. Čalej vyšší obsah titánu v polyesterpolyole negativné ovplyvňuje prlpravu polyuretánu.For polycondensation, a wide variety of titanium and zirconium catalysts, e.g. titanetetrahalides / V. Brit. pat. No. 8,775,318], lanthanum titanate / U.S. Pat. No. 8,916,474), titanyloxalate of metals / French. pat. No. 8,369,810], tetralkyltitanate (V). Brit. pat. No. 8,793,111, Quaternary, amine, alkali or alkaline earth salts of titanium alkoxides (U.S. Pat. file No. 2,727,881 /. The inorganic titanium compounds have the disadvantage that they are poorly soluble in the reaction mixture and thus catalytically poorly active. Organic titanium compounds, e.g. Tetraslropropyltitanate / Offiolal Digest, Mareo 1963, p. However, they are very hygroscopic. When used in higher concentrators, titanium deposits in the reactor, pipelines, and thus production disturbances, are produced. At higher temperatures and concentrators, they can catalyze the cyclization of butanediol to form tetrahydrofuran and water. Increasing the titanium content of the polyester polyol negatively affects the polyurethane preparation.
Navrhuje sa preto použit* ako katalyzátor zlúčeniny titánu, ktoré ea pripravia proměnou Serstvo vyzrážaného kysli8nlka titaničitého $ ^Q-hydroxykarbónovými kyselinami a tero. alifatickými amlnmi vo vodnom roztoku. Pre prlpravu T102 sa navrbnjú použiť tetraalkyl-ortotitanáty /NSR pat. spis 8. 2 214 775/.It is therefore proposed to use as a catalyst a titanium compound which is prepared by converting a plurality of precipitated titanium dioxide with 6-hydroxycarbonic acids and tero. aliphatic amines in aqueous solution. For DIRECTIONS T10 2 is used navrbnjú tetraalkyl orthotitanate / Ger. No. 8,214,775 /.
Okrem uvedených nedostatkov je spoločným znakom zlúčenín titánu, že žhoršujú farbu produktu, 80 je zvlášť nevýhodné pre prlpravu polyesterpolyolov na polyuretány a pre výrobu transparentnýoh mateřiálov. Zlúčeniny zirkónia naproti tomu nesfarbujú v takej miere produkt, ale ioh katalytioká účinnost’ je v niektorýoh systémech, glykol-dlkarbónová kyselina, nlzka.In addition to these drawbacks, a common feature of titanium compounds is that they deteriorate the color of the product, 80 being particularly disadvantageous for preparing polyester polyols for polyurethanes and for producing transparent materials. Zirconium compounds, on the other hand, do not color the product to such an extent, but also the catalytic activity is in some systems, glycol-dicarboxylic acid, low.
Je známe tiež použitie komplexnej zlúčeniny trietanolamínu a kovu zo skupiny: hořčík, vápník, lantán, titán, zirkon, kobalt, zinok, kadmium, mangán, ortuť, genaánlum a olovo /čs. pat. spis 8. 138 959/, pri&om tvorby komplexu sa zúčastňujú hydroxyiové skupiny trietanolamínu.It is also known to use a complex compound of triethanolamine and a metal of the group: magnesium, calcium, lanthanum, titanium, zirconium, cobalt, zinc, cadmium, manganese, mercury, genaanlum, and lead / Cs. pat. No. 8,138,959, the hydroxy group of triethanolamine is involved in the formation of the complex.
PodTa tohto vynálezu sa vyrábajú polyestery, s výhodou polyesterpolyoly z polykarbónovýoh kyselin a polyolov katalytickou polyesterifikáoiou, spravidla za súčasnéhe odvádzania vznikajúoej vody vo formě azeotropu tak, že reakoia sa uskuto8ňuje za pri201 783 temnosti směsi katalyzátorov na báze titánu a/alebo zirkónia a aspoň jednej zlúčeniny prvku zo skupiny oin, antimán, germánium, olovo a/alebo teroiámeho aminu vo vzájomnom hmotnostnom pomere zložiek 1 t 0,01 až 1 t 10, s výhodou 1 i 3, v oelkovom množstve 0,001 Jí až 2 Jí hmot*, počítané na východiskové suroviny.According to the present invention, polyesters, preferably polyester polyols of polycarbonic acids and polyols, are produced by catalytic polyesterification, generally while discharging the resulting water in the form of an azeotrope, such that the reaction occurs under darkness of a mixture of titanium-based catalysts and / or at least one zirconium compound. % of an element of the group oin, antiman, germanium, lead and / or tertiary amine in a weight ratio of 1 t 0.01 to 1 t 10, preferably 1 to 3 relative to each other, in an amount of 0.001 to 2 µm by weight based on the starting raw materials.
Postupem podlá vynálezu ea dosahuje podstatného zníženia reakonej doby bez tvorby vedlfejXíoh produktov. Polyestery, najmá polyesterpolyoly sú vodoJasné. Vhodnou komblnáoiou katalyzátorov možno dosiahnuť potrebnej reaktivity polyeeterpolyolu pri reakoii s diizokyanátmi podlá druhu připravovaného polyuretánu.The process according to the invention achieves a substantial reduction in the reaction time without the formation of by-products. Polyesters, especially polyester polyols, are water-clear. By suitably combining the catalysts, the desired reactivity of the polyeeterpolyol in the reaction with the diisocyanates according to the type of polyurethane being prepared can be achieved.
Z hlediska účinnosti postupu podlá vynálezu Je důležitá správná volba katalytického systému, ktorý možno v Xirokom rozsahu manit', Jedným komponentom systému sú látky na báze titánu a/alebo zirkónia, ktoré sa mčžu aplikovat* bui Jednotlivo alebo společné.From the point of view of the efficiency of the process according to the invention, it is important to select a catalytic system which is possible over a wide range of mannitol. One component of the system are titanium and / or zirconium based substances which can be applied individually or together.
Druhým komponentom je bui zlúčenina, připadne zlúčeniny prvkov zo skupiny oin, anti món, germánium a olovo a/alebo teroiámy amin, pričom najvýhodnejXl vzájemný pomor uvedenýoh komponentov Je 1 t 3,The second component is either a compound or compounds of the elements from the group oin, anti-manganese, germanium and lead and / or a teramamine amine, the most preferred X1 ratio of said components being 1 t 3,
Přiklad 1Example 1
RataT»·! v i itaXmé aparatúra pozostáva zo Xtvorhrdlej banky, opatrenej mieXadlom, kontaktným teplomerom, nastaveným pre azeotropiokú deetiláolu a privodom dusíka.Rata »·! The apparatus consists of a four-necked flask equipped with a stirrer, a contact thermometer set for azeotropic deetileal, and a nitrogen inlet.
Do banky ea naváži 730 g kyseliny adipovej, 552 g dietylénglykolu, 33,3 g trimetylolpropánu, 35 g xylénu a ako katalyzátora ea použije 0,13 g tetrabutoxytitánn a 0,25 g dibutyloindilaurátu· Zmes ea vyhraje na teplotu 220 °C za súčasného odoberenia reakčnej vody azeotropiokou destiláciou e xylénom. Po dosiahnutí čísla kyslosti polyestsrpolyolu pod 1 mg KOH/g sa produkt ochladí na 150 °C a za vákua ea úplné oddestiluje xylén. Reakčná doba polyesterif ikáoie je 5 hodin. Získá ea tým bezfarebný polyeeterpolyol, ktorý má číslo kyslosti 0,4 mg KOH/g, hydroxylové číslo 55,0 mg KOH/g, viskositu pri 75 °0 1,25 Pae, obsah vody 0,01 fa hmot., farba pod 1 °0ardnera.Weigh 730 g of adipic acid, 552 g of diethylene glycol, 33.3 g of trimethylolpropane, 35 g of xylene into flask ea and use 0.13 g of tetrabutoxytitane and 0.25 g of dibutylloindilaurate as catalyst ea. of reaction water by azeotropic distillation with xylene. After the polyestrpolyol has an acid number below 1 mg KOH / g, the product is cooled to 150 ° C and xylene is distilled off under vacuum and completely. The reaction time of the polyesterifolia is 5 hours. This gives a colorless polyeeterpolyol having an acid number of 0.4 mg KOH / g, a hydroxyl value of 55.0 mg KOH / g, a viscosity at 75 ° 0 of 1.25 Pae, a water content of 0.01 fa by weight, a color below 1 ° 0ardnera.
Přiklad 2Example 2
Do Xtvorhrdlej sulfonačnej banky ako v přiklade 1 ea naváži 1290 g kyseliny adipovej a 600 g etylénglykolu, Ako katalyzátor ea použije komblnáoia 0,1 g tetrabutoxytitánu a 0,3 g trietylamittu. Obsah banky ea postupné vyhřeje na teplotu 200 °C, odetreňovanie reakčnej vody ea robi dusíkom pri prletoku 25 litrov/hod. Reakčná doba polyesterif ikáoie Je 12 hodin. Připravený polyesterpolyol má číslo kyslosti 0,9 mg KOH/g, hydroxylové číslo 54,6 mg KOH/g, obsah vody 0,03 jí hmot., teplota tavenia je 53 °C, viskosita pri 75 °C 0,62 Pas.1290 g of adipic acid and 600 g of ethylene glycol are weighed into a four-necked sulfonation flask as in Example 1 e. 0.1 g of tetrabutoxytitane and 0.3 g of triethylamitte are used as catalyst ea. The contents of the flask ea are gradually heated to 200 ° C, the de-icing of the reaction water e and nitrogen is produced at a flow rate of 25 liters / hour. The reaction time of the polyesterifiable is 12 hours. The polyesterpolyol prepared had an acid number of 0.9 mg KOH / g, a hydroxyl number of 54.6 mg KOH / g, a water content of 0.03% by weight, a melting point of 53 ° C, a viscosity at 75 ° C of 0.62 Pas.
hh
201 783201 783
Přiklad 3Example 3
Polyeeterifikáoia 1370 g kyseliny adipovej s 935 β 1,4-butylónglykolu za použitia katalyzátore 0,08 g tetrabutoxytitánu a 0,8 β stearétu olovnatého sa robi v přítomnosti 115 β xylénu ako vynéčača reakčnej vody. Teplota reakčnej zmeai ea postupné zvýši na 220 °C, doba polyeeterifikéoie Je 4 hodiny· Polyeeterpolyol po oddestilovanl xylénu má číslo kyslosti 0,65 mg KOH/g, hydroxylové číslo 56 mg KOH/g, obsah vody pod 0,01 % hmot·, farba pod 1 °Gardnera.Polyethererification 1370 g of adipic acid with 935 β 1,4-butyl-glycol using a catalyst of 0.08 g of tetrabutoxytitanium and 0.8 β of lead stearate is made in the presence of 115 β xylene as the reaction water scavenger. The temperature of the reaction mixture is increased gradually to 220 ° C, the polyether permeation time is 4 hours. The polyetherpolyol after distillation of xylene has an acid number of 0.65 mg KOH / g, a hydroxyl value of 56 mg KOH / g, a water content below 0.01% by weight. color below 1 ° Gardner.
Přiklad 4Example 4
Do reakčnej banky poplsaaej v přiklade 1 sa naváži 870 g kyseliny adipovej, 300 g etylénglykolu, 50 g xylénu, 0,5 g tetrabutylzirkónia, 0,01 g trietylaminu a 0,03 kysličnika antimonitého· Reakeiou pri teplote 200 °C počas 2 hodin sa ziska produkt s čislom kyslosti 130 mg KOH/g, ktorý v Salčom stupni reaguje s 210 g monoglykoletyléteru. Reakčné doba je 15 hodin· Získaný produkt po oddestilovanl xylénu je misrne nažitlá kvapalina s čislom kyslosti 1,6 mg KOH/g, hydroxylovým čislom 1 mg KOH/g, obsahem vody 0,03 # hmot· Finélny produkt pri použiti ako polyméms zmdkčovadlo má velmi dobré vlastnosti bez akýohkolhrek negativných úSinkov.870 g of adipic acid, 300 g of ethylene glycol, 50 g of xylene, 0.5 g of tetrabutyl zirconium, 0.01 g of triethylamine and 0.03 of antimony trioxide are weighed into a reaction flask as described in Example 1 and reacted at 200 ° C for 2 hours. yielding a product with an acid number of 130 mg KOH / g, which in the Salc step is reacted with 210 g of monoglycol ethyl ether. The reaction time is 15 hours · The product obtained after distillation of xylene is a miscellaneous liquid with an acid number of 1.6 mg KOH / g, a hydroxyl number of 1 mg KOH / g, a water content of 0.03 # mass · The final product when used as a plasticizer very good properties without any negative effects.
PREDMET VYHÁLEZUOBJECT OF THE INVENTION
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS581078A CS201783B1 (en) | 1978-09-08 | 1978-09-08 | Process for producing polyestres, preferably polyester polyols |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS581078A CS201783B1 (en) | 1978-09-08 | 1978-09-08 | Process for producing polyestres, preferably polyester polyols |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS201783B1 true CS201783B1 (en) | 1980-11-28 |
Family
ID=5403697
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS581078A CS201783B1 (en) | 1978-09-08 | 1978-09-08 | Process for producing polyestres, preferably polyester polyols |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS201783B1 (en) |
-
1978
- 1978-09-08 CS CS581078A patent/CS201783B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2962524A (en) | Chich | |
| US5446110A (en) | Carbonate modified polyester polyol | |
| EP1456276B1 (en) | Process for making polytrimethylene terephthalate | |
| US6576774B2 (en) | Process for recycling polytrimethylene terephthalate cyclic dimer | |
| US3051687A (en) | Polyurethane resins | |
| US4845266A (en) | Process for the preparation of polyester polyols | |
| EP0076582A1 (en) | New polyester compositions; shaped articles obtained from them and processes for preparing them | |
| US6043335A (en) | Phosphate-containing catalyst composition for the preparation of polyesters, and related processes | |
| WO1995027749A1 (en) | Process for producing hydroxyl-terminated polycarbonate | |
| US6812321B1 (en) | Method for the continuous production of polybutyleneterephthalate from terephthalic acid and butanediol | |
| US4346213A (en) | Process for the preparation of polybutylene terephthalate | |
| JPS6312896B2 (en) | ||
| US6657040B1 (en) | Method for the continuous production of polybutylene terephthalate from terephthal acid and butane diole | |
| US4115362A (en) | Process for preparing polyesters | |
| JP2006070269A (en) | Metal acetylacetonates as transesterification catalysts | |
| JPH03252420A (en) | Production of copolymerized polycarbonate diol | |
| JPH0249025A (en) | Polycarbonatediol | |
| US4439597A (en) | Process for the preparation of polybutylene terephthalate | |
| CS201783B1 (en) | Process for producing polyestres, preferably polyester polyols | |
| JP2879685B2 (en) | Polycarbonate diol | |
| CA1213902A (en) | Process of manufacturing diaryl esters of dicarboxylic acids | |
| EP0104814B1 (en) | Process of manufacturing diaryl esters of dicarboxylic acids | |
| US5331082A (en) | Process for manufacture of high molecular weight polyester resins from 2,6-naphthalene dicarboxylic acid | |
| EP1159330B1 (en) | Catalyst composition for the preparation of polyesters | |
| JP3113725B2 (en) | Method for preparing polyester polyol composition |