CS201755B1 - Process for increase of electrolyte life for electrochemical machining - Google Patents
Process for increase of electrolyte life for electrochemical machining Download PDFInfo
- Publication number
- CS201755B1 CS201755B1 CS301378A CS301378A CS201755B1 CS 201755 B1 CS201755 B1 CS 201755B1 CS 301378 A CS301378 A CS 301378A CS 301378 A CS301378 A CS 301378A CS 201755 B1 CS201755 B1 CS 201755B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- electrolyte
- chromium
- life
- working
- increase
- Prior art date
Links
- 239000003792 electrolyte Substances 0.000 title claims description 43
- 238000003754 machining Methods 0.000 title claims description 11
- 238000000034 method Methods 0.000 title claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 17
- 229910052804 chromium Inorganic materials 0.000 claims description 17
- 239000011651 chromium Substances 0.000 claims description 17
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 3
- 239000002699 waste material Substances 0.000 description 9
- 239000010802 sludge Substances 0.000 description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 6
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 5
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 3
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000001784 detoxification Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- -1 hydrogen ions Chemical class 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 239000004317 sodium nitrate Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
Vystólaa týla aptoobu predíženia životnosti elektrolytu pra elektrochemické obrábanie materiálov obsahujúcich chróm.It has been designed to extend the life of an electrolyte for electrochemical machining of chromium containing materials.
lofi elefcUochemiekom obrábaní, najma materiálov obsahujúcich chróm, dochádza vplyvem př«iw« k opotrebovaniu použitých elektrolyte». Toto opotrebenie ea prejavqjs sptWílppím až ««ustáváním anodického -roopúStania obrobku, hoci inak vSetky doteraz sledované, technologicky ddležité parametre elektrolytu,ako kyslosť, čistota a elektrická Specifická eedivosť, aů v požadovaném rozmedzí. Opotřebovaný elektrolyt sa musí aspoň čiastočne nahradzovaV čerstvým. Odpadný opotřebený elektrolyt sa potom detoxikuje od· hygienicky závadných látok a likviduje sa regulovaným vypúStaním do vodných tokov.Electromechanical machining, in particular of chromium-containing materials, causes the electrolyte to wear out. This wear and tear will result in the anodic discharge of the workpiece being stopped, albeit all previously observed, technologically important electrolyte parameters, such as acidity, purity and electrical specificity, within the desired range. Worn electrolyte must be replaced at least partially with fresh electrolyte. Waste electrolyte waste is then detoxified from harmful substances and disposed of by controlled discharge into watercourses.
VySSie uvedené nedostatky odstraňuje spdeob predíženia životnosti elektrolytu pre elektrochemické ubrábanie podlá vynálezu, ktorého podstatou je pridanie najmenej jednej látky obaahujúcej hydrazín.The above drawbacks overcome the method of extending the life of the electrolyte for electrochemical deposition according to the invention, which is based on the addition of at least one hydrazine-coating substance.
ίΐ’«5ά'ίΐί>:ρλΐκ životnosti elektrolytu podTa vynálezu sa docieli nový účinok, a to úspora aktívnaj složky pracovného elektrolytu /duaičnanov alebo chloridov/· ĎalSí účinok sa prejaví v tom, že využitím vynálezu možno súčasne a predlžovaním životnosti elektrolytu tento zbavovat toxického rozpustného Sesťmocného chrómu a v niektorých prípadoch takto možno detoxikovať i odpadně kaly. Zabránenie vzniku odpadného elektrolytu a prevádzanieAccording to the invention, a new effect is achieved, namely the saving of the active component of the working electrolyte (dicalates or chlorides). Another effect is that the use of the invention can simultaneously deprive the electrolyte of this electrolyte by extending the lifetime of the electrolyte. of soluble hexavalent chromium and in some cases also sludge can be detoxified. Prevention of waste electrolyte and transfer
201 755201 755
201 755 detoxikácie v pracovnej nádrži elektrochemického obráhacieho stroja za prevádzky tohoto stroja umožňuje uspořit na prevádzkových a investičních nákladoch pri detoxikácii a likvidácii odpadného elektrolytu.201 755 detoxification in the working tank of an electrochemical shaping machine during operation of this machine makes it possible to save on operating and investment costs in detoxification and disposal of waste electrolyte.
Podstata vynálezu je vysvětlená v následovních Štyroch príkladoch prevedenia;The essence of the invention is explained in the following Four exemplary embodiments;
Příklad č. 1Example # 1
Pri strednom elektrochemickom obrábacom zariadení je pracovním elektrolytom 15 % roztok dusičnanu sodného. Pracovná nádrž elektrolytu má ébjem 4 m\ Obráběná ocel* obsahuje chróm, ktorí pri anódickom rozpúšťaní prechádza do elektrolytu v podobě rozpustních zmáčením šesťmocného chrómu. Zistilo sa, že pri dosiahnutí koncentrácie 0, C7 kg chrómu v 1 m^ elektrolytu už anodické rozpdáťanie prakticky neprebieha.In a medium electrochemical machine tool, the working electrolyte is a 15% sodium nitrate solution. The working electrolyte tank has a volume of 4 m. Machined steel * contains chromium which, when anodically dissolved, passes into the electrolyte in the form of soluble by dipping hexavalent chromium. It was found that when an concentration of 0.17 kg of chromium in 1 m @ 2 of electrolyte was reached, anodic dissolution was practically no longer taking place.
Aby nebolo potřebné po odobratí materiálu obaahujúceho 0,8 kg chrómu vymeniť celí objem pracovného elektrolytu a v takto získanom odpadnom elektrolyte likvidovat 0,8 kg chrómu a 600 kg dusičnanu sodného,přidá sa do elektrolytu zriedení vodní roztok hydrazínhydrátu, obsahujúci 0,8 kg hydrazínu, upraví sa koncentrácie vodíkovích iónov elektrolytu na pH = 6 prídavkom kyseliny dusičnej a po premieSaní pracovného elektrolytu sa znovu získá optimálna rýchlosť anodického rozpúšťanie obrobku pri obrábaní.In order to avoid the need to replace the entire working electrolyte volume after removal of the material containing 0.8 kg of chromium and to discard 0.8 kg of chromium and 600 kg of sodium nitrate in the waste electrolyte thus obtained, a dilute aqueous hydrazine hydrate solution containing 0.8 kg of hydrazine is added to the electrolyte. the concentration of hydrogen ions of the electrolyte is adjusted to pH = 6 by the addition of nitric acid and after mixing the working electrolyte, the optimum rate of anodic dissolution of the workpiece during machining is again obtained.
Příklad č. 2Example # 2
Za podmienok obrábania uvedeních v příklade č. 1 je potřebné znižovať etúpajúcu koncentráciu vodíkových iónov roztoku pracovného elektrolytu prídavkom 1,0 kg 60 % kyseliny dusičnej, a to prvý raz po elektrochemickom odobratí takého množstva obrábaného materiálu, ktorý obsahuje 0,28 kg chrómu a potom vždy takým istým množstvem 60 % kyseliny dusičnej po odobratí takého množstva materiálu, ktorý obsahuje 0,20 kg chrómu. Táto úprava nemá vplyv na životnost pracovného elektrolytu, pretože po rozpuštění 0,28 kg chrómu začína sa anodické rozpúšťanie spomaTovať a po rozpuštění 0,80 kg chrómu prakticky už přestane prebiehať, i ak sa pH priebežne s obráběním udržuje na konštantnej hodnotě.Under the machining conditions given in Example no. 1, it is necessary to reduce the increasing hydrogen ion concentration of the working electrolyte solution by adding 1.0 kg of 60% nitric acid, for the first time after electrochemical removal of a quantity of machined material containing 0.28 kg of chromium and then with the same amount of 60% nitric acid. after taking a quantity of material containing 0.20 kg of chromium. This treatment does not affect the working electrolyte life, since after dissolution of 0.28 kg of chromium, the anodic dissolution begins to slow down and after dissolution of 0.80 kg of chromium virtually no longer takes place, even if the pH is kept constant during machining.
Pri predlžovaní životnosti elektrolytu podTa vynálezu sa prídavok 1,0 kg 60 % kysali ny dusičnej nahradí prídavkom 4 kg roztoku získaného zmieáanímIn extending the life of the electrolyte of the invention, the addition of 1.0 kg of 60% nitric acid is replaced by the addition of 4 kg of the solution obtained by mixing
1,00 kg 60 % kyseliny dusičnej1.00 kg of 60% nitric acid
1,04 kg 30 % hydrazínhydrátu /e obsahom 0,20 kg hydrazínu/1.04 kg of 30% hydrazine hydrate (containing 0.20 kg of hydrazine)
1,96 kg vody.1.96 kg of water.
V tomto případe koncentrácie rozpustného chrómu v elektrolyte kolíáe v rozmedzí 0,02 až 0,07 kg chrómu v 1 rn*} elektrolytu a rozpuštěný chróm v takejto koncentrácii nespooaTuje obrábanie, ale naopak priaznivo ovplyvňuje preanosť.In this case, the concentration of soluble chromium in the electrolyte of the column in the range of 0.02 to 0.07 kg of chromium in 1 µm of electrolyte and the dissolved chromium at such a concentration does not result in machining, but on the contrary positively affects the viability.
Příklad č. 3Example # 3
Za podmienok obrábania uvedených v příklade č. 1 po obrobení 20 obrobkov stúpne koncentrácie rozpuštěného chrómu o 0,05 kg chrómu v 1 m^. Pri predlžovaní životnosti elektrolytu podTa vynálezu sa najekdr do čerstvého elektrolytu a potom vždy po obrobeni 20 obrobkov přidává 1,30 kg 30 % hydrazínhydrátu /0,25 kg hydrazínu/. Tým sá docieli, že po premieSaní a úpravě koncentrácie vodíkových iónov - pH elektrolytu nemdže v priebehuUnder the machining conditions given in Example no. 1, after the machining of 20 workpieces, the dissolved chromium concentration increases by 0.05 kg of chromium in 1 m @ 2. In order to prolong the life of the electrolyte according to the invention, 1.30 kg of 30% hydrazine hydrate (0.25 kg of hydrazine) is added to the fresh electrolyte and then each time 20 workpieces are machined. Thus, after mixing and adjusting the concentration of hydrogen ions, the pH of the electrolyte cannot
201 755 obrábania existovat v elektrolyte rozpuštěný šesťmocný chróm. Reakčné produkty odstraňované z pracovného elektrolytu odstreďovsn ím /odpadné kaly/ potom neobsahujú toxický šesťmocný chrom.201 755 machining exist in electrolyte dissolved hexavalent chromium. The reaction products removed from the working electrolyte by centrifugation (waste sludge) then do not contain toxic hexavalent chromium.
Příklad δ. 4Example δ. 4
Zariadenie uvedené v příklade δ. 1 má v příslušenstvo nádrž na čiastočné odsďovanie odpadných kalov získávaných odstreďovaním. V tejto nádrži sa denná produkcia odpadných kalov premiešava s rovnakým objemom vody. Zriedený kal sa znovu odstreďuje a očištěný zriedený elektrolyt sa po úpravě koncentrácie používá na dopíňanie pracovného elektrolytu na objem 4 m%Equipment shown in example δ. 1 has a tank for the partial separation of the waste sludge obtained by centrifugation. In this tank, the daily waste sludge production is mixed with an equal volume of water. The diluted sludge is centrifuged again and the purified diluted electrolyte is used to adjust the working electrolyte to a volume of 4 m% after adjusting the concentration.
Pri predlžovaní životnosti pracovného elektrolytu sa do zriedeného kalu po stanovení celkového obsahu rozpustného šesťmocného chrómu přidá vodný roztok o pH = 6, obsahujúci minimálně 1,1 kg hydrazínu na každý stanovením určený 1 kg chrómu. Znovu odstředěný odpadný kal neobsahuje rozpustný šesťmocný chróm. Zriedený elektrolyt používaný na dopíňanie pracovného elektrolytu sa súéasne s úpravou koncentrácie móže obohatit (íy^razínom a takto použiť nielen na dopíňanie elektrolytu v pracovnej nádrži, ale aj na predlžovanie jeho životnosti.To extend the working electrolyte lifetime, an aqueous solution of pH = 6 containing at least 1.1 kg of hydrazine for each determination determined for 1 kg of chromium is added to the diluted sludge after determining the total soluble hexavalent chromium content. The re-centrifuged waste sludge does not contain soluble hexavalent chromium. The diluted electrolyte used to refill the working electrolyte can, at the same time as adjusting the concentration, be enriched (eg with razin) and thus used not only for refilling the electrolyte in the working tank, but also for extending its service life.
Pri predlžovaní životnosti elektrolytu podl’a vynálezu sa třeba vyvarovat pridávaniu takých komponentov, ktoré by vniesli do pracovného elektrolytu technologické škodliviny. Takouto škodlivinou by v případe dusičnanového elektrolytu mohla byt kyselina sírová, ktorou by sa nahrédzala v příkladech použitia uvedená kyselina dusičná.In extending the life of the electrolyte according to the invention, the addition of components which would introduce technological pollutants into the working electrolyte should be avoided. In the case of a nitrate electrolyte, such a pollutant could be sulfuric acid, which would substitute said nitric acid in the examples of use.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS301378A CS201755B1 (en) | 1978-05-11 | 1978-05-11 | Process for increase of electrolyte life for electrochemical machining |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS301378A CS201755B1 (en) | 1978-05-11 | 1978-05-11 | Process for increase of electrolyte life for electrochemical machining |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS201755B1 true CS201755B1 (en) | 1980-11-28 |
Family
ID=5368969
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS301378A CS201755B1 (en) | 1978-05-11 | 1978-05-11 | Process for increase of electrolyte life for electrochemical machining |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS201755B1 (en) |
-
1978
- 1978-05-11 CS CS301378A patent/CS201755B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Paidar et al. | Influence of cell construction on the electrochemical reduction of nitrate | |
| US3730864A (en) | Decreasing the phenolic content of liquids by an electrochemical technique | |
| EP0075882B1 (en) | Process for regenerating cleaning fluid | |
| US4318789A (en) | Electrochemical removal of heavy metals such as chromium from dilute wastewater streams using flow through porous electrodes | |
| Jarrah et al. | Simultaneous electro-oxidation of phenol, CN−, S2− and NH4+ in synthetic wastewater using boron doped diamond anode | |
| US5431877A (en) | Process for decreasing the corrosiveness of a sour water | |
| DE19929579A1 (en) | Method and device for adjusting pH · + · values and redox potentials of liquids by means of electrolysis | |
| CS201755B1 (en) | Process for increase of electrolyte life for electrochemical machining | |
| PL110331B1 (en) | Method for mud polluting prevention during electroliticpickling of alloy containing chromium | |
| DE2506378A1 (en) | METHOD AND DEVICE FOR TREATMENT OF EXHAUST GAS | |
| TWI418393B (en) | Processing method for fly ash of large-scale incineration plant and product thereof | |
| Saleem et al. | Electrochemical removal of nitrite in simulated aquaculture wastewater | |
| CA1257560A (en) | Electrochemical removal of hypochlorites from chlorate cell liquors | |
| RU2471718C1 (en) | Method of removing nitrite ions from water solutions | |
| KR20040086096A (en) | Electrochemical process for wastewater containing nitric acid | |
| RU2852527C1 (en) | Method for treating wastewater generated during combustion of composite solid rocket propellant charge, with obtaining low-concentration sodium hypochlorite solution | |
| RU2108976C1 (en) | Method of reusing sodium sulfide waste | |
| Turaev et al. | Theoretical and Practical Basis of the Regeneration and Disposal of Sulfuric Copper Etching Solutions Used in the Production of Printed Circuit Boards by Membrane and Membraneless Electrolysis | |
| KR940009074A (en) | Electrolytic Wastewater Treatment Method Using Salt (NaCl) | |
| KR100598596B1 (en) | Electrochemical water treatment method and apparatus for removing nitrogen from water | |
| Grishin et al. | Electrochemical synthesis of oxidizing reagent-Sodium ferrate in aqueous solutions of sodium hydroxide | |
| CA1046979A (en) | Decreasing the metallic content of liquids by an electrochemical technique | |
| SU1546115A1 (en) | Method of cleaning air mixtures from formaldehyde | |
| DE19850524C2 (en) | Nitrate-free recycling pickling process for stainless steels | |
| JPS5558384A (en) | Refining method of salt water for ion exchange membrane electrolysis |