CS201622B1 - Method of measuring the congealing of liquids - Google Patents
Method of measuring the congealing of liquids Download PDFInfo
- Publication number
- CS201622B1 CS201622B1 CS425277A CS425277A CS201622B1 CS 201622 B1 CS201622 B1 CS 201622B1 CS 425277 A CS425277 A CS 425277A CS 425277 A CS425277 A CS 425277A CS 201622 B1 CS201622 B1 CS 201622B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- arm
- measured
- oil
- measuring
- liquids
- Prior art date
Links
- 239000007788 liquid Substances 0.000 title claims description 9
- 238000000034 method Methods 0.000 title claims description 6
- 239000003921 oil Substances 0.000 claims description 11
- 238000007711 solidification Methods 0.000 claims description 6
- 230000008023 solidification Effects 0.000 claims description 6
- 238000007710 freezing Methods 0.000 claims description 3
- 230000008014 freezing Effects 0.000 claims description 3
- 239000010705 motor oil Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000010725 compressor oil Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000011545 laboratory measurement Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Description
Doteraz sa meranie tuhnutia kvapalín, například oleja a nafty robí klasicky podlá ČSN 656072. Pri tomto meraní sa pri každom poklese teploty o - 2 °C vyberie meraná látka v odmernom Válci z devarovej nádoby, v ktorej je chladiace médium a nakloní sa do vodorovné j polohy na dobu 5 sekúnd. Ak sa hladina meranej látky za tento čas nepohne, odčítá sa teplota na teplomere, že látka ztuhla.Until now, the measurement of solidification of liquids such as oil and diesel is done according to CSN 656072. With this measurement, every time the temperature drops by - 2 ° C, the measured substance in the measuring cylinder is removed from the devar container containing the coolant and inclined into a horizontal position for 5 seconds. If the level of the measured substance does not move during this time, the thermometer temperature is read to indicate that the substance has solidified.
Z patentovej literatúry nie je známy sposob merania tuhnutia kvapalín, s ktorým by sá mohol porovnávat sposob merania podlá vynálezu.It is not known from the patent literature a method of measuring the solidification of liquids with which it could compare the method of measurement according to the invention.
Subjektivné chyby merania tuhnutia kvapalín zo skupiny motorových olejov, odstraňuje sposob merania podlá vynálezu s chladením konštamtnou rýchlosťou tým, že sa meria čas prebehnutia 4 až 6 mm dráhy ramena ponořeného v oleji. Na rameno posobí sila elektromagnetu v časovom intervale 3 až 5 sekúnd a uvedený čas prebehnutia dráhy ramena sa porovnává s daným časovým intervalom pSsobenia sily elektromagnetu na rameno.The subjective errors in the measurement of the solidification of liquids from the group of engine oils eliminate the measurement method of the invention with cooling at a constant rate by measuring the passage time of a 4-6 mm path of the arm immersed in the oil. The electromagnet force is applied to the arm in a time interval of 3 to 5 seconds, and said arm travel time is compared with a given time interval of the electromagnetic force on the arm.
Použitím sposobu merania podlá vynálezu sa dosiahne váčšia přesnost merania a reprodukovat elnost.By using the measurement method of the invention, greater measurement accuracy and reproducibility are achieved.
Tabulky nameranýoh hodnot :Tables of measured values:
201 622201 622
201 022201 022
Oleje boli overené meraním v laboratóriu. Norma dovoluje odchýlku reprodukovatelnosti -2 °0.The oils were verified by laboratory measurements. The standard permits a reproducibility deviation of -2 ° 0.
Porovnanie nameraných hodnot přístrojom opróti klasickému spdsobu merania iComparison of the measured values with the instrument compares to the classical method of measurement i
95O| - medziprodukt oleja95o | - oil intermediate
M3 AD - automobilový olej /madit speciál/M3 AD - automotive oil / madit special /
M6 AD - automobilový olej /madit super/M6 AD - automotive oil / madit super /
M9 A - automobilový olej motorovýM9 A - automotive engine oil
K 12 - kompresorový olej trvanlivýK 12 - long life compressor oil
Podía normy pri porovnávaní dvooh alebo viac klasických prístrojov, je dovolený rozdiel nameraných teplot tuhnutia -3 °C.According to the standard, when comparing two or more conventional devices, a difference in the measured freezing temperatures of -3 ° C is allowed.
Použitím merania přístrojom založeným na spósobe merania podl’a vynálezu sa dosiahne vSčšia přesnost a reprodukovatelnost merania. Okrem toho sa oproti klasickému spdsobu zlepší bezpečnost pri práci, keď sa chladivo /kysličník uhličitý/ plní do vreoa z flaše pod tlakom.By using measurement with an apparatus based on the measurement method of the invention, greater accuracy and reproducibility of the measurement is achieved. In addition, safety when working with refrigerant / carbon dioxide / is filled into a bottle of pressurized bottle in comparison with the conventional method.
Příklad prevedenia spdsobu merania podía vynálezu je znázorněný na pripojenom výkrese, kde rameno 2 je volné uložené v hrotoch J . Dolná časť ramena 2 je ponořená v oleji, u ktorého sa meria teplota tuhnutia. Pre přesné meranie teploty je v meranej kvapaline 6 - oleji ponořený odporový teploměr JJ., ktorý je pomocou vodiča 14 spojený so zariadením 10 pre meranie tuhnutia podía AO č. 2O1622(PV 4251-77). Pružinou 13 je rameno pritiahnuté na dorazový hrot 15. V tejto polohe ostane rameno 2 25 sekúnd. Zo zariadenia 10 pre meranie teploty tuhnutia sa vyšle vodičom 8 do elektromagnetu 2 prúdový impulz o šírke 4 sekúnd. Elektromagnet· g začne přitahovat rameno 2 k sebe, pričom dolná časť ramena 2 ponořená v meranej kvapaline sa pohybuje po dráhe g, ktorej dížka je 4 až 6 mm. Keď meraná kvapalina nie je tuhá, rameno 2 přejde dráhu g v čase pdsobenia sily elektromagnetu g na rameno 2, ktoré sa spojí a kontaktom £. Vodičom g přídě impulz do zariadenia 10 pre meranie tuhnutia kvapalín, ktorý tento stav vyhodnotí, že meraná látka neztuhla. Keď však meraná kvapalina 6 ztuhne, rameno 2 sa nespojí s kontaktom £ počas pdsobenia sily elektromagnetu g na rameno 2 a zariadenie 10 zaznamená meranú teplotu ako teplotu tuhnutia.An example of an embodiment of the method of measurement according to the invention is shown in the attached drawing, where the arm 2 is loosely mounted in the tips J. The lower part of the arm 2 is submerged in the oil at which the pour point is measured. For accurate temperature measurement, a resistance thermometer 11 is immersed in the measured liquid 6 - oil, which is connected to the solidification measuring device 10 according to AO no. 2O1622 (PV 4251-77). The spring 13 is an arm pulled to the stop point 15. In this position, the arm 22 will remain for 25 seconds. A current pulse with a width of 4 seconds is sent from conductor 8 to conductor 8 to the electromagnet 2. The electromagnet · g begins to draw the arm 2 towards one another, the lower part of the arm 2 immersed in the measured liquid moving along a path g having a length of 4 to 6 mm. When the liquid to be measured is not solid, the arm 2 travels the path g at the time the electromagnet force g is applied to the arm 2, which is connected to the contact 6. The conductor g impulses a pulse into the solidification measuring device 10, which evaluates this condition that the measured substance has not solidified. However, when the measured liquid 6 solidifies, the arm 2 does not contact the contact 6 during the application of the force of the electromagnet g on the arm 2 and the device 10 records the measured temperature as the freezing point.
201 02201 02
PREDMET VYNÁLEZUOBJECT OF THE INVENTION
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS425277A CS201622B1 (en) | 1977-06-28 | 1977-06-28 | Method of measuring the congealing of liquids |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS425277A CS201622B1 (en) | 1977-06-28 | 1977-06-28 | Method of measuring the congealing of liquids |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS201622B1 true CS201622B1 (en) | 1980-11-28 |
Family
ID=5384824
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS425277A CS201622B1 (en) | 1977-06-28 | 1977-06-28 | Method of measuring the congealing of liquids |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS201622B1 (en) |
-
1977
- 1977-06-28 CS CS425277A patent/CS201622B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Tassa et al. | The measurement of Al-Cu dendrite tip and eutectic interface temperatures and their use for predicting the extent of the eutectic range | |
| PL82873B3 (en) | ||
| Gasser | Effect of the method of leading on the recording of the nerve fiber spectrum | |
| CS201622B1 (en) | Method of measuring the congealing of liquids | |
| US5720553A (en) | Apparatus and process for rapid direct dip analysis of molten iron | |
| FR2460396B1 (en) | APPARATUS FOR MEASURING THE QUANTITY OF CALIBRATION LIQUID WHEN TESTING THE ENGINE INJECTION EQUIPMENT | |
| DE3031678A1 (en) | METHOD FOR MEASURING THERMAL STATE SIZES OF FLUIDS | |
| US7013714B2 (en) | Viscosity measurement apparatus | |
| US3643492A (en) | Pour and cloud point analyzer | |
| GB2289758A (en) | Sampling vessel for thermal analysis | |
| KR100211312B1 (en) | Device for measuring the flow rate of molten steel in the continuous casting mold | |
| Crosley et al. | A compact specimen for plane strain crack arrest toughness testing | |
| DE3163624D1 (en) | Device for determining the freezing point of a liquid present on or taken from a road | |
| DE10206275B4 (en) | Method for measuring the thermal diffusivity | |
| KR890015011A (en) | How to measure the density of Newtonian and non-Newtonian fluids | |
| GB1317882A (en) | Apparatus for monitoring the contition of molten material | |
| Zimmerman | Automatic recording of viscosity changes with the Ostwald capillary viscometer | |
| SU446817A1 (en) | Method for determining hardening temperature of petroleum products | |
| SU1002909A1 (en) | Method of measuring interphase tension of metal-slag interface | |
| RU2263892C2 (en) | Device for determining viscous of fluid | |
| GB1522275A (en) | Device for comparing the flow rate of a liquid petroleum product at different temperatures | |
| JPS5666364A (en) | Continuous casting method | |
| SU1300310A2 (en) | Device for measuring melt temperature,particularly,in crucible | |
| JPS57113327A (en) | Low temperature position detecting system by optical fiber | |
| SU1024835A1 (en) | Method of determination frozen biological material and food melting temperature |